/* * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void zeromem16(void *mem, unsigned int length); /******************************************************************************* * Declarations of linker defined symbols which will help us find the layout * of trusted SRAM ******************************************************************************/ extern unsigned long __RO_START__; extern unsigned long __RO_END__; extern unsigned long __BL31_END__; extern uint64_t tegra_bl31_phys_base; extern uint64_t tegra_console_base; /* * The next 3 constants identify the extents of the code, RO data region and the * limit of the BL3-1 image. These addresses are used by the MMU setup code and * therefore they must be page-aligned. It is the responsibility of the linker * script to ensure that __RO_START__, __RO_END__ & __BL31_END__ linker symbols * refer to page-aligned addresses. */ #define BL31_RO_BASE (unsigned long)(&__RO_START__) #define BL31_RO_LIMIT (unsigned long)(&__RO_END__) #define BL31_END (unsigned long)(&__BL31_END__) static entry_point_info_t bl33_image_ep_info, bl32_image_ep_info; static plat_params_from_bl2_t plat_bl31_params_from_bl2 = { .tzdram_size = (uint64_t)TZDRAM_SIZE }; /******************************************************************************* * This variable holds the non-secure image entry address ******************************************************************************/ extern uint64_t ns_image_entrypoint; /******************************************************************************* * The following platform setup functions are weakly defined. They * provide typical implementations that will be overridden by a SoC. ******************************************************************************/ #pragma weak plat_early_platform_setup #pragma weak plat_get_bl31_params #pragma weak plat_get_bl31_plat_params void plat_early_platform_setup(void) { ; /* do nothing */ } bl31_params_t *plat_get_bl31_params(void) { return NULL; } plat_params_from_bl2_t *plat_get_bl31_plat_params(void) { return NULL; } /******************************************************************************* * Return a pointer to the 'entry_point_info' structure of the next image for * security state specified. BL33 corresponds to the non-secure image type * while BL32 corresponds to the secure image type. ******************************************************************************/ entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type) { if (type == NON_SECURE) return &bl33_image_ep_info; /* return BL32 entry point info if it is valid */ if (type == SECURE && bl32_image_ep_info.pc) return &bl32_image_ep_info; return NULL; } /******************************************************************************* * Return a pointer to the 'plat_params_from_bl2_t' structure. The BL2 image * passes this platform specific information. ******************************************************************************/ plat_params_from_bl2_t *bl31_get_plat_params(void) { return &plat_bl31_params_from_bl2; } /******************************************************************************* * Perform any BL31 specific platform actions. Populate the BL33 and BL32 image * info. ******************************************************************************/ void bl31_early_platform_setup(bl31_params_t *from_bl2, void *plat_params_from_bl2) { plat_params_from_bl2_t *plat_params = (plat_params_from_bl2_t *)plat_params_from_bl2; #if DEBUG int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK; #endif image_info_t bl32_img_info = { {0} }; uint64_t tzdram_start, tzdram_end, bl32_start, bl32_end; /* * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so * there's no argument to relay from a previous bootloader. Platforms * might use custom ways to get arguments, so provide handlers which * they can override. */ if (from_bl2 == NULL) from_bl2 = plat_get_bl31_params(); if (plat_params == NULL) plat_params = plat_get_bl31_plat_params(); /* * Copy BL3-3, BL3-2 entry point information. * They are stored in Secure RAM, in BL2's address space. */ assert(from_bl2); assert(from_bl2->bl33_ep_info); bl33_image_ep_info = *from_bl2->bl33_ep_info; if (from_bl2->bl32_ep_info) bl32_image_ep_info = *from_bl2->bl32_ep_info; /* * Parse platform specific parameters - TZDRAM aperture base and size */ assert(plat_params); plat_bl31_params_from_bl2.tzdram_base = plat_params->tzdram_base; plat_bl31_params_from_bl2.tzdram_size = plat_params->tzdram_size; plat_bl31_params_from_bl2.uart_id = plat_params->uart_id; /* * It is very important that we run either from TZDRAM or TZSRAM base. * Add an explicit check here. */ if ((plat_bl31_params_from_bl2.tzdram_base != BL31_BASE) && (TEGRA_TZRAM_BASE != BL31_BASE)) panic(); /* * Get the base address of the UART controller to be used for the * console */ assert(plat_params->uart_id); tegra_console_base = plat_get_console_from_id(plat_params->uart_id); /* * Configure the UART port to be used as the console */ assert(tegra_console_base); console_init(tegra_console_base, TEGRA_BOOT_UART_CLK_IN_HZ, TEGRA_CONSOLE_BAUDRATE); /* Initialise crash console */ plat_crash_console_init(); /* * Do initial security configuration to allow DRAM/device access. */ tegra_memctrl_tzdram_setup(plat_bl31_params_from_bl2.tzdram_base, plat_bl31_params_from_bl2.tzdram_size); /* * The previous bootloader might not have placed the BL32 image * inside the TZDRAM. We check the BL32 image info to find out * the base/PC values and relocate the image if necessary. */ if (from_bl2->bl32_image_info) { bl32_img_info = *from_bl2->bl32_image_info; /* Relocate BL32 if it resides outside of the TZDRAM */ tzdram_start = plat_bl31_params_from_bl2.tzdram_base; tzdram_end = plat_bl31_params_from_bl2.tzdram_base + plat_bl31_params_from_bl2.tzdram_size; bl32_start = bl32_img_info.image_base; bl32_end = bl32_img_info.image_base + bl32_img_info.image_size; assert(tzdram_end > tzdram_start); assert(bl32_end > bl32_start); assert(bl32_image_ep_info.pc > tzdram_start); assert(bl32_image_ep_info.pc < tzdram_end); /* relocate BL32 */ if (bl32_start >= tzdram_end || bl32_end <= tzdram_start) { INFO("Relocate BL32 to TZDRAM\n"); memcpy16((void *)(uintptr_t)bl32_image_ep_info.pc, (void *)(uintptr_t)bl32_start, bl32_img_info.image_size); /* clean up non-secure intermediate buffer */ zeromem16((void *)(uintptr_t)bl32_start, bl32_img_info.image_size); } } /* Early platform setup for Tegra SoCs */ plat_early_platform_setup(); INFO("BL3-1: Boot CPU: %s Processor [%lx]\n", (impl == DENVER_IMPL) ? "Denver" : "ARM", read_mpidr()); } /******************************************************************************* * Initialize the gic, configure the SCR. ******************************************************************************/ void bl31_platform_setup(void) { uint32_t tmp_reg; /* Initialize the gic cpu and distributor interfaces */ plat_gic_setup(); /* * Initialize delay timer */ tegra_delay_timer_init(); /* * Setup secondary CPU POR infrastructure. */ plat_secondary_setup(); /* * Initial Memory Controller configuration. */ tegra_memctrl_setup(); /* * Set up the TZRAM memory aperture to allow only secure world * access */ tegra_memctrl_tzram_setup(TEGRA_TZRAM_BASE, TEGRA_TZRAM_SIZE); /* Set the next EL to be AArch64 */ tmp_reg = SCR_RES1_BITS | SCR_RW_BIT; write_scr(tmp_reg); INFO("BL3-1: Tegra platform setup complete\n"); } /******************************************************************************* * Perform any BL3-1 platform runtime setup prior to BL3-1 cold boot exit ******************************************************************************/ void bl31_plat_runtime_setup(void) { ; /* do nothing */ } /******************************************************************************* * Perform the very early platform specific architectural setup here. At the * moment this only intializes the mmu in a quick and dirty way. ******************************************************************************/ void bl31_plat_arch_setup(void) { unsigned long bl31_base_pa = tegra_bl31_phys_base; unsigned long total_base = bl31_base_pa; unsigned long total_size = BL32_BASE - BL31_RO_BASE; unsigned long ro_start = bl31_base_pa; unsigned long ro_size = BL31_RO_LIMIT - BL31_RO_BASE; const mmap_region_t *plat_mmio_map = NULL; #if USE_COHERENT_MEM unsigned long coh_start, coh_size; #endif plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); /* add memory regions */ mmap_add_region(total_base, total_base, total_size, MT_MEMORY | MT_RW | MT_SECURE); mmap_add_region(ro_start, ro_start, ro_size, MT_MEMORY | MT_RO | MT_SECURE); /* map TZDRAM used by BL31 as coherent memory */ if (TEGRA_TZRAM_BASE == tegra_bl31_phys_base) { mmap_add_region(params_from_bl2->tzdram_base, params_from_bl2->tzdram_base, BL31_SIZE, MT_DEVICE | MT_RW | MT_SECURE); } #if USE_COHERENT_MEM coh_start = total_base + (BL_COHERENT_RAM_BASE - BL31_RO_BASE); coh_size = BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE; mmap_add_region(coh_start, coh_start, coh_size, MT_DEVICE | MT_RW | MT_SECURE); #endif /* add MMIO space */ plat_mmio_map = plat_get_mmio_map(); if (plat_mmio_map) mmap_add(plat_mmio_map); else WARN("MMIO map not available\n"); /* set up translation tables */ init_xlat_tables(); /* enable the MMU */ enable_mmu_el3(0); INFO("BL3-1: Tegra: MMU enabled\n"); } /******************************************************************************* * Check if the given NS DRAM range is valid ******************************************************************************/ int bl31_check_ns_address(uint64_t base, uint64_t size_in_bytes) { uint64_t end = base + size_in_bytes - 1; /* * Check if the NS DRAM address is valid */ if ((base < TEGRA_DRAM_BASE) || (end > TEGRA_DRAM_END) || (base >= end)) { ERROR("NS address is out-of-bounds!\n"); return -EFAULT; } /* * TZDRAM aperture contains the BL31 and BL32 images, so we need * to check if the NS DRAM range overlaps the TZDRAM aperture. */ if ((base < TZDRAM_END) && (end > tegra_bl31_phys_base)) { ERROR("NS address overlaps TZDRAM!\n"); return -ENOTSUP; } /* valid NS address */ return 0; }