/* * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../bl1/bl1_private.h" #include "hikey960_def.h" #include "hikey960_private.h" enum { BOOT_MODE_RECOVERY = 0, BOOT_MODE_NORMAL, BOOT_MODE_MASK = 1, }; /* * Declarations of linker defined symbols which will help us find the layout * of trusted RAM */ extern unsigned long __COHERENT_RAM_START__; extern unsigned long __COHERENT_RAM_END__; /* * The next 2 constants identify the extents of the coherent memory region. * These addresses are used by the MMU setup code and therefore they must be * page-aligned. It is the responsibility of the linker script to ensure that * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to * page-aligned addresses. */ #define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__) #define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__) /* Data structure which holds the extents of the trusted RAM for BL1 */ static meminfo_t bl1_tzram_layout; /****************************************************************************** * On a GICv2 system, the Group 1 secure interrupts are treated as Group 0 * interrupts. *****************************************************************************/ const unsigned int g0_interrupt_array[] = { IRQ_SEC_PHY_TIMER, IRQ_SEC_SGI_0 }; const gicv2_driver_data_t hikey960_gic_data = { .gicd_base = GICD_REG_BASE, .gicc_base = GICC_REG_BASE, .g0_interrupt_num = ARRAY_SIZE(g0_interrupt_array), .g0_interrupt_array = g0_interrupt_array, }; meminfo_t *bl1_plat_sec_mem_layout(void) { return &bl1_tzram_layout; } /******************************************************************************* * Function that takes a memory layout into which BL2 has been loaded and * populates a new memory layout for BL2 that ensures that BL1's data sections * resident in secure RAM are not visible to BL2. ******************************************************************************/ void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout, meminfo_t *bl2_mem_layout) { assert(bl1_mem_layout != NULL); assert(bl2_mem_layout != NULL); /* * Cannot remove BL1 RW data from the scope of memory visible to BL2 * like arm platforms because they overlap in hikey960 */ bl2_mem_layout->total_base = BL2_BASE; bl2_mem_layout->total_size = NS_BL1U_LIMIT - BL2_BASE; flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t)); } /* * Perform any BL1 specific platform actions. */ void bl1_early_platform_setup(void) { unsigned int id, uart_base; generic_delay_timer_init(); hikey960_read_boardid(&id); if (id == 5300) uart_base = PL011_UART5_BASE; else uart_base = PL011_UART6_BASE; /* Initialize the console to provide early debug support */ console_init(uart_base, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE); /* Allow BL1 to see the whole Trusted RAM */ bl1_tzram_layout.total_base = BL1_RW_BASE; bl1_tzram_layout.total_size = BL1_RW_SIZE; INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT, BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */ } /* * Perform the very early platform specific architecture setup here. At the * moment this only does basic initialization. Later architectural setup * (bl1_arch_setup()) does not do anything platform specific. */ void bl1_plat_arch_setup(void) { hikey960_init_mmu_el3(bl1_tzram_layout.total_base, bl1_tzram_layout.total_size, BL1_RO_BASE, BL1_RO_LIMIT, BL1_COHERENT_RAM_BASE, BL1_COHERENT_RAM_LIMIT); } static void hikey960_clk_init(void) { /* change ldi0 sel to ppll2 */ mmio_write_32(0xfff350b4, 0xf0002000); /* ldi0 20' */ mmio_write_32(0xfff350bc, 0xfc004c00); } static void hikey960_pmu_init(void) { /* clear np_xo_abb_dig_START bit in PMIC_CLK_TOP_CTRL7 register */ mmio_clrbits_32(PMU_SSI0_CLK_TOP_CTRL7_REG, NP_XO_ABB_DIG); } static void hikey960_enable_ppll3(void) { /* enable ppll3 */ mmio_write_32(PMC_PPLL3_CTRL0_REG, 0x4904305); mmio_write_32(PMC_PPLL3_CTRL1_REG, 0x2300000); mmio_write_32(PMC_PPLL3_CTRL1_REG, 0x6300000); } static void bus_idle_clear(unsigned int value) { unsigned int pmc_value, value1, value2; int timeout = 100; pmc_value = value << 16; pmc_value &= ~value; mmio_write_32(PMC_NOC_POWER_IDLEREQ_REG, pmc_value); for (;;) { value1 = (unsigned int)mmio_read_32(PMC_NOC_POWER_IDLEACK_REG); value2 = (unsigned int)mmio_read_32(PMC_NOC_POWER_IDLE_REG); if (((value1 & value) == 0) && ((value2 & value) == 0)) break; udelay(1); timeout--; if (timeout <= 0) { WARN("%s timeout\n", __func__); break; } } } static void set_vivobus_power_up(void) { /* clk enable */ mmio_write_32(CRG_CLKDIV20_REG, 0x00020002); mmio_write_32(CRG_PEREN0_REG, 0x00001000); } static void set_dss_power_up(void) { /* set edc0 133MHz = 1600MHz / 12 */ mmio_write_32(CRG_CLKDIV5_REG, 0x003f000b); /* set ldi0 ppl0 */ mmio_write_32(CRG_CLKDIV3_REG, 0xf0001000); /* set ldi0 133MHz, 1600MHz / 12 */ mmio_write_32(CRG_CLKDIV5_REG, 0xfc002c00); /* mtcmos on */ mmio_write_32(CRG_PERPWREN_REG, 0x00000020); udelay(100); /* DISP CRG */ mmio_write_32(CRG_PERRSTDIS4_REG, 0x00000010); /* clk enable */ mmio_write_32(CRG_CLKDIV18_REG, 0x01400140); mmio_write_32(CRG_PEREN0_REG, 0x00002000); mmio_write_32(CRG_PEREN3_REG, 0x0003b000); udelay(1); /* clk disable */ mmio_write_32(CRG_PERDIS3_REG, 0x0003b000); mmio_write_32(CRG_PERDIS0_REG, 0x00002000); mmio_write_32(CRG_CLKDIV18_REG, 0x01400000); udelay(1); /* iso disable */ mmio_write_32(CRG_ISODIS_REG, 0x00000040); /* unreset */ mmio_write_32(CRG_PERRSTDIS4_REG, 0x00000006); mmio_write_32(CRG_PERRSTDIS3_REG, 0x00000c00); /* clk enable */ mmio_write_32(CRG_CLKDIV18_REG, 0x01400140); mmio_write_32(CRG_PEREN0_REG, 0x00002000); mmio_write_32(CRG_PEREN3_REG, 0x0003b000); /* bus idle clear */ bus_idle_clear(PMC_NOC_POWER_IDLEREQ_DSS); /* set edc0 400MHz for 2K 1600MHz / 4 */ mmio_write_32(CRG_CLKDIV5_REG, 0x003f0003); /* set ldi 266MHz, 1600MHz / 6 */ mmio_write_32(CRG_CLKDIV5_REG, 0xfc001400); } static void set_vcodec_power_up(void) { /* clk enable */ mmio_write_32(CRG_CLKDIV20_REG, 0x00040004); mmio_write_32(CRG_PEREN0_REG, 0x00000060); mmio_write_32(CRG_PEREN2_REG, 0x10000000); /* unreset */ mmio_write_32(CRG_PERRSTDIS0_REG, 0x00000018); /* bus idle clear */ bus_idle_clear(PMC_NOC_POWER_IDLEREQ_VCODEC); } static void set_vdec_power_up(void) { /* mtcmos on */ mmio_write_32(CRG_PERPWREN_REG, 0x00000004); udelay(100); /* clk enable */ mmio_write_32(CRG_CLKDIV18_REG, 0x80008000); mmio_write_32(CRG_PEREN2_REG, 0x20080000); mmio_write_32(CRG_PEREN3_REG, 0x00000800); udelay(1); /* clk disable */ mmio_write_32(CRG_PERDIS3_REG, 0x00000800); mmio_write_32(CRG_PERDIS2_REG, 0x20080000); mmio_write_32(CRG_CLKDIV18_REG, 0x80000000); udelay(1); /* iso disable */ mmio_write_32(CRG_ISODIS_REG, 0x00000004); /* unreset */ mmio_write_32(CRG_PERRSTDIS3_REG, 0x00000200); /* clk enable */ mmio_write_32(CRG_CLKDIV18_REG, 0x80008000); mmio_write_32(CRG_PEREN2_REG, 0x20080000); mmio_write_32(CRG_PEREN3_REG, 0x00000800); /* bus idle clear */ bus_idle_clear(PMC_NOC_POWER_IDLEREQ_VDEC); } static void set_venc_power_up(void) { /* set venc ppll3 */ mmio_write_32(CRG_CLKDIV8_REG, 0x18001000); /* set venc 258MHz, 1290MHz / 5 */ mmio_write_32(CRG_CLKDIV8_REG, 0x07c00100); /* mtcmos on */ mmio_write_32(CRG_PERPWREN_REG, 0x00000002); udelay(100); /* clk enable */ mmio_write_32(CRG_CLKDIV19_REG, 0x00010001); mmio_write_32(CRG_PEREN2_REG, 0x40000100); mmio_write_32(CRG_PEREN3_REG, 0x00000400); udelay(1); /* clk disable */ mmio_write_32(CRG_PERDIS3_REG, 0x00000400); mmio_write_32(CRG_PERDIS2_REG, 0x40000100); mmio_write_32(CRG_CLKDIV19_REG, 0x00010000); udelay(1); /* iso disable */ mmio_write_32(CRG_ISODIS_REG, 0x00000002); /* unreset */ mmio_write_32(CRG_PERRSTDIS3_REG, 0x00000100); /* clk enable */ mmio_write_32(CRG_CLKDIV19_REG, 0x00010001); mmio_write_32(CRG_PEREN2_REG, 0x40000100); mmio_write_32(CRG_PEREN3_REG, 0x00000400); /* bus idle clear */ bus_idle_clear(PMC_NOC_POWER_IDLEREQ_VENC); /* set venc 645MHz, 1290MHz / 2 */ mmio_write_32(CRG_CLKDIV8_REG, 0x07c00040); } static void set_isp_power_up(void) { /* mtcmos on */ mmio_write_32(CRG_PERPWREN_REG, 0x00000001); udelay(100); /* clk enable */ mmio_write_32(CRG_CLKDIV18_REG, 0x70007000); mmio_write_32(CRG_CLKDIV20_REG, 0x00100010); mmio_write_32(CRG_PEREN5_REG, 0x01000010); mmio_write_32(CRG_PEREN3_REG, 0x0bf00000); udelay(1); /* clk disable */ mmio_write_32(CRG_PERDIS5_REG, 0x01000010); mmio_write_32(CRG_PERDIS3_REG, 0x0bf00000); mmio_write_32(CRG_CLKDIV18_REG, 0x70000000); mmio_write_32(CRG_CLKDIV20_REG, 0x00100000); udelay(1); /* iso disable */ mmio_write_32(CRG_ISODIS_REG, 0x00000001); /* unreset */ mmio_write_32(CRG_ISP_SEC_RSTDIS_REG, 0x0000002f); /* clk enable */ mmio_write_32(CRG_CLKDIV18_REG, 0x70007000); mmio_write_32(CRG_CLKDIV20_REG, 0x00100010); mmio_write_32(CRG_PEREN5_REG, 0x01000010); mmio_write_32(CRG_PEREN3_REG, 0x0bf00000); /* bus idle clear */ bus_idle_clear(PMC_NOC_POWER_IDLEREQ_ISP); /* csi clk enable */ mmio_write_32(CRG_PEREN3_REG, 0x00700000); } static void set_ivp_power_up(void) { /* set ivp ppll0 */ mmio_write_32(CRG_CLKDIV0_REG, 0xc0000000); /* set ivp 267MHz, 1600MHz / 6 */ mmio_write_32(CRG_CLKDIV0_REG, 0x3c001400); /* mtcmos on */ mmio_write_32(CRG_PERPWREN_REG, 0x00200000); udelay(100); /* IVP CRG unreset */ mmio_write_32(CRG_IVP_SEC_RSTDIS_REG, 0x00000001); /* clk enable */ mmio_write_32(CRG_CLKDIV20_REG, 0x02000200); mmio_write_32(CRG_PEREN4_REG, 0x000000a8); udelay(1); /* clk disable */ mmio_write_32(CRG_PERDIS4_REG, 0x000000a8); mmio_write_32(CRG_CLKDIV20_REG, 0x02000000); udelay(1); /* iso disable */ mmio_write_32(CRG_ISODIS_REG, 0x01000000); /* unreset */ mmio_write_32(CRG_IVP_SEC_RSTDIS_REG, 0x00000002); /* clk enable */ mmio_write_32(CRG_CLKDIV20_REG, 0x02000200); mmio_write_32(CRG_PEREN4_REG, 0x000000a8); /* bus idle clear */ bus_idle_clear(PMC_NOC_POWER_IDLEREQ_IVP); /* set ivp 533MHz, 1600MHz / 3 */ mmio_write_32(CRG_CLKDIV0_REG, 0x3c000800); } static void set_audio_power_up(void) { unsigned int ret; int timeout = 100; /* mtcmos on */ mmio_write_32(SCTRL_SCPWREN_REG, 0x00000001); udelay(100); /* clk enable */ mmio_write_32(CRG_CLKDIV19_REG, 0x80108010); mmio_write_32(SCTRL_SCCLKDIV2_REG, 0x00010001); mmio_write_32(SCTRL_SCPEREN0_REG, 0x0c000000); mmio_write_32(CRG_PEREN0_REG, 0x04000000); mmio_write_32(CRG_PEREN5_REG, 0x00000080); mmio_write_32(SCTRL_SCPEREN1_REG, 0x0000000f); udelay(1); /* clk disable */ mmio_write_32(SCTRL_SCPERDIS1_REG, 0x0000000f); mmio_write_32(SCTRL_SCPERDIS0_REG, 0x0c000000); mmio_write_32(CRG_PERDIS5_REG, 0x00000080); mmio_write_32(CRG_PERDIS0_REG, 0x04000000); mmio_write_32(SCTRL_SCCLKDIV2_REG, 0x00010000); mmio_write_32(CRG_CLKDIV19_REG, 0x80100000); udelay(1); /* iso disable */ mmio_write_32(SCTRL_SCISODIS_REG, 0x00000001); udelay(1); /* unreset */ mmio_write_32(SCTRL_PERRSTDIS1_SEC_REG, 0x00000001); mmio_write_32(SCTRL_SCPERRSTDIS0_REG, 0x00000780); /* clk enable */ mmio_write_32(CRG_CLKDIV19_REG, 0x80108010); mmio_write_32(SCTRL_SCCLKDIV2_REG, 0x00010001); mmio_write_32(SCTRL_SCPEREN0_REG, 0x0c000000); mmio_write_32(CRG_PEREN0_REG, 0x04000000); mmio_write_32(CRG_PEREN5_REG, 0x00000080); mmio_write_32(SCTRL_SCPEREN1_REG, 0x0000000f); /* bus idle clear */ mmio_write_32(SCTRL_SCPERCTRL7_REG, 0x00040000); for (;;) { ret = mmio_read_32(SCTRL_SCPERSTAT6_REG); if (((ret & (1 << 5)) == 0) && ((ret & (1 << 8)) == 0)) break; udelay(1); timeout--; if (timeout <= 0) { WARN("%s timeout\n", __func__); break; } } mmio_write_32(ASP_CFG_MMBUF_CTRL_REG, 0x00ff0000); } static void set_pcie_power_up(void) { /* mtcmos on */ mmio_write_32(SCTRL_SCPWREN_REG, 0x00000010); udelay(100); /* clk enable */ mmio_write_32(SCTRL_SCCLKDIV6_REG, 0x08000800); mmio_write_32(SCTRL_SCPEREN2_REG, 0x00104000); mmio_write_32(CRG_PEREN7_REG, 0x000003a0); udelay(1); /* clk disable */ mmio_write_32(SCTRL_SCPERDIS2_REG, 0x00104000); mmio_write_32(CRG_PERDIS7_REG, 0x000003a0); mmio_write_32(SCTRL_SCCLKDIV6_REG, 0x08000000); udelay(1); /* iso disable */ mmio_write_32(SCTRL_SCISODIS_REG, 0x00000030); /* unreset */ mmio_write_32(CRG_PERRSTDIS3_REG, 0x8c000000); /* clk enable */ mmio_write_32(SCTRL_SCCLKDIV6_REG, 0x08000800); mmio_write_32(SCTRL_SCPEREN2_REG, 0x00104000); mmio_write_32(CRG_PEREN7_REG, 0x000003a0); } static void ispfunc_enable(void) { /* enable ispfunc. Otherwise powerup isp_srt causes exception. */ mmio_write_32(0xfff35000, 0x00000008); mmio_write_32(0xfff35460, 0xc004ffff); mmio_write_32(0xfff35030, 0x02000000); mdelay(10); } static void isps_control_clock(int flag) { unsigned int ret; /* flag: 0 -- disable clock, 1 -- enable clock */ if (flag) { ret = mmio_read_32(0xe8420364); ret |= 1; mmio_write_32(0xe8420364, ret); } else { ret = mmio_read_32(0xe8420364); ret &= ~1; mmio_write_32(0xe8420364, ret); } } static void set_isp_srt_power_up(void) { unsigned int ret; ispfunc_enable(); /* reset */ mmio_write_32(0xe8420374, 0x00000001); mmio_write_32(0xe8420350, 0x00000000); mmio_write_32(0xe8420358, 0x00000000); /* mtcmos on */ mmio_write_32(0xfff35150, 0x00400000); udelay(100); /* clk enable */ isps_control_clock(1); udelay(1); isps_control_clock(0); udelay(1); /* iso disable */ mmio_write_32(0xfff35148, 0x08000000); /* unreset */ ret = mmio_read_32(0xe8420374); ret &= ~0x1; mmio_write_32(0xe8420374, ret); /* clk enable */ isps_control_clock(1); /* enable clock gating for accessing csi registers */ mmio_write_32(0xe8420010, ~0); } static void hikey960_regulator_enable(void) { set_vivobus_power_up(); hikey960_enable_ppll3(); set_dss_power_up(); set_vcodec_power_up(); set_vdec_power_up(); set_venc_power_up(); set_isp_power_up(); set_ivp_power_up(); set_audio_power_up(); set_pcie_power_up(); set_isp_srt_power_up(); /* set ISP_CORE_CTRL_S to unsecure mode */ mmio_write_32(0xe8583800, 0x7); /* set ISP_SUB_CTRL_S to unsecure mode */ mmio_write_32(0xe8583804, 0xf); } static void hikey960_ufs_reset(void) { unsigned int data, mask; mmio_write_32(CRG_PERDIS7_REG, 1 << 14); mmio_clrbits_32(UFS_SYS_PHY_CLK_CTRL_REG, BIT_SYSCTRL_REF_CLOCK_EN); do { data = mmio_read_32(UFS_SYS_PHY_CLK_CTRL_REG); } while (data & BIT_SYSCTRL_REF_CLOCK_EN); /* use abb clk */ mmio_clrbits_32(UFS_SYS_UFS_SYSCTRL_REG, BIT_UFS_REFCLK_SRC_SE1); mmio_clrbits_32(UFS_SYS_PHY_ISO_EN_REG, BIT_UFS_REFCLK_ISO_EN); mmio_write_32(PCTRL_PERI_CTRL3_REG, (1 << 0) | (1 << 16)); mdelay(1); mmio_write_32(CRG_PEREN7_REG, 1 << 14); mmio_setbits_32(UFS_SYS_PHY_CLK_CTRL_REG, BIT_SYSCTRL_REF_CLOCK_EN); mmio_write_32(CRG_PERRSTEN3_REG, PERI_UFS_BIT); do { data = mmio_read_32(CRG_PERRSTSTAT3_REG); } while ((data & PERI_UFS_BIT) == 0); mmio_setbits_32(UFS_SYS_PSW_POWER_CTRL_REG, BIT_UFS_PSW_MTCMOS_EN); mdelay(1); mmio_setbits_32(UFS_SYS_HC_LP_CTRL_REG, BIT_SYSCTRL_PWR_READY); mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG, MASK_UFS_DEVICE_RESET); /* clear SC_DIV_UFS_PERIBUS */ mask = SC_DIV_UFS_PERIBUS << 16; mmio_write_32(CRG_CLKDIV17_REG, mask); /* set SC_DIV_UFSPHY_CFG(3) */ mask = SC_DIV_UFSPHY_CFG_MASK << 16; data = SC_DIV_UFSPHY_CFG(3); mmio_write_32(CRG_CLKDIV16_REG, mask | data); data = mmio_read_32(UFS_SYS_PHY_CLK_CTRL_REG); data &= ~MASK_SYSCTRL_CFG_CLOCK_FREQ; data |= 0x39; mmio_write_32(UFS_SYS_PHY_CLK_CTRL_REG, data); mmio_clrbits_32(UFS_SYS_PHY_CLK_CTRL_REG, MASK_SYSCTRL_REF_CLOCK_SEL); mmio_setbits_32(UFS_SYS_CLOCK_GATE_BYPASS_REG, MASK_UFS_CLK_GATE_BYPASS); mmio_setbits_32(UFS_SYS_UFS_SYSCTRL_REG, MASK_UFS_SYSCTRL_BYPASS); mmio_setbits_32(UFS_SYS_PSW_CLK_CTRL_REG, BIT_SYSCTRL_PSW_CLK_EN); mmio_clrbits_32(UFS_SYS_PSW_POWER_CTRL_REG, BIT_UFS_PSW_ISO_CTRL); mmio_clrbits_32(UFS_SYS_PHY_ISO_EN_REG, BIT_UFS_PHY_ISO_CTRL); mmio_clrbits_32(UFS_SYS_HC_LP_CTRL_REG, BIT_SYSCTRL_LP_ISOL_EN); mmio_write_32(CRG_PERRSTDIS3_REG, PERI_ARST_UFS_BIT); mmio_setbits_32(UFS_SYS_RESET_CTRL_EN_REG, BIT_SYSCTRL_LP_RESET_N); mdelay(1); mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG, MASK_UFS_DEVICE_RESET | BIT_UFS_DEVICE_RESET); mdelay(20); mmio_write_32(UFS_SYS_UFS_DEVICE_RESET_CTRL_REG, 0x03300330); mmio_write_32(CRG_PERRSTDIS3_REG, PERI_UFS_BIT); do { data = mmio_read_32(CRG_PERRSTSTAT3_REG); } while (data & PERI_UFS_BIT); } static void hikey960_ufs_init(void) { dw_ufs_params_t ufs_params; memset(&ufs_params, 0, sizeof(ufs_params)); ufs_params.reg_base = UFS_REG_BASE; ufs_params.desc_base = HIKEY960_UFS_DESC_BASE; ufs_params.desc_size = HIKEY960_UFS_DESC_SIZE; if ((ufs_params.flags & UFS_FLAGS_SKIPINIT) == 0) hikey960_ufs_reset(); dw_ufs_init(&ufs_params); } static void hikey960_tzc_init(void) { mmio_write_32(TZC_EN0_REG, 0x7fbff066); mmio_write_32(TZC_EN1_REG, 0xfffff5fc); mmio_write_32(TZC_EN2_REG, 0x0007005c); mmio_write_32(TZC_EN3_REG, 0x37030700); mmio_write_32(TZC_EN4_REG, 0xf63fefae); mmio_write_32(TZC_EN5_REG, 0x000410fd); mmio_write_32(TZC_EN6_REG, 0x0063ff68); mmio_write_32(TZC_EN7_REG, 0x030000f3); mmio_write_32(TZC_EN8_REG, 0x00000007); } static void hikey960_peri_init(void) { /* unreset */ mmio_setbits_32(CRG_PERRSTDIS4_REG, 1); } static void hikey960_pinmux_init(void) { unsigned int id; hikey960_read_boardid(&id); if (id == 5301) { /* hikey960 hardware v2 */ /* GPIO150: LED */ mmio_write_32(IOMG_FIX_006_REG, 0); /* GPIO151: LED */ mmio_write_32(IOMG_FIX_007_REG, 0); /* GPIO189: LED */ mmio_write_32(IOMG_AO_011_REG, 0); /* GPIO190: LED */ mmio_write_32(IOMG_AO_012_REG, 0); /* GPIO46 */ mmio_write_32(IOMG_044_REG, 0); /* GPIO202 */ mmio_write_32(IOMG_AO_023_REG, 0); /* GPIO206 */ mmio_write_32(IOMG_AO_026_REG, 0); /* GPIO219 - PD pullup */ mmio_write_32(IOMG_AO_039_REG, 0); mmio_write_32(IOCG_AO_043_REG, 1 << 0); } /* GPIO005 - PMU SSI, 10mA */ mmio_write_32(IOCG_006_REG, 2 << 4); /* GPIO213 - PCIE_CLKREQ_N */ mmio_write_32(IOMG_AO_033_REG, 1); } /* * Function which will perform any remaining platform-specific setup that can * occur after the MMU and data cache have been enabled. */ void bl1_platform_setup(void) { hikey960_clk_init(); hikey960_pmu_init(); hikey960_regulator_enable(); hikey960_tzc_init(); hikey960_peri_init(); hikey960_ufs_init(); hikey960_pinmux_init(); hikey960_io_setup(); } /* * The following function checks if Firmware update is needed, * by checking if TOC in FIP image is valid or not. */ unsigned int bl1_plat_get_next_image_id(void) { unsigned int mode, ret; mode = mmio_read_32(SCTRL_BAK_DATA0_REG); switch (mode & BOOT_MODE_MASK) { case BOOT_MODE_RECOVERY: ret = NS_BL1U_IMAGE_ID; break; case BOOT_MODE_NORMAL: ret = BL2_IMAGE_ID; break; default: WARN("Invalid boot mode is found:%d\n", mode); panic(); } return ret; } image_desc_t *bl1_plat_get_image_desc(unsigned int image_id) { unsigned int index = 0; while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) { if (bl1_tbbr_image_descs[index].image_id == image_id) return &bl1_tbbr_image_descs[index]; index++; } return NULL; } void bl1_plat_set_ep_info(unsigned int image_id, entry_point_info_t *ep_info) { unsigned int data = 0; uintptr_t tmp = HIKEY960_NS_TMP_OFFSET; if (image_id == BL2_IMAGE_ID) return; /* Copy NS BL1U from 0x1AC1_8000 to 0x1AC9_8000 */ memcpy((void *)tmp, (void *)HIKEY960_NS_IMAGE_OFFSET, NS_BL1U_SIZE); memcpy((void *)NS_BL1U_BASE, (void *)tmp, NS_BL1U_SIZE); inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE); /* Initialize the GIC driver, cpu and distributor interfaces */ gicv2_driver_init(&hikey960_gic_data); gicv2_distif_init(); gicv2_pcpu_distif_init(); gicv2_cpuif_enable(); /* CNTFRQ is read-only in EL1 */ write_cntfrq_el0(plat_get_syscnt_freq2()); data = read_cpacr_el1(); do { data |= 3 << 20; write_cpacr_el1(data); data = read_cpacr_el1(); } while ((data & (3 << 20)) != (3 << 20)); INFO("cpacr_el1:0x%x\n", data); ep_info->args.arg0 = 0xffff & read_mpidr(); ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); }