/* * Copyright (c) 2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* * ZynqMP system level PM-API functions for clock control. */ #include #include #include #include #include #include "pm_api_clock.h" #include "pm_api_sys.h" #include "pm_client.h" #include "pm_common.h" #include "pm_ipi.h" #define CLK_NODE_MAX U(6) #define CLK_PARENTS_ID_LEN U(16) #define CLK_TOPOLOGY_NODE_OFFSET U(16) #define CLK_TOPOLOGY_PAYLOAD_LEN U(12) #define CLK_PARENTS_PAYLOAD_LEN U(12) #define CLK_TYPE_SHIFT U(2) #define CLK_CLKFLAGS_SHIFT U(8) #define CLK_TYPEFLAGS_SHIFT U(24) #define CLK_EXTERNAL_PARENT (PARENT_CLK_EXTERNAL << CLK_PARENTS_ID_LEN) #define NA_MULT U(0) #define NA_DIV U(0) #define NA_SHIFT U(0) #define NA_WIDTH U(0) #define NA_CLK_FLAGS U(0) #define NA_TYPE_FLAGS U(0) /* PLL nodes related definitions */ #define PLL_PRESRC_MUX_SHIFT U(20) #define PLL_PRESRC_MUX_WIDTH U(3) #define PLL_POSTSRC_MUX_SHIFT U(24) #define PLL_POSTSRC_MUX_WIDTH U(3) #define PLL_DIV2_MUX_SHIFT U(16) #define PLL_DIV2_MUX_WIDTH U(1) #define PLL_BYPASS_MUX_SHIFT U(3) #define PLL_BYPASS_MUX_WIDTH U(1) /* Peripheral nodes related definitions */ /* Peripheral Clocks */ #define PERIPH_MUX_SHIFT U(0) #define PERIPH_MUX_WIDTH U(3) #define PERIPH_DIV1_SHIFT U(8) #define PERIPH_DIV1_WIDTH U(6) #define PERIPH_DIV2_SHIFT U(16) #define PERIPH_DIV2_WIDTH U(6) #define PERIPH_GATE_SHIFT U(24) #define PERIPH_GATE_WIDTH U(1) #define USB_GATE_SHIFT U(25) /* External clock related definitions */ #define EXT_CLK_MIO_DATA(mio) \ [EXT_CLK_INDEX(EXT_CLK_MIO##mio)] = { \ .name = "mio_clk_"#mio, \ } #define EXT_CLK_INDEX(n) (n - CLK_MAX_OUTPUT_CLK) /* Clock control related definitions */ #define BIT_MASK(x, y) (((1U << (y)) - 1) << (x)) #define ISPLL(id) (id == CLK_APLL_INT || \ id == CLK_DPLL_INT || \ id == CLK_VPLL_INT || \ id == CLK_IOPLL_INT || \ id == CLK_RPLL_INT) #define PLLCTRL_BP_MASK BIT(3) #define PLLCTRL_RESET_MASK U(1) #define PLL_FRAC_OFFSET U(8) #define PLL_FRAC_MODE U(1) #define PLL_INT_MODE U(0) #define PLL_FRAC_MODE_MASK U(0x80000000) #define PLL_FRAC_MODE_SHIFT U(31) #define PLL_FRAC_DATA_MASK U(0xFFFF) #define PLL_FRAC_DATA_SHIFT U(0) #define PLL_FBDIV_MASK U(0x7F00) #define PLL_FBDIV_WIDTH U(7) #define PLL_FBDIV_SHIFT U(8) #define CLK_PLL_RESET_ASSERT U(1) #define CLK_PLL_RESET_RELEASE U(2) #define CLK_PLL_RESET_PULSE (CLK_PLL_RESET_ASSERT | CLK_PLL_RESET_RELEASE) /* Common topology definitions */ #define GENERIC_MUX \ { \ .type = TYPE_MUX, \ .offset = PERIPH_MUX_SHIFT, \ .width = PERIPH_MUX_WIDTH, \ .clkflags = CLK_SET_RATE_NO_REPARENT | \ CLK_IS_BASIC, \ .typeflags = NA_TYPE_FLAGS, \ .mult = NA_MULT, \ .div = NA_DIV, \ } #define IGNORE_UNUSED_MUX \ { \ .type = TYPE_MUX, \ .offset = PERIPH_MUX_SHIFT, \ .width = PERIPH_MUX_WIDTH, \ .clkflags = CLK_IGNORE_UNUSED | \ CLK_SET_RATE_NO_REPARENT | \ CLK_IS_BASIC, \ .typeflags = NA_TYPE_FLAGS, \ .mult = NA_MULT, \ .div = NA_DIV, \ } #define GENERIC_DIV(id) \ { \ .type = TYPE_DIV##id, \ .offset = PERIPH_DIV##id##_SHIFT, \ .width = PERIPH_DIV##id##_WIDTH, \ .clkflags = CLK_SET_RATE_NO_REPARENT | \ CLK_IS_BASIC, \ .typeflags = CLK_DIVIDER_ONE_BASED | \ CLK_DIVIDER_ALLOW_ZERO, \ .mult = NA_MULT, \ .div = NA_DIV, \ } #define IGNORE_UNUSED_DIV(id) \ { \ .type = TYPE_DIV##id, \ .offset = PERIPH_DIV##id##_SHIFT, \ .width = PERIPH_DIV##id##_WIDTH, \ .clkflags = CLK_IGNORE_UNUSED | \ CLK_SET_RATE_NO_REPARENT | \ CLK_IS_BASIC, \ .typeflags = CLK_DIVIDER_ONE_BASED | \ CLK_DIVIDER_ALLOW_ZERO, \ .mult = NA_MULT, \ .div = NA_DIV, \ } #define GENERIC_GATE \ { \ .type = TYPE_GATE, \ .offset = PERIPH_GATE_SHIFT, \ .width = PERIPH_GATE_WIDTH, \ .clkflags = CLK_SET_RATE_PARENT | \ CLK_SET_RATE_GATE | \ CLK_IS_BASIC, \ .typeflags = NA_TYPE_FLAGS, \ .mult = NA_MULT, \ .div = NA_DIV, \ } #define IGNORE_UNUSED_GATE \ { \ .type = TYPE_GATE, \ .offset = PERIPH_GATE_SHIFT, \ .width = PERIPH_GATE_WIDTH, \ .clkflags = CLK_SET_RATE_PARENT | \ CLK_IGNORE_UNUSED | \ CLK_IS_BASIC, \ .typeflags = NA_TYPE_FLAGS, \ .mult = NA_MULT, \ .div = NA_DIV, \ } /** * struct pm_clock_node - Clock topology node information * @type: Topology type (mux/div1/div2/gate/pll/fixed factor) * @offset: Offset in control register * @width: Width of the specific type in control register * @clkflags: Clk specific flags * @typeflags: Type specific flags * @mult: Multiplier for fixed factor * @div: Divisor for fixed factor */ struct pm_clock_node { uint16_t clkflags; uint16_t typeflags; uint8_t type; uint8_t offset; uint8_t width; uint8_t mult:4; uint8_t div:4; }; /** * struct pm_clock - Clock structure * @name: Clock name * @control_reg: Control register address * @status_reg: Status register address * @parents: Parents for first clock node. Lower byte indicates parent * clock id and upper byte indicate flags for that id. * pm_clock_node: Clock nodes */ struct pm_clock { char name[CLK_NAME_LEN]; uint8_t num_nodes; unsigned int control_reg; unsigned int status_reg; int32_t (*parents)[]; struct pm_clock_node(*nodes)[]; }; /** * struct pm_clock - Clock structure * @name: Clock name */ struct pm_ext_clock { char name[CLK_NAME_LEN]; }; /* PLL Clocks */ static struct pm_clock_node generic_pll_nodes[] = { { .type = TYPE_PLL, .offset = NA_SHIFT, .width = NA_WIDTH, .clkflags = CLK_SET_RATE_NO_REPARENT, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node ignore_unused_pll_nodes[] = { { .type = TYPE_PLL, .offset = NA_SHIFT, .width = NA_WIDTH, .clkflags = CLK_IGNORE_UNUSED | CLK_SET_RATE_NO_REPARENT, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node generic_pll_pre_src_nodes[] = { { .type = TYPE_MUX, .offset = PLL_PRESRC_MUX_SHIFT, .width = PLL_PRESRC_MUX_WIDTH, .clkflags = CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node generic_pll_half_nodes[] = { { .type = TYPE_FIXEDFACTOR, .offset = NA_SHIFT, .width = NA_WIDTH, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_SET_RATE_PARENT, .typeflags = NA_TYPE_FLAGS, .mult = 1, .div = 2, }, }; static struct pm_clock_node generic_pll_int_nodes[] = { { .type = TYPE_MUX, .offset = PLL_DIV2_MUX_SHIFT, .width = PLL_DIV2_MUX_WIDTH, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node generic_pll_post_src_nodes[] = { { .type = TYPE_MUX, .offset = PLL_POSTSRC_MUX_SHIFT, .width = PLL_POSTSRC_MUX_WIDTH, .clkflags = CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node generic_pll_system_nodes[] = { { .type = TYPE_MUX, .offset = PLL_BYPASS_MUX_SHIFT, .width = PLL_BYPASS_MUX_WIDTH, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node acpu_nodes[] = { { .type = TYPE_MUX, .offset = PERIPH_MUX_SHIFT, .width = PERIPH_MUX_WIDTH, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_DIV1, .offset = PERIPH_DIV1_SHIFT, .width = PERIPH_DIV1_WIDTH, .clkflags = CLK_IS_BASIC, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_GATE, .offset = PERIPH_GATE_SHIFT, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED | CLK_IS_BASIC | CLK_IS_CRITICAL, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node generic_mux_div_nodes[] = { GENERIC_MUX, GENERIC_DIV(1), }; static struct pm_clock_node generic_mux_div_gate_nodes[] = { GENERIC_MUX, GENERIC_DIV(1), GENERIC_GATE, }; static struct pm_clock_node generic_mux_div_unused_gate_nodes[] = { GENERIC_MUX, GENERIC_DIV(1), IGNORE_UNUSED_GATE, }; static struct pm_clock_node generic_mux_div_div_gate_nodes[] = { GENERIC_MUX, GENERIC_DIV(1), GENERIC_DIV(2), GENERIC_GATE, }; static struct pm_clock_node dp_audio_video_ref_nodes[] = { { .type = TYPE_MUX, .offset = PERIPH_MUX_SHIFT, .width = PERIPH_MUX_WIDTH, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_SET_RATE_PARENT | CLK_FRAC | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_DIV1, .offset = PERIPH_DIV1_SHIFT, .width = PERIPH_DIV1_WIDTH, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_SET_RATE_PARENT | CLK_FRAC | CLK_IS_BASIC, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_DIV2, .offset = PERIPH_DIV2_SHIFT, .width = PERIPH_DIV2_WIDTH, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_SET_RATE_PARENT | CLK_FRAC | CLK_IS_BASIC, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_GATE, .offset = PERIPH_GATE_SHIFT, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node usb_nodes[] = { GENERIC_MUX, GENERIC_DIV(1), GENERIC_DIV(2), { .type = TYPE_GATE, .offset = USB_GATE_SHIFT, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC | CLK_SET_RATE_GATE, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node generic_domain_crossing_nodes[] = { { .type = TYPE_DIV1, .offset = 8, .width = 6, .clkflags = CLK_IS_BASIC, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node rpll_to_fpd_nodes[] = { { .type = TYPE_DIV1, .offset = 8, .width = 6, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node acpu_half_nodes[] = { { .type = TYPE_FIXEDFACTOR, .offset = 0, .width = 1, .clkflags = 0, .typeflags = 0, .mult = 1, .div = 2, }, { .type = TYPE_GATE, .offset = 25, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_IGNORE_UNUSED | CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node wdt_nodes[] = { { .type = TYPE_MUX, .offset = 0, .width = 1, .clkflags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node ddr_nodes[] = { GENERIC_MUX, { .type = TYPE_DIV1, .offset = 8, .width = 6, .clkflags = CLK_IS_BASIC | CLK_IS_CRITICAL, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node pl_nodes[] = { GENERIC_MUX, { .type = TYPE_DIV1, .offset = PERIPH_DIV1_SHIFT, .width = PERIPH_DIV1_WIDTH, .clkflags = CLK_IS_BASIC, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_DIV2, .offset = PERIPH_DIV2_SHIFT, .width = PERIPH_DIV2_WIDTH, .clkflags = CLK_IS_BASIC | CLK_SET_RATE_PARENT, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_GATE, .offset = PERIPH_GATE_SHIFT, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node gpu_pp0_nodes[] = { { .type = TYPE_GATE, .offset = 25, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node gpu_pp1_nodes[] = { { .type = TYPE_GATE, .offset = 26, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node gem_nodes[] = { GENERIC_MUX, { .type = TYPE_DIV1, .offset = 8, .width = 6, .clkflags = CLK_IS_BASIC, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_DIV2, .offset = 16, .width = 6, .clkflags = CLK_IS_BASIC, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_GATE, .offset = 25, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node gem0_tx_nodes[] = { { .type = TYPE_MUX, .offset = 1, .width = 1, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_GATE, .offset = 26, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node gem1_tx_nodes[] = { { .type = TYPE_MUX, .offset = 6, .width = 1, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_GATE, .offset = 26, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node gem2_tx_nodes[] = { { .type = TYPE_MUX, .offset = 11, .width = 1, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_GATE, .offset = 26, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node gem3_tx_nodes[] = { { .type = TYPE_MUX, .offset = 16, .width = 1, .clkflags = CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, { .type = TYPE_GATE, .offset = 26, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_SET_RATE_PARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node gem_tsu_nodes[] = { { .type = TYPE_MUX, .offset = 20, .width = 2, .clkflags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node can0_mio_nodes[] = { { .type = TYPE_MUX, .offset = 0, .width = 7, .clkflags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node can1_mio_nodes[] = { { .type = TYPE_MUX, .offset = 15, .width = 1, .clkflags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node can0_nodes[] = { { .type = TYPE_MUX, .offset = 7, .width = 1, .clkflags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node can1_nodes[] = { { .type = TYPE_MUX, .offset = 22, .width = 1, .clkflags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node cpu_r5_core_nodes[] = { { .type = TYPE_GATE, .offset = 25, .width = PERIPH_GATE_WIDTH, .clkflags = CLK_IGNORE_UNUSED | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node dll_ref_nodes[] = { { .type = TYPE_MUX, .offset = 0, .width = 3, .clkflags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT | CLK_IS_BASIC, .typeflags = NA_TYPE_FLAGS, .mult = NA_MULT, .div = NA_DIV, }, }; static struct pm_clock_node timestamp_ref_nodes[] = { GENERIC_MUX, { .type = TYPE_DIV1, .offset = 8, .width = 6, .clkflags = CLK_IS_BASIC, .typeflags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, .mult = NA_MULT, .div = NA_DIV, }, IGNORE_UNUSED_GATE, }; static int32_t can_mio_parents[] = { EXT_CLK_MIO0, EXT_CLK_MIO1, EXT_CLK_MIO2, EXT_CLK_MIO3, EXT_CLK_MIO4, EXT_CLK_MIO5, EXT_CLK_MIO6, EXT_CLK_MIO7, EXT_CLK_MIO8, EXT_CLK_MIO9, EXT_CLK_MIO10, EXT_CLK_MIO11, EXT_CLK_MIO12, EXT_CLK_MIO13, EXT_CLK_MIO14, EXT_CLK_MIO15, EXT_CLK_MIO16, EXT_CLK_MIO17, EXT_CLK_MIO18, EXT_CLK_MIO19, EXT_CLK_MIO20, EXT_CLK_MIO21, EXT_CLK_MIO22, EXT_CLK_MIO23, EXT_CLK_MIO24, EXT_CLK_MIO25, EXT_CLK_MIO26, EXT_CLK_MIO27, EXT_CLK_MIO28, EXT_CLK_MIO29, EXT_CLK_MIO30, EXT_CLK_MIO31, EXT_CLK_MIO32, EXT_CLK_MIO33, EXT_CLK_MIO34, EXT_CLK_MIO35, EXT_CLK_MIO36, EXT_CLK_MIO37, EXT_CLK_MIO38, EXT_CLK_MIO39, EXT_CLK_MIO40, EXT_CLK_MIO41, EXT_CLK_MIO42, EXT_CLK_MIO43, EXT_CLK_MIO44, EXT_CLK_MIO45, EXT_CLK_MIO46, EXT_CLK_MIO47, EXT_CLK_MIO48, EXT_CLK_MIO49, EXT_CLK_MIO50, EXT_CLK_MIO51, EXT_CLK_MIO52, EXT_CLK_MIO53, EXT_CLK_MIO54, EXT_CLK_MIO55, EXT_CLK_MIO56, EXT_CLK_MIO57, EXT_CLK_MIO58, EXT_CLK_MIO59, EXT_CLK_MIO60, EXT_CLK_MIO61, EXT_CLK_MIO62, EXT_CLK_MIO63, EXT_CLK_MIO64, EXT_CLK_MIO65, EXT_CLK_MIO66, EXT_CLK_MIO67, EXT_CLK_MIO68, EXT_CLK_MIO69, EXT_CLK_MIO70, EXT_CLK_MIO71, EXT_CLK_MIO72, EXT_CLK_MIO73, EXT_CLK_MIO74, EXT_CLK_MIO75, EXT_CLK_MIO76, EXT_CLK_MIO77, CLK_NA_PARENT }; /* Clock array containing clock informaton */ static struct pm_clock clocks[] = { [CLK_APLL_INT] = { .name = "apll_int", .control_reg = CRF_APB_APLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_APLL_PRE_SRC, CLK_NA_PARENT}), .nodes = &ignore_unused_pll_nodes, .num_nodes = ARRAY_SIZE(ignore_unused_pll_nodes), }, [CLK_APLL_PRE_SRC] = { .name = "apll_pre_src", .control_reg = CRF_APB_APLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_pre_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_pre_src_nodes), }, [CLK_APLL_HALF] = { .name = "apll_half", .control_reg = CRF_APB_APLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_APLL_INT, CLK_NA_PARENT}), .nodes = &generic_pll_half_nodes, .num_nodes = ARRAY_SIZE(generic_pll_half_nodes), }, [CLK_APLL_INT_MUX] = { .name = "apll_int_mux", .control_reg = CRF_APB_APLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_APLL_INT, CLK_APLL_HALF, CLK_NA_PARENT }), .nodes = &generic_pll_int_nodes, .num_nodes = ARRAY_SIZE(generic_pll_int_nodes), }, [CLK_APLL_POST_SRC] = { .name = "apll_post_src", .control_reg = CRF_APB_APLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_post_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_post_src_nodes), }, [CLK_APLL] = { .name = "apll", .control_reg = CRF_APB_APLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_APLL_INT_MUX, CLK_APLL_POST_SRC, CLK_NA_PARENT }), .nodes = &generic_pll_system_nodes, .num_nodes = ARRAY_SIZE(generic_pll_system_nodes), }, [CLK_DPLL_INT] = { .name = "dpll_int", .control_reg = CRF_APB_DPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_DPLL_PRE_SRC, CLK_NA_PARENT}), .nodes = &generic_pll_nodes, .num_nodes = ARRAY_SIZE(generic_pll_nodes), }, [CLK_DPLL_PRE_SRC] = { .name = "dpll_pre_src", .control_reg = CRF_APB_DPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_pre_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_pre_src_nodes), }, [CLK_DPLL_HALF] = { .name = "dpll_half", .control_reg = CRF_APB_DPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_DPLL_INT, CLK_NA_PARENT}), .nodes = &generic_pll_half_nodes, .num_nodes = ARRAY_SIZE(generic_pll_half_nodes), }, [CLK_DPLL_INT_MUX] = { .name = "dpll_int_mux", .control_reg = CRF_APB_DPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_DPLL_INT, CLK_DPLL_HALF, CLK_NA_PARENT }), .nodes = &generic_pll_int_nodes, .num_nodes = ARRAY_SIZE(generic_pll_int_nodes), }, [CLK_DPLL_POST_SRC] = { .name = "dpll_post_src", .control_reg = CRF_APB_DPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_post_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_post_src_nodes), }, [CLK_DPLL] = { .name = "dpll", .control_reg = CRF_APB_DPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_DPLL_INT_MUX, CLK_DPLL_POST_SRC, CLK_NA_PARENT }), .nodes = &generic_pll_system_nodes, .num_nodes = ARRAY_SIZE(generic_pll_system_nodes), }, [CLK_VPLL_INT] = { .name = "vpll_int", .control_reg = CRF_APB_VPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_VPLL_PRE_SRC, CLK_NA_PARENT}), .nodes = &ignore_unused_pll_nodes, .num_nodes = ARRAY_SIZE(ignore_unused_pll_nodes), }, [CLK_VPLL_PRE_SRC] = { .name = "vpll_pre_src", .control_reg = CRF_APB_VPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_pre_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_pre_src_nodes), }, [CLK_VPLL_HALF] = { .name = "vpll_half", .control_reg = CRF_APB_VPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_VPLL_INT, CLK_NA_PARENT}), .nodes = &generic_pll_half_nodes, .num_nodes = ARRAY_SIZE(generic_pll_half_nodes), }, [CLK_VPLL_INT_MUX] = { .name = "vpll_int_mux", .control_reg = CRF_APB_VPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_VPLL_INT, CLK_VPLL_HALF, CLK_NA_PARENT }), .nodes = &generic_pll_int_nodes, .num_nodes = ARRAY_SIZE(generic_pll_int_nodes), }, [CLK_VPLL_POST_SRC] = { .name = "vpll_post_src", .control_reg = CRF_APB_VPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_post_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_post_src_nodes), }, [CLK_VPLL] = { .name = "vpll", .control_reg = CRF_APB_VPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_VPLL_INT_MUX, CLK_VPLL_POST_SRC, CLK_NA_PARENT }), .nodes = &generic_pll_system_nodes, .num_nodes = ARRAY_SIZE(generic_pll_system_nodes), }, [CLK_IOPLL_INT] = { .name = "iopll_int", .control_reg = CRL_APB_IOPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_IOPLL_PRE_SRC, CLK_NA_PARENT}), .nodes = &generic_pll_nodes, .num_nodes = ARRAY_SIZE(generic_pll_nodes), }, [CLK_IOPLL_PRE_SRC] = { .name = "iopll_pre_src", .control_reg = CRL_APB_IOPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_pre_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_pre_src_nodes), }, [CLK_IOPLL_HALF] = { .name = "iopll_half", .control_reg = CRL_APB_IOPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_IOPLL_INT, CLK_NA_PARENT}), .nodes = &generic_pll_half_nodes, .num_nodes = ARRAY_SIZE(generic_pll_half_nodes), }, [CLK_IOPLL_INT_MUX] = { .name = "iopll_int_mux", .control_reg = CRL_APB_IOPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_IOPLL_INT, CLK_IOPLL_HALF, CLK_NA_PARENT }), .nodes = &generic_pll_int_nodes, .num_nodes = ARRAY_SIZE(generic_pll_int_nodes), }, [CLK_IOPLL_POST_SRC] = { .name = "iopll_post_src", .control_reg = CRL_APB_IOPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_post_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_post_src_nodes), }, [CLK_IOPLL] = { .name = "iopll", .control_reg = CRL_APB_IOPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_IOPLL_INT_MUX, CLK_IOPLL_POST_SRC, CLK_NA_PARENT }), .nodes = &generic_pll_system_nodes, .num_nodes = ARRAY_SIZE(generic_pll_system_nodes), }, [CLK_RPLL_INT] = { .name = "rpll_int", .control_reg = CRL_APB_RPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_RPLL_PRE_SRC, CLK_NA_PARENT}), .nodes = &generic_pll_nodes, .num_nodes = ARRAY_SIZE(generic_pll_nodes), }, [CLK_RPLL_PRE_SRC] = { .name = "rpll_pre_src", .control_reg = CRL_APB_RPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_pre_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_pre_src_nodes), }, [CLK_RPLL_HALF] = { .name = "rpll_half", .control_reg = CRL_APB_RPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) {CLK_RPLL_INT, CLK_NA_PARENT}), .nodes = &generic_pll_half_nodes, .num_nodes = ARRAY_SIZE(generic_pll_half_nodes), }, [CLK_RPLL_INT_MUX] = { .name = "rpll_int_mux", .control_reg = CRL_APB_RPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_RPLL_INT, CLK_RPLL_HALF, CLK_NA_PARENT }), .nodes = &generic_pll_int_nodes, .num_nodes = ARRAY_SIZE(generic_pll_int_nodes), }, [CLK_RPLL_POST_SRC] = { .name = "rpll_post_src", .control_reg = CRL_APB_RPLL_CTRL, .status_reg = CRF_APB_PLL_STATUS, .parents = &((int32_t []) { EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_VIDEO | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_ALT_REF | CLK_EXTERNAL_PARENT, EXT_CLK_AUX_REF | CLK_EXTERNAL_PARENT, EXT_CLK_GT_CRX_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &generic_pll_post_src_nodes, .num_nodes = ARRAY_SIZE(generic_pll_post_src_nodes), }, [CLK_RPLL] = { .name = "rpll", .control_reg = CRL_APB_RPLL_CTRL, .status_reg = CRL_APB_PLL_STATUS, .parents = &((int32_t []) { CLK_RPLL_INT_MUX, CLK_RPLL_POST_SRC, CLK_NA_PARENT }), .nodes = &generic_pll_system_nodes, .num_nodes = ARRAY_SIZE(generic_pll_system_nodes), }, /* Peripheral Clocks */ [CLK_ACPU] = { .name = "acpu", .control_reg = CRF_APB_ACPU_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_APLL, CLK_DUMMY_PARENT, CLK_DPLL, CLK_VPLL, CLK_NA_PARENT }), .nodes = &acpu_nodes, .num_nodes = ARRAY_SIZE(acpu_nodes), }, [CLK_DBG_TRACE] = { .name = "dbg_trace", .control_reg = CRF_APB_DBG_TRACE_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL_TO_FPD, CLK_DUMMY_PARENT, CLK_DPLL, CLK_APLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_DBG_FPD] = { .name = "dbg_fpd", .control_reg = CRF_APB_DBG_FPD_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL_TO_FPD, CLK_DUMMY_PARENT, CLK_DPLL, CLK_APLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_DBG_TSTMP] = { .name = "dbg_tstmp", .control_reg = CRF_APB_DBG_TSTMP_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL_TO_FPD, CLK_DUMMY_PARENT, CLK_DPLL, CLK_APLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_nodes), }, [CLK_DP_VIDEO_REF] = { .name = "dp_video_ref", .control_reg = CRF_APB_DP_VIDEO_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_VPLL, CLK_DUMMY_PARENT, CLK_DPLL, CLK_RPLL_TO_FPD, CLK_NA_PARENT }), .nodes = &dp_audio_video_ref_nodes, .num_nodes = ARRAY_SIZE(dp_audio_video_ref_nodes), }, [CLK_DP_AUDIO_REF] = { .name = "dp_audio_ref", .control_reg = CRF_APB_DP_AUDIO_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_VPLL, CLK_DUMMY_PARENT, CLK_DPLL, CLK_RPLL_TO_FPD, CLK_NA_PARENT }), .nodes = &dp_audio_video_ref_nodes, .num_nodes = ARRAY_SIZE(dp_audio_video_ref_nodes), }, [CLK_DP_STC_REF] = { .name = "dp_stc_ref", .control_reg = CRF_APB_DP_STC_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_VPLL, CLK_DUMMY_PARENT, CLK_DPLL, CLK_RPLL_TO_FPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_DPDMA_REF] = { .name = "dpdma_ref", .control_reg = CRF_APB_DPDMA_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_APLL, CLK_DUMMY_PARENT, CLK_VPLL, CLK_DPLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_DDR_REF] = { .name = "ddr_ref", .control_reg = CRF_APB_DDR_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_DPLL, CLK_VPLL, CLK_NA_PARENT }), .nodes = &ddr_nodes, .num_nodes = ARRAY_SIZE(ddr_nodes), }, [CLK_GPU_REF] = { .name = "gpu_ref", .control_reg = CRF_APB_GPU_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL_TO_FPD, CLK_DUMMY_PARENT, CLK_VPLL, CLK_DPLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_SATA_REF] = { .name = "sata_ref", .control_reg = CRF_APB_SATA_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL_TO_FPD, CLK_DUMMY_PARENT, CLK_APLL, CLK_DPLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_PCIE_REF] = { .name = "pcie_ref", .control_reg = CRF_APB_PCIE_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL_TO_FPD, CLK_DUMMY_PARENT, CLK_RPLL_TO_FPD, CLK_DPLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_GDMA_REF] = { .name = "gdma_ref", .control_reg = CRF_APB_GDMA_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_APLL, CLK_DUMMY_PARENT, CLK_VPLL, CLK_DPLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_GTGREF0_REF] = { .name = "gtgref0_ref", .control_reg = CRF_APB_GTGREF0_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL_TO_FPD, CLK_DUMMY_PARENT, CLK_APLL, CLK_DPLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_TOPSW_MAIN] = { .name = "topsw_main", .control_reg = CRF_APB_TOPSW_MAIN_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_APLL, CLK_DUMMY_PARENT, CLK_VPLL, CLK_DPLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_unused_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_unused_gate_nodes), }, [CLK_TOPSW_LSBUS] = { .name = "topsw_lsbus", .control_reg = CRF_APB_TOPSW_LSBUS_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_APLL, CLK_DUMMY_PARENT, CLK_IOPLL_TO_FPD, CLK_DPLL, CLK_NA_PARENT }), .nodes = &generic_mux_div_unused_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_unused_gate_nodes), }, [CLK_IOU_SWITCH] = { .name = "iou_switch", .control_reg = CRL_APB_IOU_SWITCH_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_RPLL, CLK_DUMMY_PARENT, CLK_IOPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_unused_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_unused_gate_nodes), }, [CLK_GEM0_REF] = { .name = "gem0_ref", .control_reg = CRL_APB_GEM0_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &gem_nodes, .num_nodes = ARRAY_SIZE(gem_nodes), }, [CLK_GEM1_REF] = { .name = "gem1_ref", .control_reg = CRL_APB_GEM1_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &gem_nodes, .num_nodes = ARRAY_SIZE(gem_nodes), }, [CLK_GEM2_REF] = { .name = "gem2_ref", .control_reg = CRL_APB_GEM2_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &gem_nodes, .num_nodes = ARRAY_SIZE(gem_nodes), }, [CLK_GEM3_REF] = { .name = "gem3_ref", .control_reg = CRL_APB_GEM3_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &gem_nodes, .num_nodes = ARRAY_SIZE(gem_nodes), }, [CLK_USB0_BUS_REF] = { .name = "usb0_bus_ref", .control_reg = CRL_APB_USB0_BUS_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &usb_nodes, .num_nodes = ARRAY_SIZE(usb_nodes), }, [CLK_USB1_BUS_REF] = { .name = "usb1_bus_ref", .control_reg = CRL_APB_USB1_BUS_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &usb_nodes, .num_nodes = ARRAY_SIZE(usb_nodes), }, [CLK_USB3_DUAL_REF] = { .name = "usb3_dual_ref", .control_reg = CRL_APB_USB3_DUAL_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &usb_nodes, .num_nodes = ARRAY_SIZE(usb_nodes), }, [CLK_QSPI_REF] = { .name = "qspi_ref", .control_reg = CRL_APB_QSPI_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_SDIO0_REF] = { .name = "sdio0_ref", .control_reg = CRL_APB_SDIO0_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_VPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_SDIO1_REF] = { .name = "sdio1_ref", .control_reg = CRL_APB_SDIO1_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_VPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_UART0_REF] = { .name = "uart0_ref", .control_reg = CRL_APB_UART0_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_UART1_REF] = { .name = "uart1_ref", .control_reg = CRL_APB_UART1_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_SPI0_REF] = { .name = "spi0_ref", .control_reg = CRL_APB_SPI0_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_SPI1_REF] = { .name = "spi1_ref", .control_reg = CRL_APB_SPI1_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_CAN0_REF] = { .name = "can0_ref", .control_reg = CRL_APB_CAN0_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_CAN1_REF] = { .name = "can1_ref", .control_reg = CRL_APB_CAN1_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_NAND_REF] = { .name = "nand_ref", .control_reg = CRL_APB_NAND_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_GEM_TSU_REF] = { .name = "gem_tsu_ref", .control_reg = CRL_APB_GEM_TSU_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_DLL_REF] = { .name = "dll_ref", .control_reg = CRL_APB_DLL_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_RPLL, CLK_NA_PARENT }), .nodes = &dll_ref_nodes, .num_nodes = ARRAY_SIZE(dll_ref_nodes), }, [CLK_ADMA_REF] = { .name = "adma_ref", .control_reg = CRL_APB_ADMA_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_RPLL, CLK_DUMMY_PARENT, CLK_IOPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_DBG_LPD] = { .name = "dbg_lpd", .control_reg = CRL_APB_DBG_LPD_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_RPLL, CLK_DUMMY_PARENT, CLK_IOPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_CPU_R5] = { .name = "cpu_r5", .control_reg = CRL_APB_CPU_R5_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_RPLL, CLK_DUMMY_PARENT, CLK_IOPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_unused_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_unused_gate_nodes), }, [CLK_CSU_PLL] = { .name = "csu_pll", .control_reg = CRL_APB_CSU_PLL_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_PCAP] = { .name = "pcap", .control_reg = CRL_APB_PCAP_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_gate_nodes), }, [CLK_LPD_LSBUS] = { .name = "lpd_lsbus", .control_reg = CRL_APB_LPD_LSBUS_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_RPLL, CLK_DUMMY_PARENT, CLK_IOPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_unused_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_unused_gate_nodes), }, [CLK_LPD_SWITCH] = { .name = "lpd_switch", .control_reg = CRL_APB_LPD_SWITCH_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_RPLL, CLK_DUMMY_PARENT, CLK_IOPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_unused_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_unused_gate_nodes), }, [CLK_I2C0_REF] = { .name = "i2c0_ref", .control_reg = CRL_APB_I2C0_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_I2C1_REF] = { .name = "i2c1_ref", .control_reg = CRL_APB_I2C1_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_TIMESTAMP_REF] = { .name = "timestamp_ref", .control_reg = CRL_APB_TIMESTAMP_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, EXT_CLK_PSS_REF | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = ×tamp_ref_nodes, .num_nodes = ARRAY_SIZE(timestamp_ref_nodes), }, [CLK_PL0_REF] = { .name = "pl0_ref", .control_reg = CRL_APB_PL0_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &pl_nodes, .num_nodes = ARRAY_SIZE(pl_nodes), }, [CLK_PL1_REF] = { .name = "pl1_ref", .control_reg = CRL_APB_PL1_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &pl_nodes, .num_nodes = ARRAY_SIZE(pl_nodes), }, [CLK_PL2_REF] = { .name = "pl2_ref", .control_reg = CRL_APB_PL2_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &pl_nodes, .num_nodes = ARRAY_SIZE(pl_nodes), }, [CLK_PL3_REF] = { .name = "pl3_ref", .control_reg = CRL_APB_PL3_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_IOPLL, CLK_DUMMY_PARENT, CLK_RPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &pl_nodes, .num_nodes = ARRAY_SIZE(pl_nodes), }, [CLK_AMS_REF] = { .name = "ams_ref", .control_reg = CRL_APB_AMS_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_RPLL, CLK_DUMMY_PARENT, CLK_IOPLL, CLK_DPLL_TO_LPD, CLK_NA_PARENT }), .nodes = &generic_mux_div_div_gate_nodes, .num_nodes = ARRAY_SIZE(generic_mux_div_div_gate_nodes), }, [CLK_IOPLL_TO_FPD] = { .name = "iopll_to_fpd", .control_reg = CRL_APB_IOPLL_TO_FPD_CTRL, .status_reg = 0, .parents = &((int32_t []) {CLK_IOPLL, CLK_NA_PARENT}), .nodes = &generic_domain_crossing_nodes, .num_nodes = ARRAY_SIZE(generic_domain_crossing_nodes), }, [CLK_RPLL_TO_FPD] = { .name = "rpll_to_fpd", .control_reg = CRL_APB_RPLL_TO_FPD_CTRL, .status_reg = 0, .parents = &((int32_t []) {CLK_RPLL, CLK_NA_PARENT}), .nodes = &rpll_to_fpd_nodes, .num_nodes = ARRAY_SIZE(rpll_to_fpd_nodes), }, [CLK_APLL_TO_LPD] = { .name = "apll_to_lpd", .control_reg = CRF_APB_APLL_TO_LPD_CTRL, .status_reg = 0, .parents = &((int32_t []) {CLK_APLL, CLK_NA_PARENT}), .nodes = &generic_domain_crossing_nodes, .num_nodes = ARRAY_SIZE(generic_domain_crossing_nodes), }, [CLK_DPLL_TO_LPD] = { .name = "dpll_to_lpd", .control_reg = CRF_APB_DPLL_TO_LPD_CTRL, .status_reg = 0, .parents = &((int32_t []) {CLK_DPLL, CLK_NA_PARENT}), .nodes = &generic_domain_crossing_nodes, .num_nodes = ARRAY_SIZE(generic_domain_crossing_nodes), }, [CLK_VPLL_TO_LPD] = { .name = "vpll_to_lpd", .control_reg = CRF_APB_VPLL_TO_LPD_CTRL, .status_reg = 0, .parents = &((int32_t []) {CLK_VPLL, CLK_NA_PARENT}), .nodes = &generic_domain_crossing_nodes, .num_nodes = ARRAY_SIZE(generic_domain_crossing_nodes), }, /* * This clock control requires different registers for mux and gate. * Use control and status registers for the same. */ [CLK_GEM0_TX] = { .name = "gem0_tx", .control_reg = IOU_SLCR_GEM_CLK_CTRL, .status_reg = CRL_APB_GEM0_REF_CTRL, .parents = &((int32_t []) { CLK_GEM0_REF | (PARENT_CLK_NODE3 << CLK_PARENTS_ID_LEN), EXT_CLK_GEM0_EMIO | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &gem0_tx_nodes, .num_nodes = ARRAY_SIZE(gem0_tx_nodes), }, /* * This clock control requires different registers for mux and gate. * Use control and status registers for the same. */ [CLK_GEM1_TX] = { .name = "gem1_tx", .control_reg = IOU_SLCR_GEM_CLK_CTRL, .status_reg = CRL_APB_GEM1_REF_CTRL, .parents = &((int32_t []) { CLK_GEM1_REF | (PARENT_CLK_NODE3 << CLK_PARENTS_ID_LEN), EXT_CLK_GEM1_EMIO | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &gem1_tx_nodes, .num_nodes = ARRAY_SIZE(gem1_tx_nodes), }, /* * This clock control requires different registers for mux and gate. * Use control and status registers for the same. */ [CLK_GEM2_TX] = { .name = "gem2_tx", .control_reg = IOU_SLCR_GEM_CLK_CTRL, .status_reg = CRL_APB_GEM2_REF_CTRL, .parents = &((int32_t []) { CLK_GEM2_REF | (PARENT_CLK_NODE3 << CLK_PARENTS_ID_LEN), EXT_CLK_GEM2_EMIO | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &gem2_tx_nodes, .num_nodes = ARRAY_SIZE(gem2_tx_nodes), }, /* * This clock control requires different registers for mux and gate. * Use control and status registers for the same. */ [CLK_GEM3_TX] = { .name = "gem3_tx", .control_reg = IOU_SLCR_GEM_CLK_CTRL, .status_reg = CRL_APB_GEM3_REF_CTRL, .parents = &((int32_t []) { CLK_GEM3_REF | (PARENT_CLK_NODE3 << CLK_PARENTS_ID_LEN), EXT_CLK_GEM3_EMIO | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &gem3_tx_nodes, .num_nodes = ARRAY_SIZE(gem3_tx_nodes), }, [CLK_ACPU_HALF] = { .name = "acpu_half", .control_reg = CRF_APB_ACPU_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_ACPU | PARENT_CLK_NODE2 << CLK_PARENTS_ID_LEN, CLK_NA_PARENT }), .nodes = &acpu_half_nodes, .num_nodes = ARRAY_SIZE(acpu_half_nodes), }, [CLK_WDT] = { .name = "wdt", .control_reg = FPD_SLCR_WDT_CLK_SEL, .status_reg = 0, .parents = &((int32_t []) { CLK_TOPSW_LSBUS, EXT_CLK_SWDT0 | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &wdt_nodes, .num_nodes = ARRAY_SIZE(wdt_nodes), }, [CLK_GPU_PP0_REF] = { .name = "gpu_pp0_ref", .control_reg = CRF_APB_GPU_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_GPU_REF | PARENT_CLK_NODE2 << CLK_PARENTS_ID_LEN, CLK_NA_PARENT }), .nodes = &gpu_pp0_nodes, .num_nodes = ARRAY_SIZE(gpu_pp0_nodes), }, [CLK_GPU_PP1_REF] = { .name = "gpu_pp1_ref", .control_reg = CRF_APB_GPU_REF_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_GPU_REF | PARENT_CLK_NODE2 << CLK_PARENTS_ID_LEN, CLK_NA_PARENT }), .nodes = &gpu_pp1_nodes, .num_nodes = ARRAY_SIZE(gpu_pp1_nodes), }, [CLK_GEM_TSU] = { .name = "gem_tsu", .control_reg = IOU_SLCR_GEM_CLK_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_GEM_TSU_REF, CLK_GEM_TSU_REF, EXT_CLK_MIO26 | CLK_EXTERNAL_PARENT, EXT_CLK_MIO50_OR_MIO51 | CLK_EXTERNAL_PARENT, CLK_NA_PARENT }), .nodes = &gem_tsu_nodes, .num_nodes = ARRAY_SIZE(gem_tsu_nodes), }, [CLK_CPU_R5_CORE] = { .name = "cpu_r5_core", .control_reg = CRL_APB_CPU_R5_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_CPU_R5 | PARENT_CLK_NODE2 << CLK_PARENTS_ID_LEN, CLK_DUMMY_PARENT, CLK_NA_PARENT }), .nodes = &cpu_r5_core_nodes, .num_nodes = ARRAY_SIZE(cpu_r5_core_nodes), }, [CLK_CAN0_MIO] = { .name = "can0_mio", .control_reg = IOU_SLCR_CAN_MIO_CTRL, .status_reg = 0, .parents = &can_mio_parents, .nodes = &can0_mio_nodes, .num_nodes = ARRAY_SIZE(can0_mio_nodes), }, [CLK_CAN1_MIO] = { .name = "can1_mio", .control_reg = IOU_SLCR_CAN_MIO_CTRL, .status_reg = 0, .parents = &can_mio_parents, .nodes = &can1_mio_nodes, .num_nodes = ARRAY_SIZE(can1_mio_nodes), }, [CLK_CAN0] = { .name = "can0", .control_reg = IOU_SLCR_CAN_MIO_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_CAN0_REF, CLK_CAN0_MIO, CLK_NA_PARENT }), .nodes = &can0_nodes, .num_nodes = ARRAY_SIZE(can0_nodes), }, [CLK_CAN1] = { .name = "can1", .control_reg = IOU_SLCR_CAN_MIO_CTRL, .status_reg = 0, .parents = &((int32_t []) { CLK_CAN1_REF, CLK_CAN1_MIO, CLK_NA_PARENT }), .nodes = &can1_nodes, .num_nodes = ARRAY_SIZE(can1_nodes), }, }; static struct pm_ext_clock ext_clocks[] = { [EXT_CLK_INDEX(EXT_CLK_PSS_REF)] = { .name = "pss_ref_clk", }, [EXT_CLK_INDEX(EXT_CLK_VIDEO)] = { .name = "video_clk", }, [EXT_CLK_INDEX(EXT_CLK_PSS_ALT_REF)] = { .name = "pss_alt_ref_clk", }, [EXT_CLK_INDEX(EXT_CLK_AUX_REF)] = { .name = "aux_ref_clk", }, [EXT_CLK_INDEX(EXT_CLK_GT_CRX_REF)] = { .name = "video_clk", }, [EXT_CLK_INDEX(EXT_CLK_SWDT0)] = { .name = "swdt0_ext_clk", }, [EXT_CLK_INDEX(EXT_CLK_SWDT1)] = { .name = "swdt1_ext_clk", }, [EXT_CLK_INDEX(EXT_CLK_GEM0_EMIO)] = { .name = "gem0_emio_clk", }, [EXT_CLK_INDEX(EXT_CLK_GEM1_EMIO)] = { .name = "gem1_emio_clk", }, [EXT_CLK_INDEX(EXT_CLK_GEM2_EMIO)] = { .name = "gem2_emio_clk", }, [EXT_CLK_INDEX(EXT_CLK_GEM3_EMIO)] = { .name = "gem3_emio_clk", }, [EXT_CLK_INDEX(EXT_CLK_MIO50_OR_MIO51)] = { .name = "mio_clk_50_51", }, EXT_CLK_MIO_DATA(0), EXT_CLK_MIO_DATA(1), EXT_CLK_MIO_DATA(2), EXT_CLK_MIO_DATA(3), EXT_CLK_MIO_DATA(4), EXT_CLK_MIO_DATA(5), EXT_CLK_MIO_DATA(6), EXT_CLK_MIO_DATA(7), EXT_CLK_MIO_DATA(8), EXT_CLK_MIO_DATA(9), EXT_CLK_MIO_DATA(10), EXT_CLK_MIO_DATA(11), EXT_CLK_MIO_DATA(12), EXT_CLK_MIO_DATA(13), EXT_CLK_MIO_DATA(14), EXT_CLK_MIO_DATA(15), EXT_CLK_MIO_DATA(16), EXT_CLK_MIO_DATA(17), EXT_CLK_MIO_DATA(18), EXT_CLK_MIO_DATA(19), EXT_CLK_MIO_DATA(20), EXT_CLK_MIO_DATA(21), EXT_CLK_MIO_DATA(22), EXT_CLK_MIO_DATA(23), EXT_CLK_MIO_DATA(24), EXT_CLK_MIO_DATA(25), EXT_CLK_MIO_DATA(26), EXT_CLK_MIO_DATA(27), EXT_CLK_MIO_DATA(28), EXT_CLK_MIO_DATA(29), EXT_CLK_MIO_DATA(30), EXT_CLK_MIO_DATA(31), EXT_CLK_MIO_DATA(32), EXT_CLK_MIO_DATA(33), EXT_CLK_MIO_DATA(34), EXT_CLK_MIO_DATA(35), EXT_CLK_MIO_DATA(36), EXT_CLK_MIO_DATA(37), EXT_CLK_MIO_DATA(38), EXT_CLK_MIO_DATA(39), EXT_CLK_MIO_DATA(40), EXT_CLK_MIO_DATA(41), EXT_CLK_MIO_DATA(42), EXT_CLK_MIO_DATA(43), EXT_CLK_MIO_DATA(44), EXT_CLK_MIO_DATA(45), EXT_CLK_MIO_DATA(46), EXT_CLK_MIO_DATA(47), EXT_CLK_MIO_DATA(48), EXT_CLK_MIO_DATA(49), EXT_CLK_MIO_DATA(50), EXT_CLK_MIO_DATA(51), EXT_CLK_MIO_DATA(52), EXT_CLK_MIO_DATA(53), EXT_CLK_MIO_DATA(54), EXT_CLK_MIO_DATA(55), EXT_CLK_MIO_DATA(56), EXT_CLK_MIO_DATA(57), EXT_CLK_MIO_DATA(58), EXT_CLK_MIO_DATA(59), EXT_CLK_MIO_DATA(60), EXT_CLK_MIO_DATA(61), EXT_CLK_MIO_DATA(62), EXT_CLK_MIO_DATA(63), EXT_CLK_MIO_DATA(64), EXT_CLK_MIO_DATA(65), EXT_CLK_MIO_DATA(66), EXT_CLK_MIO_DATA(67), EXT_CLK_MIO_DATA(68), EXT_CLK_MIO_DATA(69), EXT_CLK_MIO_DATA(70), EXT_CLK_MIO_DATA(71), EXT_CLK_MIO_DATA(72), EXT_CLK_MIO_DATA(73), EXT_CLK_MIO_DATA(74), EXT_CLK_MIO_DATA(75), EXT_CLK_MIO_DATA(76), EXT_CLK_MIO_DATA(77), }; /* Array of clock which are invalid for this variant */ static uint32_t pm_clk_invalid_list[] = {CLK_USB0, CLK_USB1, CLK_CSU_SPB}; /** * pm_clock_valid - Check if clock is valid or not * @clock_id Id of the clock to be queried * * This function is used to check if given clock is valid * or not for the chip variant. * * List of invalid clocks are maintained in array list for * different variants. * * Return: Returns 1 if clock is valid else 0. */ static bool pm_clock_valid(unsigned int clock_id) { unsigned int i; for (i = 0; i < ARRAY_SIZE(pm_clk_invalid_list); i++) if (pm_clk_invalid_list[i] == clock_id) return 0; return 1; } /** * pm_clock_type - Get clock's type * @clock_id Id of the clock to be queried * * This function is used to check type of clock (OUTPUT/EXTERNAL). * * Return: Returns type of clock (OUTPUT/EXTERNAL). */ static unsigned int pm_clock_type(unsigned int clock_id) { return (clock_id < CLK_MAX_OUTPUT_CLK) ? CLK_TYPE_OUTPUT : CLK_TYPE_EXTERNAL; } /** * pm_api_clock_get_num_clocks() - PM call to request number of clocks * @nclocks Number of clocks * * This function is used by master to get number of clocks. * * @return Returns success. */ enum pm_ret_status pm_api_clock_get_num_clocks(unsigned int *nclocks) { *nclocks = CLK_MAX; return PM_RET_SUCCESS; } /** * pm_api_clock_get_name() - PM call to request a clock's name * @clock_id Clock ID * @name Name of clock (max 16 bytes) * * This function is used by master to get nmae of clock specified * by given clock ID. * * @return Returns success. In case of error, name data is 0. */ enum pm_ret_status pm_api_clock_get_name(unsigned int clock_id, char *name) { if (clock_id == CLK_MAX) memcpy(name, END_OF_CLK, CLK_NAME_LEN); else if (!pm_clock_valid(clock_id)) memset(name, 0, CLK_NAME_LEN); else if (clock_id < CLK_MAX_OUTPUT_CLK) memcpy(name, clocks[clock_id].name, CLK_NAME_LEN); else memcpy(name, ext_clocks[clock_id - CLK_MAX_OUTPUT_CLK].name, CLK_NAME_LEN); return PM_RET_SUCCESS; } /** * pm_api_clock_get_topology() - PM call to request a clock's topology * @clock_id Clock ID * @index Topology index for next toplogy node * @topology Buffer to store nodes in topology and flags * * This function is used by master to get topology information for the * clock specified by given clock ID. Each response would return 3 * topology nodes. To get next nodes, caller needs to call this API with * index of next node. Index starts from 0. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_api_clock_get_topology(unsigned int clock_id, unsigned int index, uint32_t *topology) { struct pm_clock_node *clock_nodes; uint8_t num_nodes; unsigned int i; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; memset(topology, 0, CLK_TOPOLOGY_PAYLOAD_LEN); clock_nodes = *clocks[clock_id].nodes; num_nodes = clocks[clock_id].num_nodes; /* Skip parent till index */ if (index >= num_nodes) return PM_RET_SUCCESS; for (i = 0; i < 3U; i++) { if ((index + i) == num_nodes) break; topology[i] = clock_nodes[index + i].type; topology[i] |= clock_nodes[index + i].clkflags << CLK_CLKFLAGS_SHIFT; topology[i] |= clock_nodes[index + i].typeflags << CLK_TYPEFLAGS_SHIFT; } return PM_RET_SUCCESS; } /** * pm_api_clock_get_fixedfactor_params() - PM call to request a clock's fixed * factor parameters for fixed clock * @clock_id Clock ID * @mul Multiplication value * @div Divisor value * * This function is used by master to get fixed factor parameers for the * fixed clock. This API is application only for the fixed clock. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_api_clock_get_fixedfactor_params(unsigned int clock_id, uint32_t *mul, uint32_t *div) { struct pm_clock_node *clock_nodes; uint8_t num_nodes; unsigned int type, i; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; clock_nodes = *clocks[clock_id].nodes; num_nodes = clocks[clock_id].num_nodes; for (i = 0; i < num_nodes; i++) { type = clock_nodes[i].type; if (type == TYPE_FIXEDFACTOR) { *mul = clock_nodes[i].mult; *div = clock_nodes[i].div; break; } } /* Clock is not fixed clock */ if (i == num_nodes) return PM_RET_ERROR_ARGS; return PM_RET_SUCCESS; } /** * pm_api_clock_get_parents() - PM call to request a clock's first 3 parents * @clock_id Clock ID * @index Index of next parent * @parents Parents of the given clock * * This function is used by master to get clock's parents information. * This API will return 3 parents with a single response. To get other * parents, master should call same API in loop with new parent index * till error is returned. * * E.g First call should have index 0 which will return parents 0, 1 and * 2. Next call, index should be 3 which will return parent 3,4 and 5 and * so on. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_api_clock_get_parents(unsigned int clock_id, unsigned int index, uint32_t *parents) { unsigned int i; int32_t *clk_parents; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; clk_parents = *clocks[clock_id].parents; if (clk_parents == NULL) return PM_RET_ERROR_ARGS; memset(parents, 0, CLK_PARENTS_PAYLOAD_LEN); /* Skip parent till index */ for (i = 0; i < index; i++) if (clk_parents[i] == CLK_NA_PARENT) return PM_RET_SUCCESS; for (i = 0; i < 3; i++) { parents[i] = clk_parents[index + i]; if (clk_parents[index + i] == CLK_NA_PARENT) break; } return PM_RET_SUCCESS; } /** * pm_api_clock_get_attributes() - PM call to request a clock's attributes * @clock_id Clock ID * @attr Clock attributes * * This function is used by master to get clock's attributes * (e.g. valid, clock type, etc). * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_api_clock_get_attributes(unsigned int clock_id, uint32_t *attr) { if (clock_id >= CLK_MAX) return PM_RET_ERROR_ARGS; /* Clock valid bit */ *attr = pm_clock_valid(clock_id); /* Clock type (Output/External) */ *attr |= (pm_clock_type(clock_id) << CLK_TYPE_SHIFT); return PM_RET_SUCCESS; } /** * struct pm_pll - PLL related data required to map IOCTL-based PLL control * implemented by linux to system-level EEMI APIs * @nid: PLL node ID * @cid: PLL clock ID * @mode: PLL mode currently set via IOCTL (PLL_FRAC_MODE/PLL_INT_MODE) */ struct pm_pll { const enum pm_node_id nid; const enum clock_id cid; uint8_t mode; }; static struct pm_pll pm_plls[] = { { .nid = NODE_IOPLL, .cid = CLK_IOPLL_INT, }, { .nid = NODE_RPLL, .cid = CLK_RPLL_INT, }, { .nid = NODE_APLL, .cid = CLK_APLL_INT, }, { .nid = NODE_VPLL, .cid = CLK_VPLL_INT, }, { .nid = NODE_DPLL, .cid = CLK_DPLL_INT, }, }; /** * pm_clock_get_pll() - Get PLL structure by PLL clock ID * @clock_id Clock ID of the target PLL * * @return Pointer to PLL structure if found, NULL otherwise */ static struct pm_pll *pm_clock_get_pll(enum clock_id clock_id) { uint32_t i; for (i = 0; i < ARRAY_SIZE(pm_plls); i++) { if (pm_plls[i].cid == clock_id) return &pm_plls[i]; } return NULL; } /** * pm_clock_get_pll_node_id() - Get PLL node ID by PLL clock ID * @clock_id Clock ID of the target PLL * @node_id Location to store node ID of the target PLL * * @return PM_RET_SUCCESS if node ID is found, PM_RET_ERROR_ARGS otherwise */ enum pm_ret_status pm_clock_get_pll_node_id(enum clock_id clock_id, enum pm_node_id *node_id) { struct pm_pll *pll = pm_clock_get_pll(clock_id); if (pll) { *node_id = pll->nid; return PM_RET_SUCCESS; } return PM_RET_ERROR_ARGS; } /** * pll_get_lockbit() - Returns lockbit index for pll id * @pll_id: Id of the pll * * This function return the PLL_LOCKED bit index in * pll status register accosiated with given pll id. * * Return: Returns bit index */ static int pll_get_lockbit(unsigned int pll_id) { switch (pll_id) { case CLK_APLL_INT: case CLK_IOPLL_INT: return 0; case CLK_DPLL_INT: case CLK_RPLL_INT: return 1; case CLK_VPLL_INT: return 2; default: return -1; } } /** * pm_api_pll_bypass_and_reset() - Bypass and reset PLL * @clock_id: Id of the PLL * * This function is to bypass and reset PLL. */ static inline enum pm_ret_status pm_api_pll_bypass_and_reset(unsigned int clock_id, unsigned int flag) { enum pm_ret_status ret = PM_RET_SUCCESS; unsigned int reg, val; int lockbit; reg = clocks[clock_id].control_reg; if (flag & CLK_PLL_RESET_ASSERT) { ret = pm_mmio_write(reg, PLLCTRL_BP_MASK, PLLCTRL_BP_MASK); if (ret != PM_RET_SUCCESS) return ret; ret = pm_mmio_write(reg, PLLCTRL_RESET_MASK, PLLCTRL_RESET_MASK); if (ret != PM_RET_SUCCESS) return ret; } if (flag & CLK_PLL_RESET_RELEASE) { ret = pm_mmio_write(reg, PLLCTRL_RESET_MASK, ~PLLCTRL_RESET_MASK); if (ret != PM_RET_SUCCESS) return ret; lockbit = pll_get_lockbit(clock_id); do { ret = pm_mmio_read(clocks[clock_id].status_reg, &val); if (ret != PM_RET_SUCCESS) return ret; } while ((lockbit >= 0) && !(val & (1 << lockbit))); ret = pm_mmio_write(reg, PLLCTRL_BP_MASK, ~(unsigned int)PLLCTRL_BP_MASK); } return ret; } /** * pm_api_clk_enable_disable() - Enable/Disable the clock for given id * @clock_id: Id of the clock to be enabled * @enable: Enable(1)/Disable(0) * * This function is to enable/disable the clock which is not PLL. * * Return: Returns status, either success or error+reason. */ static enum pm_ret_status pm_api_clk_enable_disable(unsigned int clock_id, unsigned int enable) { enum pm_ret_status ret = PM_RET_SUCCESS; struct pm_clock_node *nodes = *clocks[clock_id].nodes; uint8_t num_nodes = clocks[clock_id].num_nodes; unsigned int reg, val; uint8_t i = 0; uint8_t offset = NA_SHIFT, width = NA_WIDTH; if (clock_id == CLK_GEM0_TX || clock_id == CLK_GEM1_TX || clock_id == CLK_GEM2_TX || clock_id == CLK_GEM3_TX) reg = clocks[clock_id].status_reg; else reg = clocks[clock_id].control_reg; for (i = 0; i < num_nodes; i++) { if (nodes->type == TYPE_GATE) { offset = nodes->offset; width = nodes->width; break; } nodes++; } if (width == NA_WIDTH) return PM_RET_ERROR_NOTSUPPORTED; ret = pm_mmio_read(reg, &val); if (ret != PM_RET_SUCCESS) return ret; if ((val & BIT_MASK(offset, width)) == enable) return PM_RET_SUCCESS; if (enable == 0) val &= ~(BIT_MASK(offset, width)); else val |= BIT_MASK(offset, width); ret = pm_mmio_write(reg, BIT_MASK(offset, width), val); return ret; } /** * pm_api_clock_enable() - Enable the clock for given id * @clock_id: Id of the clock to be enabled * * This function is used by master to enable the clock * including peripherals and PLL clocks. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_api_clock_enable(unsigned int clock_id) { enum pm_ret_status ret = PM_RET_SUCCESS; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; /* * PLL type clock should not enable explicitly. * It is done by FSBL on boot-up and by PMUFW whenever required. */ if (!ISPLL(clock_id)) ret = pm_api_clk_enable_disable(clock_id, 1); return ret; } /** * pm_api_clock_disable - Disable the clock for given id * @clock_id Id of the clock to be disable * * This function is used by master to disable the clock * including peripherals and PLL clocks. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_api_clock_disable(unsigned int clock_id) { enum pm_ret_status ret = PM_RET_SUCCESS; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; /* * PLL type clock should not be disabled explicitly. * It is done by PMUFW if required. */ if (!ISPLL(clock_id)) ret = pm_api_clk_enable_disable(clock_id, 0); return ret; } /** * pm_api_get_pll_state() - Get state of PLL * @clock_id Id of the PLL * @state State of PLL(1: Enable, 0: Reset) * * This function is to check state of PLL. */ static inline enum pm_ret_status pm_api_get_pll_state(unsigned int clock_id, unsigned int *state) { enum pm_ret_status ret = PM_RET_SUCCESS; unsigned int reg, val; reg = clocks[clock_id].control_reg; ret = pm_mmio_read(reg, &val); /* state: * 1 - PLL is enabled * 0 - PLL is in reset state */ *state = !(val & PLLCTRL_RESET_MASK); return ret; } /** * pm_api_get_clk_state() - Get the state of clock for given id * @clock_id: Id of the clock to be enabled * @state: Enable(1)/Disable(0) * * This function is to get state of the clock which is not PLL. * * Return: Returns status, either success or error+reason. */ static enum pm_ret_status pm_api_get_clk_state(unsigned int clock_id, unsigned int *state) { enum pm_ret_status ret = PM_RET_SUCCESS; struct pm_clock_node *nodes = *clocks[clock_id].nodes; uint8_t num_nodes = clocks[clock_id].num_nodes; unsigned int reg, val; uint8_t i = 0; uint8_t offset = NA_SHIFT, width = NA_WIDTH; reg = clocks[clock_id].control_reg; for (i = 0; i < num_nodes; i++) { if (nodes->type == TYPE_GATE) { offset = nodes->offset; width = nodes->width; } nodes++; } if (width == NA_WIDTH) return PM_RET_ERROR_NOTSUPPORTED; ret = pm_mmio_read(reg, &val); *state = (val & BIT_MASK(offset, width)) >> offset; return ret; } /** * pm_api_clock_getstate - Get the clock state for given id * @clock_id Id of the clock to be queried * @state 1/0 (Enabled/Disabled) * * This function is used by master to get the state of clock * including peripherals and PLL clocks. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_api_clock_getstate(unsigned int clock_id, unsigned int *state) { enum pm_ret_status ret = PM_RET_SUCCESS; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; if (ISPLL(clock_id)) ret = pm_api_get_pll_state(clock_id, state); else ret = pm_api_get_clk_state(clock_id, state); return ret; } static enum pm_ret_status pm_api_clk_set_divider(unsigned int clock_id, uint32_t divider) { enum pm_ret_status ret = PM_RET_SUCCESS; struct pm_clock_node *nodes; uint8_t num_nodes; uint16_t div1, div2; unsigned int reg, mask = 0, val = 0, i; uint8_t div1_width = NA_WIDTH, div1_offset = NA_SHIFT; uint8_t div2_width = NA_WIDTH, div2_offset = NA_SHIFT; div1 = (uint16_t)(divider & 0xFFFFU); div2 = (uint16_t)((divider >> 16) & 0xFFFFU); reg = clocks[clock_id].control_reg; nodes = *clocks[clock_id].nodes; num_nodes = clocks[clock_id].num_nodes; for (i = 0; i < num_nodes; i++) { if (nodes->type == TYPE_DIV1) { div1_offset = nodes->offset; div1_width = nodes->width; } if (nodes->type == TYPE_DIV2) { div2_offset = nodes->offset; div2_width = nodes->width; } nodes++; } if (div1 != (uint16_t)-1) { if (div1_width == NA_WIDTH) return PM_RET_ERROR_NOTSUPPORTED; val |= div1 << div1_offset; mask |= BIT_MASK(div1_offset, div1_width); } if (div2 != (uint16_t)-1) { if (div2_width == NA_WIDTH) return PM_RET_ERROR_NOTSUPPORTED; val |= div2 << div2_offset; mask |= BIT_MASK(div2_offset, div2_width); } ret = pm_mmio_write(reg, mask, val); return ret; } static enum pm_ret_status pm_api_pll_set_divider(unsigned int clock_id, unsigned int divider) { unsigned int reg = clocks[clock_id].control_reg; enum pm_ret_status ret; pm_api_pll_bypass_and_reset(clock_id, CLK_PLL_RESET_ASSERT); ret = pm_mmio_write(reg, PLL_FBDIV_MASK, divider << PLL_FBDIV_SHIFT); pm_api_pll_bypass_and_reset(clock_id, CLK_PLL_RESET_RELEASE); return ret; } /** * pm_api_clock_setdivider - Set the clock divider for given id * @clock_id Id of the clock * @divider Divider value * * This function is used by master to set divider for any clock * to achieve desired rate. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_api_clock_setdivider(unsigned int clock_id, unsigned int divider) { enum pm_ret_status ret; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; if (ISPLL(clock_id)) ret = pm_api_pll_set_divider(clock_id, divider); else ret = pm_api_clk_set_divider(clock_id, divider); return ret; } static enum pm_ret_status pm_api_clk_get_divider(unsigned int clock_id, uint32_t *divider) { enum pm_ret_status ret = PM_RET_SUCCESS; struct pm_clock_node *nodes; uint8_t num_nodes; unsigned int reg, val, i, div1 = 0, div2 = 0; uint8_t div1_width = NA_WIDTH, div1_offset = NA_SHIFT; uint8_t div2_width = NA_WIDTH, div2_offset = NA_SHIFT; reg = clocks[clock_id].control_reg; nodes = *clocks[clock_id].nodes; num_nodes = clocks[clock_id].num_nodes; for (i = 0; i < num_nodes; i++) { if (nodes->type == TYPE_DIV1) { div1_offset = nodes->offset; div1_width = nodes->width; } if (nodes->type == TYPE_DIV2) { div2_offset = nodes->offset; div2_width = nodes->width; } nodes++; } ret = pm_mmio_read(reg, &val); if (div1_width == NA_WIDTH) return PM_RET_ERROR_ARGS; div1 = (val & BIT_MASK(div1_offset, div1_width)) >> div1_offset; if (div2_width != NA_WIDTH) div2 = (val & BIT_MASK(div2_offset, div2_width)) >> div2_offset; *divider = div1 | (div2 << 16); return ret; } static enum pm_ret_status pm_api_pll_get_divider(unsigned int clock_id, unsigned int *divider) { enum pm_ret_status ret = PM_RET_SUCCESS; unsigned int reg, val; reg = clocks[clock_id].control_reg; ret = pm_mmio_read(reg, &val); *divider = (val & PLL_FBDIV_MASK) >> PLL_FBDIV_SHIFT; return ret; } /** * pm_api_clock_getdivider - Get the clock divider for given id * @clock_id Id of the clock * @divider Divider value * * This function is used by master to get divider values * for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_api_clock_getdivider(unsigned int clock_id, unsigned int *divider) { enum pm_ret_status ret; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; if (ISPLL(clock_id)) ret = pm_api_pll_get_divider(clock_id, divider); else ret = pm_api_clk_get_divider(clock_id, divider); return ret; } /** * pm_api_clock_setrate - Set the clock rate for given id * @clock_id Id of the clock * @rate Rate value in hz * * This function is used by master to set rate for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_api_clock_setrate(unsigned int clock_id, uint64_t rate) { return PM_RET_ERROR_NOTSUPPORTED; } /** * pm_api_clock_getrate - Get the clock rate for given id * @clock_id Id of the clock * @rate rate value in hz * * This function is used by master to get rate * for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_api_clock_getrate(unsigned int clock_id, uint64_t *rate) { return PM_RET_ERROR_NOTSUPPORTED; } /** * pm_api_clock_setparent - Set the clock parent for given id * @clock_id Id of the clock * @parent_idx parent index * * This function is used by master to set parent for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_api_clock_setparent(unsigned int clock_id, unsigned int parent_idx) { enum pm_ret_status ret = PM_RET_SUCCESS; struct pm_clock_node *nodes; uint8_t num_nodes; unsigned int reg, val; int32_t *clk_parents; unsigned int i = 0; uint8_t offset = NA_SHIFT, width = NA_WIDTH; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; clk_parents = *clocks[clock_id].parents; for (i = 0; i <= parent_idx; i++) if (clk_parents[i] == CLK_NA_PARENT) return PM_RET_ERROR_ARGS; nodes = *clocks[clock_id].nodes; num_nodes = clocks[clock_id].num_nodes; for (i = 0; i < num_nodes; i++) { if (nodes->type == TYPE_MUX) { offset = nodes->offset; width = nodes->width; } nodes++; } if (width == NA_WIDTH) return PM_RET_ERROR_NOTSUPPORTED; reg = clocks[clock_id].control_reg; val = parent_idx << offset; ret = pm_mmio_write(reg, BIT_MASK(offset, width), val); return ret; } /** * pm_api_clock_getparent - Get the clock parent for given id * @clock_id Id of the clock * @parent_idx parent index * * This function is used by master to get parent index * for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_api_clock_getparent(unsigned int clock_id, unsigned int *parent_idx) { enum pm_ret_status ret = PM_RET_SUCCESS; struct pm_clock_node *nodes; uint8_t num_nodes; unsigned int reg, val; uint8_t i = 0, offset = NA_SHIFT, width = NA_WIDTH; if (!pm_clock_valid(clock_id)) return PM_RET_ERROR_ARGS; if (pm_clock_type(clock_id) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; nodes = *clocks[clock_id].nodes; num_nodes = clocks[clock_id].num_nodes; for (i = 0; i < num_nodes; i++) { if (nodes->type == TYPE_MUX) { offset = nodes->offset; width = nodes->width; } nodes++; } if (width == NA_WIDTH) return PM_RET_ERROR_NOTSUPPORTED; reg = clocks[clock_id].control_reg; ret = pm_mmio_read(reg, &val); val >>= offset; val &= ((1U << width) - 1); *parent_idx = val; return ret; } /** * pm_clock_set_pll_mode() - Set PLL mode * @clock_id PLL clock id * @mode Mode fractional/integer * * This function buffers/saves the PLL mode that is set. * * @return Success if mode is buffered or error if an argument is invalid */ enum pm_ret_status pm_clock_set_pll_mode(enum clock_id clock_id, unsigned int mode) { struct pm_pll *pll = pm_clock_get_pll(clock_id); if (!pll || (mode != PLL_FRAC_MODE && mode != PLL_INT_MODE)) return PM_RET_ERROR_ARGS; pll->mode = mode; return PM_RET_SUCCESS; } /** * pm_ioctl_get_pll_mode() - Get PLL mode * @pll PLL id * @mode Mode fraction/integar * * This function returns current PLL mode. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_api_clk_get_pll_mode(unsigned int pll, unsigned int *mode) { enum pm_ret_status ret = PM_RET_SUCCESS; unsigned int val, reg; if (!pm_clock_valid(pll)) return PM_RET_ERROR_ARGS; if (pm_clock_type(pll) != CLK_TYPE_OUTPUT) return PM_RET_ERROR_NOTSUPPORTED; if (!ISPLL(pll)) return PM_RET_ERROR_NOTSUPPORTED; reg = clocks[pll].control_reg + PLL_FRAC_OFFSET; ret = pm_mmio_read(reg, &val); val = val & PLL_FRAC_MODE_MASK; if (val == 0) *mode = PLL_INT_MODE; else *mode = PLL_FRAC_MODE; return ret; }