/* * Copyright (c) 2014, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include /* Value used to initialize Non-Secure IRQ priorities four at a time */ #define GICD_IPRIORITYR_DEF_VAL \ (GIC_HIGHEST_NS_PRIORITY | \ (GIC_HIGHEST_NS_PRIORITY << 8) | \ (GIC_HIGHEST_NS_PRIORITY << 16) | \ (GIC_HIGHEST_NS_PRIORITY << 24)) static unsigned int g_gicc_base; static unsigned int g_gicd_base; static unsigned long g_gicr_base; static const unsigned int *g_irq_sec_ptr; static unsigned int g_num_irqs; /******************************************************************************* * This function does some minimal GICv3 configuration. The Firmware itself does * not fully support GICv3 at this time and relies on GICv2 emulation as * provided by GICv3. This function allows software (like Linux) in later stages * to use full GICv3 features. ******************************************************************************/ static void gicv3_cpuif_setup(void) { unsigned int scr_val, val; uintptr_t base; /* * When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep * bit set. In order to allow interrupts to get routed to the CPU we * need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep * to clear (GICv3 Architecture specification 5.4.23). * GICR_WAKER is NOT banked per CPU, compute the correct base address * per CPU. */ assert(g_gicr_base); base = gicv3_get_rdist(g_gicr_base, read_mpidr()); if (base == (uintptr_t)NULL) { /* No re-distributor base address. This interface cannot be * configured. */ panic(); } val = gicr_read_waker(base); val &= ~WAKER_PS; gicr_write_waker(base, val); dsb(); /* We need to wait for ChildrenAsleep to clear. */ val = gicr_read_waker(base); while (val & WAKER_CA) val = gicr_read_waker(base); /* * We need to set SCR_EL3.NS in order to see GICv3 non-secure state. * Restore SCR_EL3.NS again before exit. */ scr_val = read_scr(); write_scr(scr_val | SCR_NS_BIT); isb(); /* ensure NS=1 takes effect before accessing ICC_SRE_EL2 */ /* * By default EL2 and NS-EL1 software should be able to enable GICv3 * System register access without any configuration at EL3. But it turns * out that GICC PMR as set in GICv2 mode does not affect GICv3 mode. So * we need to set it here again. In order to do that we need to enable * register access. We leave it enabled as it should be fine and might * prevent problems with later software trying to access GIC System * Registers. */ val = read_icc_sre_el3(); write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE); val = read_icc_sre_el2(); write_icc_sre_el2(val | ICC_SRE_EN | ICC_SRE_SRE); write_icc_pmr_el1(GIC_PRI_MASK); isb(); /* commit ICC_* changes before setting NS=0 */ /* Restore SCR_EL3 */ write_scr(scr_val); isb(); /* ensure NS=0 takes effect immediately */ } /******************************************************************************* * This function does some minimal GICv3 configuration when cores go * down. ******************************************************************************/ static void gicv3_cpuif_deactivate(void) { unsigned int val; uintptr_t base; /* * When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and * wait for GICR_WAKER.ChildrenAsleep to get set. * (GICv3 Architecture specification 5.4.23). * GICR_WAKER is NOT banked per CPU, compute the correct base address * per CPU. */ assert(g_gicr_base); base = gicv3_get_rdist(g_gicr_base, read_mpidr()); if (base == (uintptr_t)NULL) { /* No re-distributor base address. This interface cannot be * configured. */ panic(); } val = gicr_read_waker(base); val |= WAKER_PS; gicr_write_waker(base, val); dsb(); /* We need to wait for ChildrenAsleep to set. */ val = gicr_read_waker(base); while ((val & WAKER_CA) == 0) val = gicr_read_waker(base); } /******************************************************************************* * Enable secure interrupts and use FIQs to route them. Disable legacy bypass * and set the priority mask register to allow all interrupts to trickle in. ******************************************************************************/ void arm_gic_cpuif_setup(void) { unsigned int val; assert(g_gicc_base); val = gicc_read_iidr(g_gicc_base); /* * If GICv3 we need to do a bit of additional setup. We want to * allow default GICv2 behaviour but allow the next stage to * enable full gicv3 features. */ if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) gicv3_cpuif_setup(); val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; gicc_write_pmr(g_gicc_base, GIC_PRI_MASK); gicc_write_ctlr(g_gicc_base, val); } /******************************************************************************* * Place the cpu interface in a state where it can never make a cpu exit wfi as * as result of an asserted interrupt. This is critical for powering down a cpu ******************************************************************************/ void arm_gic_cpuif_deactivate(void) { unsigned int val; /* Disable secure, non-secure interrupts and disable their bypass */ assert(g_gicc_base); val = gicc_read_ctlr(g_gicc_base); val &= ~(ENABLE_GRP0 | ENABLE_GRP1); val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; gicc_write_ctlr(g_gicc_base, val); val = gicc_read_iidr(g_gicc_base); /* * If GICv3 we need to do a bit of additional setup. Make sure the * RDIST is put to sleep. */ if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) gicv3_cpuif_deactivate(); } /******************************************************************************* * Per cpu gic distributor setup which will be done by all cpus after a cold * boot/hotplug. This marks out the secure interrupts & enables them. ******************************************************************************/ void arm_gic_pcpu_distif_setup(void) { unsigned int index, irq_num, sec_ppi_sgi_mask; assert(g_gicd_base); /* Setup PPI priorities doing four at a time */ for (index = 0; index < 32; index += 4) { gicd_write_ipriorityr(g_gicd_base, index, GICD_IPRIORITYR_DEF_VAL); } assert(g_irq_sec_ptr); sec_ppi_sgi_mask = 0; for (index = 0; index < g_num_irqs; index++) { irq_num = g_irq_sec_ptr[index]; if (irq_num < MIN_SPI_ID) { /* We have an SGI or a PPI. They are Group0 at reset */ sec_ppi_sgi_mask |= 1U << irq_num; gicd_set_ipriorityr(g_gicd_base, irq_num, GIC_HIGHEST_SEC_PRIORITY); gicd_set_isenabler(g_gicd_base, irq_num); } } /* * Invert the bitmask to create a mask for non-secure PPIs and * SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will * update the GICR_IGROUPR0 as well in case we are running on a GICv3 * system. This is critical if GICD_CTLR.ARE_NS=1. */ gicd_write_igroupr(g_gicd_base, 0, ~sec_ppi_sgi_mask); } /******************************************************************************* * Get the current CPU bit mask from GICD_ITARGETSR0 ******************************************************************************/ static unsigned int arm_gic_get_cpuif_id(void) { unsigned int val; val = gicd_read_itargetsr(g_gicd_base, 0); return val & GIC_TARGET_CPU_MASK; } /******************************************************************************* * Global gic distributor setup which will be done by the primary cpu after a * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It * then enables the secure GIC distributor interface. ******************************************************************************/ static void arm_gic_distif_setup(void) { unsigned int num_ints, ctlr, index, irq_num; uint8_t target_cpu; /* Disable the distributor before going further */ assert(g_gicd_base); ctlr = gicd_read_ctlr(g_gicd_base); ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1); gicd_write_ctlr(g_gicd_base, ctlr); /* * Mark out non-secure SPI interrupts. The number of interrupts is * calculated as 32 * (IT_LINES + 1). We do 32 at a time. */ num_ints = gicd_read_typer(g_gicd_base) & IT_LINES_NO_MASK; num_ints = (num_ints + 1) << 5; for (index = MIN_SPI_ID; index < num_ints; index += 32) gicd_write_igroupr(g_gicd_base, index, ~0); /* Setup SPI priorities doing four at a time */ for (index = MIN_SPI_ID; index < num_ints; index += 4) { gicd_write_ipriorityr(g_gicd_base, index, GICD_IPRIORITYR_DEF_VAL); } /* Read the target CPU mask */ target_cpu = arm_gic_get_cpuif_id(); /* Configure SPI secure interrupts now */ assert(g_irq_sec_ptr); for (index = 0; index < g_num_irqs; index++) { irq_num = g_irq_sec_ptr[index]; if (irq_num >= MIN_SPI_ID) { /* We have an SPI */ gicd_clr_igroupr(g_gicd_base, irq_num); gicd_set_ipriorityr(g_gicd_base, irq_num, GIC_HIGHEST_SEC_PRIORITY); gicd_set_itargetsr(g_gicd_base, irq_num, target_cpu); gicd_set_isenabler(g_gicd_base, irq_num); } } /* * Configure the SGI and PPI. This is done in a separated function * because each CPU is responsible for initializing its own private * interrupts. */ arm_gic_pcpu_distif_setup(); gicd_write_ctlr(g_gicd_base, ctlr | ENABLE_GRP0); } /******************************************************************************* * Initialize the ARM GIC driver with the provided platform inputs ******************************************************************************/ void arm_gic_init(unsigned int gicc_base, unsigned int gicd_base, unsigned long gicr_base, const unsigned int *irq_sec_ptr, unsigned int num_irqs ) { unsigned int val; assert(gicc_base); assert(gicd_base); assert(irq_sec_ptr); g_gicc_base = gicc_base; g_gicd_base = gicd_base; val = gicc_read_iidr(g_gicc_base); if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) { assert(gicr_base); g_gicr_base = gicr_base; } g_irq_sec_ptr = irq_sec_ptr; g_num_irqs = num_irqs; } /******************************************************************************* * Setup the ARM GIC CPU and distributor interfaces. ******************************************************************************/ void arm_gic_setup(void) { arm_gic_cpuif_setup(); arm_gic_distif_setup(); } /******************************************************************************* * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins. * The interrupt controller knows which pin/line it uses to signal a type of * interrupt. This function provides a common implementation of * plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use * across platforms. It lets the interrupt management framework determine * for a type of interrupt and security state, which line should be used in the * SCR_EL3 to control its routing to EL3. The interrupt line is represented as * the bit position of the IRQ or FIQ bit in the SCR_EL3. ******************************************************************************/ uint32_t arm_gic_interrupt_type_to_line(uint32_t type, uint32_t security_state) { assert(type == INTR_TYPE_S_EL1 || type == INTR_TYPE_EL3 || type == INTR_TYPE_NS); assert(sec_state_is_valid(security_state)); /* * We ignore the security state parameter under the assumption that * both normal and secure worlds are using ARM GICv2. This parameter * will be used when the secure world starts using GICv3. */ #if ARM_GIC_ARCH == 2 return gicv2_interrupt_type_to_line(g_gicc_base, type); #else #error "Invalid ARM GIC architecture version specified for platform port" #endif /* ARM_GIC_ARCH */ } #if ARM_GIC_ARCH == 2 /******************************************************************************* * This function returns the type of the highest priority pending interrupt at * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no * interrupt pending. ******************************************************************************/ uint32_t arm_gic_get_pending_interrupt_type(void) { uint32_t id; assert(g_gicc_base); id = gicc_read_hppir(g_gicc_base); /* Assume that all secure interrupts are S-EL1 interrupts */ if (id < 1022) return INTR_TYPE_S_EL1; if (id == GIC_SPURIOUS_INTERRUPT) return INTR_TYPE_INVAL; return INTR_TYPE_NS; } /******************************************************************************* * This function returns the id of the highest priority pending interrupt at * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no * interrupt pending. ******************************************************************************/ uint32_t arm_gic_get_pending_interrupt_id(void) { uint32_t id; assert(g_gicc_base); id = gicc_read_hppir(g_gicc_base); if (id < 1022) return id; if (id == 1023) return INTR_ID_UNAVAILABLE; /* * Find out which non-secure interrupt it is under the assumption that * the GICC_CTLR.AckCtl bit is 0. */ return gicc_read_ahppir(g_gicc_base); } /******************************************************************************* * This functions reads the GIC cpu interface Interrupt Acknowledge register * to start handling the pending interrupt. It returns the contents of the IAR. ******************************************************************************/ uint32_t arm_gic_acknowledge_interrupt(void) { assert(g_gicc_base); return gicc_read_IAR(g_gicc_base); } /******************************************************************************* * This functions writes the GIC cpu interface End Of Interrupt register with * the passed value to finish handling the active interrupt ******************************************************************************/ void arm_gic_end_of_interrupt(uint32_t id) { assert(g_gicc_base); gicc_write_EOIR(g_gicc_base, id); } /******************************************************************************* * This function returns the type of the interrupt id depending upon the group * this interrupt has been configured under by the interrupt controller i.e. * group0 or group1. ******************************************************************************/ uint32_t arm_gic_get_interrupt_type(uint32_t id) { uint32_t group; assert(g_gicd_base); group = gicd_get_igroupr(g_gicd_base, id); /* Assume that all secure interrupts are S-EL1 interrupts */ if (group == GRP0) return INTR_TYPE_S_EL1; else return INTR_TYPE_NS; } #else #error "Invalid ARM GIC architecture version specified for platform port" #endif /* ARM_GIC_ARCH */