/* * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include "../common/gic_common_private.h" #include "gicv3_private.h" /* * Accessor to read the GIC Distributor IGRPMODR corresponding to the * interrupt `id`, 32 interrupt IDs at a time. */ unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id) { unsigned n = id >> IGRPMODR_SHIFT; return mmio_read_32(base + GICD_IGRPMODR + (n << 2)); } /* * Accessor to write the GIC Distributor IGRPMODR corresponding to the * interrupt `id`, 32 interrupt IDs at a time. */ void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val) { unsigned n = id >> IGRPMODR_SHIFT; mmio_write_32(base + GICD_IGRPMODR + (n << 2), val); } /* * Accessor to get the bit corresponding to interrupt ID * in GIC Distributor IGRPMODR. */ unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); unsigned int reg_val = gicd_read_igrpmodr(base, id); return (reg_val >> bit_num) & 0x1; } /* * Accessor to set the bit corresponding to interrupt ID * in GIC Distributor IGRPMODR. */ void gicd_set_igrpmodr(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); unsigned int reg_val = gicd_read_igrpmodr(base, id); gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num)); } /* * Accessor to clear the bit corresponding to interrupt ID * in GIC Distributor IGRPMODR. */ void gicd_clr_igrpmodr(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); unsigned int reg_val = gicd_read_igrpmodr(base, id); gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num)); } /* * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the * interrupt `id`, 4 interrupts IDs at a time. */ unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id) { unsigned n = id >> IPRIORITYR_SHIFT; return mmio_read_32(base + GICR_IPRIORITYR + (n << 2)); } /* * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the * interrupt `id`, 4 interrupts IDs at a time. */ void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val) { unsigned n = id >> IPRIORITYR_SHIFT; mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val); } /* * Accessor to get the bit corresponding to interrupt ID * from GIC Re-distributor IGROUPR0. */ unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1); unsigned int reg_val = gicr_read_igroupr0(base); return (reg_val >> bit_num) & 0x1; } /* * Accessor to set the bit corresponding to interrupt ID * in GIC Re-distributor IGROUPR0. */ void gicr_set_igroupr0(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1); unsigned int reg_val = gicr_read_igroupr0(base); gicr_write_igroupr0(base, reg_val | (1 << bit_num)); } /* * Accessor to clear the bit corresponding to interrupt ID * in GIC Re-distributor IGROUPR0. */ void gicr_clr_igroupr0(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1); unsigned int reg_val = gicr_read_igroupr0(base); gicr_write_igroupr0(base, reg_val & ~(1 << bit_num)); } /* * Accessor to get the bit corresponding to interrupt ID * from GIC Re-distributor IGRPMODR0. */ unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); unsigned int reg_val = gicr_read_igrpmodr0(base); return (reg_val >> bit_num) & 0x1; } /* * Accessor to set the bit corresponding to interrupt ID * in GIC Re-distributor IGRPMODR0. */ void gicr_set_igrpmodr0(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); unsigned int reg_val = gicr_read_igrpmodr0(base); gicr_write_igrpmodr0(base, reg_val | (1 << bit_num)); } /* * Accessor to clear the bit corresponding to interrupt ID * in GIC Re-distributor IGRPMODR0. */ void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); unsigned int reg_val = gicr_read_igrpmodr0(base); gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num)); } /* * Accessor to set the bit corresponding to interrupt ID * in GIC Re-distributor ISENABLER0. */ void gicr_set_isenabler0(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1); gicr_write_isenabler0(base, (1 << bit_num)); } /* * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor * ICENABLER0. */ void gicr_set_icenabler0(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << ICENABLER_SHIFT) - 1); gicr_write_icenabler0(base, (1 << bit_num)); } /* * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor * ISACTIVER0. */ unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id) { unsigned bit_num = id & ((1 << ISACTIVER_SHIFT) - 1); unsigned int reg_val = gicr_read_isactiver0(base); return (reg_val >> bit_num) & 0x1; } /* * Accessor to set the byte corresponding to interrupt ID * in GIC Re-distributor IPRIORITYR. */ void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri) { mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK); } /****************************************************************************** * This function marks the core as awake in the re-distributor and * ensures that the interface is active. *****************************************************************************/ void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base) { /* * The WAKER_PS_BIT should be changed to 0 * only when WAKER_CA_BIT is 1. */ assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT); /* Mark the connected core as awake */ gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT); /* Wait till the WAKER_CA_BIT changes to 0 */ while (gicr_read_waker(gicr_base) & WAKER_CA_BIT) ; } /****************************************************************************** * This function marks the core as asleep in the re-distributor and ensures * that the interface is quiescent. *****************************************************************************/ void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base) { /* Mark the connected core as asleep */ gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT); /* Wait till the WAKER_CA_BIT changes to 1 */ while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT)) ; } /******************************************************************************* * This function probes the Redistributor frames when the driver is initialised * and saves their base addresses. These base addresses are used later to * initialise each Redistributor interface. ******************************************************************************/ void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs, unsigned int rdistif_num, uintptr_t gicr_base, mpidr_hash_fn mpidr_to_core_pos) { u_register_t mpidr; unsigned int proc_num; unsigned long long typer_val; uintptr_t rdistif_base = gicr_base; assert(rdistif_base_addrs); /* * Iterate over the Redistributor frames. Store the base address of each * frame in the platform provided array. Use the "Processor Number" * field to index into the array if the platform has not provided a hash * function to convert an MPIDR (obtained from the "Affinity Value" * field into a linear index. */ do { typer_val = gicr_read_typer(rdistif_base); if (mpidr_to_core_pos) { mpidr = mpidr_from_gicr_typer(typer_val); proc_num = mpidr_to_core_pos(mpidr); } else { proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK; } assert(proc_num < rdistif_num); rdistif_base_addrs[proc_num] = rdistif_base; rdistif_base += (1 << GICR_PCPUBASE_SHIFT); } while (!(typer_val & TYPER_LAST_BIT)); } /******************************************************************************* * Helper function to configure the default attributes of SPIs. ******************************************************************************/ void gicv3_spis_configure_defaults(uintptr_t gicd_base) { unsigned int index, num_ints; num_ints = gicd_read_typer(gicd_base); num_ints &= TYPER_IT_LINES_NO_MASK; num_ints = (num_ints + 1) << 5; /* * Treat all SPIs as G1NS by default. The number of interrupts is * calculated as 32 * (IT_LINES + 1). We do 32 at a time. */ for (index = MIN_SPI_ID; index < num_ints; index += 32) gicd_write_igroupr(gicd_base, index, ~0U); /* Setup the default SPI priorities doing four at a time */ for (index = MIN_SPI_ID; index < num_ints; index += 4) gicd_write_ipriorityr(gicd_base, index, GICD_IPRIORITYR_DEF_VAL); /* * Treat all SPIs as level triggered by default, write 16 at * a time */ for (index = MIN_SPI_ID; index < num_ints; index += 16) gicd_write_icfgr(gicd_base, index, 0); } /******************************************************************************* * Helper function to configure secure G0 and G1S SPIs. ******************************************************************************/ void gicv3_secure_spis_configure(uintptr_t gicd_base, unsigned int num_ints, const unsigned int *sec_intr_list, unsigned int int_grp) { unsigned int index, irq_num; unsigned long long gic_affinity_val; assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0)); /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */ assert(num_ints ? (uintptr_t)sec_intr_list : 1); for (index = 0; index < num_ints; index++) { irq_num = sec_intr_list[index]; if (irq_num >= MIN_SPI_ID) { /* Configure this interrupt as a secure interrupt */ gicd_clr_igroupr(gicd_base, irq_num); /* Configure this interrupt as G0 or a G1S interrupt */ if (int_grp == INTR_GROUP1S) gicd_set_igrpmodr(gicd_base, irq_num); else gicd_clr_igrpmodr(gicd_base, irq_num); /* Set the priority of this interrupt */ gicd_set_ipriorityr(gicd_base, irq_num, GIC_HIGHEST_SEC_PRIORITY); /* Target SPIs to the primary CPU */ gic_affinity_val = gicd_irouter_val_from_mpidr(read_mpidr(), 0); gicd_write_irouter(gicd_base, irq_num, gic_affinity_val); /* Enable this interrupt */ gicd_set_isenabler(gicd_base, irq_num); } } } /******************************************************************************* * Helper function to configure the default attributes of SPIs. ******************************************************************************/ void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base) { unsigned int index; /* * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a * more scalable approach as it avoids clearing the enable bits in the * GICD_CTLR */ gicr_write_icenabler0(gicr_base, ~0); gicr_wait_for_pending_write(gicr_base); /* Treat all SGIs/PPIs as G1NS by default. */ gicr_write_igroupr0(gicr_base, ~0U); /* Setup the default PPI/SGI priorities doing four at a time */ for (index = 0; index < MIN_SPI_ID; index += 4) gicr_write_ipriorityr(gicr_base, index, GICD_IPRIORITYR_DEF_VAL); /* Configure all PPIs as level triggered by default */ gicr_write_icfgr1(gicr_base, 0); } /******************************************************************************* * Helper function to configure secure G0 and G1S SPIs. ******************************************************************************/ void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base, unsigned int num_ints, const unsigned int *sec_intr_list, unsigned int int_grp) { unsigned int index, irq_num; assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0)); /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */ assert(num_ints ? (uintptr_t)sec_intr_list : 1); for (index = 0; index < num_ints; index++) { irq_num = sec_intr_list[index]; if (irq_num < MIN_SPI_ID) { /* Configure this interrupt as a secure interrupt */ gicr_clr_igroupr0(gicr_base, irq_num); /* Configure this interrupt as G0 or a G1S interrupt */ if (int_grp == INTR_GROUP1S) gicr_set_igrpmodr0(gicr_base, irq_num); else gicr_clr_igrpmodr0(gicr_base, irq_num); /* Set the priority of this interrupt */ gicr_set_ipriorityr(gicr_base, irq_num, GIC_HIGHEST_SEC_PRIORITY); /* Enable this interrupt */ gicr_set_isenabler0(gicr_base, irq_num); } } }