/* * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include "psci_private.h" /******************************************************************************* * Per cpu non-secure contexts used to program the architectural state prior * return to the normal world. * TODO: Use the memory allocator to set aside memory for the contexts instead * of relying on platform defined constants. ******************************************************************************/ static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT]; /****************************************************************************** * Define the psci capability variable. *****************************************************************************/ unsigned int psci_caps; /******************************************************************************* * Function which initializes the 'psci_non_cpu_pd_nodes' or the * 'psci_cpu_pd_nodes' corresponding to the power level. ******************************************************************************/ static void psci_init_pwr_domain_node(unsigned int node_idx, unsigned int parent_idx, unsigned int level) { if (level > PSCI_CPU_PWR_LVL) { psci_non_cpu_pd_nodes[node_idx].level = level; psci_lock_init(psci_non_cpu_pd_nodes, node_idx); psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx; psci_non_cpu_pd_nodes[node_idx].local_state = PLAT_MAX_OFF_STATE; } else { psci_cpu_data_t *svc_cpu_data; psci_cpu_pd_nodes[node_idx].parent_node = parent_idx; /* Initialize with an invalid mpidr */ psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR; svc_cpu_data = &(_cpu_data_by_index(node_idx)->psci_svc_cpu_data); /* Set the Affinity Info for the cores as OFF */ svc_cpu_data->aff_info_state = AFF_STATE_OFF; /* Invalidate the suspend level for the cpu */ svc_cpu_data->target_pwrlvl = PSCI_INVALID_PWR_LVL; /* Set the power state to OFF state */ svc_cpu_data->local_state = PLAT_MAX_OFF_STATE; flush_dcache_range((uintptr_t)svc_cpu_data, sizeof(*svc_cpu_data)); cm_set_context_by_index(node_idx, (void *) &psci_ns_context[node_idx], NON_SECURE); } } /******************************************************************************* * This functions updates cpu_start_idx and ncpus field for each of the node in * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of * the CPUs and check whether they match with the parent of the previous * CPU. The basic assumption for this work is that children of the same parent * are allocated adjacent indices. The platform should ensure this though proper * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and * plat_my_core_pos() APIs. *******************************************************************************/ static void psci_update_pwrlvl_limits(void) { int j; unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0}; unsigned int temp_index[PLAT_MAX_PWR_LVL], cpu_idx; for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) { psci_get_parent_pwr_domain_nodes(cpu_idx, PLAT_MAX_PWR_LVL, temp_index); for (j = PLAT_MAX_PWR_LVL - 1; j >= 0; j--) { if (temp_index[j] != nodes_idx[j]) { nodes_idx[j] = temp_index[j]; psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx = cpu_idx; } psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++; } } } /******************************************************************************* * Core routine to populate the power domain tree. The tree descriptor passed by * the platform is populated breadth-first and the first entry in the map * informs the number of root power domains. The parent nodes of the root nodes * will point to an invalid entry(-1). ******************************************************************************/ static void populate_power_domain_tree(const unsigned char *topology) { unsigned int i, j = 0, num_nodes_at_lvl = 1, num_nodes_at_next_lvl; unsigned int node_index = 0, parent_node_index = 0, num_children; int level = PLAT_MAX_PWR_LVL; /* * For each level the inputs are: * - number of nodes at this level in plat_array i.e. num_nodes_at_level * This is the sum of values of nodes at the parent level. * - Index of first entry at this level in the plat_array i.e. * parent_node_index. * - Index of first free entry in psci_non_cpu_pd_nodes[] or * psci_cpu_pd_nodes[] i.e. node_index depending upon the level. */ while (level >= PSCI_CPU_PWR_LVL) { num_nodes_at_next_lvl = 0; /* * For each entry (parent node) at this level in the plat_array: * - Find the number of children * - Allocate a node in a power domain array for each child * - Set the parent of the child to the parent_node_index - 1 * - Increment parent_node_index to point to the next parent * - Accumulate the number of children at next level. */ for (i = 0; i < num_nodes_at_lvl; i++) { assert(parent_node_index <= PSCI_NUM_NON_CPU_PWR_DOMAINS); num_children = topology[parent_node_index]; for (j = node_index; j < node_index + num_children; j++) psci_init_pwr_domain_node(j, parent_node_index - 1, level); node_index = j; num_nodes_at_next_lvl += num_children; parent_node_index++; } num_nodes_at_lvl = num_nodes_at_next_lvl; level--; /* Reset the index for the cpu power domain array */ if (level == PSCI_CPU_PWR_LVL) node_index = 0; } /* Validate the sanity of array exported by the platform */ assert(j == PLATFORM_CORE_COUNT); #if !USE_COHERENT_MEM /* Flush the non CPU power domain data to memory */ flush_dcache_range((uintptr_t) &psci_non_cpu_pd_nodes, sizeof(psci_non_cpu_pd_nodes)); #endif } /******************************************************************************* * This function initializes the power domain topology tree by querying the * platform. The power domain nodes higher than the CPU are populated in the * array psci_non_cpu_pd_nodes[] and the CPU power domains are populated in * psci_cpu_pd_nodes[]. The platform exports its static topology map through the * populate_power_domain_topology_tree() API. The algorithm populates the * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this * topology map. On a platform that implements two clusters of 2 cpus each, and * supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would look * like this: * * --------------------------------------------------- * | system node | cluster 0 node | cluster 1 node | * --------------------------------------------------- * * And populated psci_cpu_pd_nodes would look like this : * <- cpus cluster0 -><- cpus cluster1 -> * ------------------------------------------------ * | CPU 0 | CPU 1 | CPU 2 | CPU 3 | * ------------------------------------------------ ******************************************************************************/ int psci_setup(void) { const unsigned char *topology_tree; /* Query the topology map from the platform */ topology_tree = plat_get_power_domain_tree_desc(); /* Populate the power domain arrays using the platform topology map */ populate_power_domain_tree(topology_tree); /* Update the CPU limits for each node in psci_non_cpu_pd_nodes */ psci_update_pwrlvl_limits(); /* Populate the mpidr field of cpu node for this CPU */ psci_cpu_pd_nodes[plat_my_core_pos()].mpidr = read_mpidr() & MPIDR_AFFINITY_MASK; #if !USE_COHERENT_MEM /* * The psci_non_cpu_pd_nodes only needs flushing when it's not allocated in * coherent memory. */ flush_dcache_range((uintptr_t) &psci_non_cpu_pd_nodes, sizeof(psci_non_cpu_pd_nodes)); #endif flush_dcache_range((uintptr_t) &psci_cpu_pd_nodes, sizeof(psci_cpu_pd_nodes)); psci_init_req_local_pwr_states(); /* * Set the requested and target state of this CPU and all the higher * power domain levels for this CPU to run. */ psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL); plat_setup_psci_ops((uintptr_t)psci_entrypoint, &psci_plat_pm_ops); assert(psci_plat_pm_ops); /* Initialize the psci capability */ psci_caps = PSCI_GENERIC_CAP; if (psci_plat_pm_ops->pwr_domain_off) psci_caps |= define_psci_cap(PSCI_CPU_OFF); if (psci_plat_pm_ops->pwr_domain_on && psci_plat_pm_ops->pwr_domain_on_finish) psci_caps |= define_psci_cap(PSCI_CPU_ON_AARCH64); if (psci_plat_pm_ops->pwr_domain_suspend && psci_plat_pm_ops->pwr_domain_suspend_finish) { psci_caps |= define_psci_cap(PSCI_CPU_SUSPEND_AARCH64); if (psci_plat_pm_ops->get_sys_suspend_power_state) psci_caps |= define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64); } if (psci_plat_pm_ops->system_off) psci_caps |= define_psci_cap(PSCI_SYSTEM_OFF); if (psci_plat_pm_ops->system_reset) psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET); return 0; }