/* * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include "tsp_private.h" /******************************************************************************* * Lock to control access to the console ******************************************************************************/ spinlock_t console_lock; /******************************************************************************* * Per cpu data structure to populate parameters for an SMC in C code and use * a pointer to this structure in assembler code to populate x0-x7 ******************************************************************************/ static tsp_args_t tsp_smc_args[PLATFORM_CORE_COUNT]; /******************************************************************************* * Per cpu data structure to keep track of TSP activity ******************************************************************************/ work_statistics_t tsp_stats[PLATFORM_CORE_COUNT]; /******************************************************************************* * The TSP memory footprint starts at address BL32_BASE and ends with the * linker symbol __BL32_END__. Use these addresses to compute the TSP image * size. ******************************************************************************/ #define BL32_TOTAL_LIMIT BL32_END #define BL32_TOTAL_SIZE (BL32_TOTAL_LIMIT - (unsigned long) BL32_BASE) static tsp_args_t *set_smc_args(uint64_t arg0, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, uint64_t arg7) { uint32_t linear_id; tsp_args_t *pcpu_smc_args; /* * Return to Secure Monitor by raising an SMC. The results of the * service are passed as an arguments to the SMC */ linear_id = plat_my_core_pos(); pcpu_smc_args = &tsp_smc_args[linear_id]; write_sp_arg(pcpu_smc_args, TSP_ARG0, arg0); write_sp_arg(pcpu_smc_args, TSP_ARG1, arg1); write_sp_arg(pcpu_smc_args, TSP_ARG2, arg2); write_sp_arg(pcpu_smc_args, TSP_ARG3, arg3); write_sp_arg(pcpu_smc_args, TSP_ARG4, arg4); write_sp_arg(pcpu_smc_args, TSP_ARG5, arg5); write_sp_arg(pcpu_smc_args, TSP_ARG6, arg6); write_sp_arg(pcpu_smc_args, TSP_ARG7, arg7); return pcpu_smc_args; } /******************************************************************************* * Setup function for TSP. ******************************************************************************/ void tsp_setup(void) { /* Perform early platform-specific setup */ tsp_early_platform_setup(); /* Perform late platform-specific setup */ tsp_plat_arch_setup(); #if ENABLE_PAUTH /* * Assert that the ARMv8.3-PAuth registers are present or an access * fault will be triggered when they are being saved or restored. */ assert(is_armv8_3_pauth_present()); #endif /* ENABLE_PAUTH */ } /******************************************************************************* * TSP main entry point where it gets the opportunity to initialize its secure * state/applications. Once the state is initialized, it must return to the * SPD with a pointer to the 'tsp_vector_table' jump table. ******************************************************************************/ uint64_t tsp_main(void) { NOTICE("TSP: %s\n", version_string); NOTICE("TSP: %s\n", build_message); INFO("TSP: Total memory base : 0x%lx\n", (unsigned long) BL32_BASE); INFO("TSP: Total memory size : 0x%lx bytes\n", BL32_TOTAL_SIZE); uint32_t linear_id = plat_my_core_pos(); /* Initialize the platform */ tsp_platform_setup(); /* Initialize secure/applications state here */ tsp_generic_timer_start(); /* Update this cpu's statistics */ tsp_stats[linear_id].smc_count++; tsp_stats[linear_id].eret_count++; tsp_stats[linear_id].cpu_on_count++; #if LOG_LEVEL >= LOG_LEVEL_INFO spin_lock(&console_lock); INFO("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu on requests\n", read_mpidr(), tsp_stats[linear_id].smc_count, tsp_stats[linear_id].eret_count, tsp_stats[linear_id].cpu_on_count); spin_unlock(&console_lock); #endif return (uint64_t) &tsp_vector_table; } /******************************************************************************* * This function performs any remaining book keeping in the test secure payload * after this cpu's architectural state has been setup in response to an earlier * psci cpu_on request. ******************************************************************************/ tsp_args_t *tsp_cpu_on_main(void) { uint32_t linear_id = plat_my_core_pos(); /* Initialize secure/applications state here */ tsp_generic_timer_start(); /* Update this cpu's statistics */ tsp_stats[linear_id].smc_count++; tsp_stats[linear_id].eret_count++; tsp_stats[linear_id].cpu_on_count++; #if LOG_LEVEL >= LOG_LEVEL_INFO spin_lock(&console_lock); INFO("TSP: cpu 0x%lx turned on\n", read_mpidr()); INFO("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu on requests\n", read_mpidr(), tsp_stats[linear_id].smc_count, tsp_stats[linear_id].eret_count, tsp_stats[linear_id].cpu_on_count); spin_unlock(&console_lock); #endif /* Indicate to the SPD that we have completed turned ourselves on */ return set_smc_args(TSP_ON_DONE, 0, 0, 0, 0, 0, 0, 0); } /******************************************************************************* * This function performs any remaining book keeping in the test secure payload * before this cpu is turned off in response to a psci cpu_off request. ******************************************************************************/ tsp_args_t *tsp_cpu_off_main(uint64_t arg0, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, uint64_t arg7) { uint32_t linear_id = plat_my_core_pos(); /* * This cpu is being turned off, so disable the timer to prevent the * secure timer interrupt from interfering with power down. A pending * interrupt will be lost but we do not care as we are turning off. */ tsp_generic_timer_stop(); /* Update this cpu's statistics */ tsp_stats[linear_id].smc_count++; tsp_stats[linear_id].eret_count++; tsp_stats[linear_id].cpu_off_count++; #if LOG_LEVEL >= LOG_LEVEL_INFO spin_lock(&console_lock); INFO("TSP: cpu 0x%lx off request\n", read_mpidr()); INFO("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu off requests\n", read_mpidr(), tsp_stats[linear_id].smc_count, tsp_stats[linear_id].eret_count, tsp_stats[linear_id].cpu_off_count); spin_unlock(&console_lock); #endif /* Indicate to the SPD that we have completed this request */ return set_smc_args(TSP_OFF_DONE, 0, 0, 0, 0, 0, 0, 0); } /******************************************************************************* * This function performs any book keeping in the test secure payload before * this cpu's architectural state is saved in response to an earlier psci * cpu_suspend request. ******************************************************************************/ tsp_args_t *tsp_cpu_suspend_main(uint64_t arg0, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, uint64_t arg7) { uint32_t linear_id = plat_my_core_pos(); /* * Save the time context and disable it to prevent the secure timer * interrupt from interfering with wakeup from the suspend state. */ tsp_generic_timer_save(); tsp_generic_timer_stop(); /* Update this cpu's statistics */ tsp_stats[linear_id].smc_count++; tsp_stats[linear_id].eret_count++; tsp_stats[linear_id].cpu_suspend_count++; #if LOG_LEVEL >= LOG_LEVEL_INFO spin_lock(&console_lock); INFO("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu suspend requests\n", read_mpidr(), tsp_stats[linear_id].smc_count, tsp_stats[linear_id].eret_count, tsp_stats[linear_id].cpu_suspend_count); spin_unlock(&console_lock); #endif /* Indicate to the SPD that we have completed this request */ return set_smc_args(TSP_SUSPEND_DONE, 0, 0, 0, 0, 0, 0, 0); } /******************************************************************************* * This function performs any book keeping in the test secure payload after this * cpu's architectural state has been restored after wakeup from an earlier psci * cpu_suspend request. ******************************************************************************/ tsp_args_t *tsp_cpu_resume_main(uint64_t max_off_pwrlvl, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, uint64_t arg7) { uint32_t linear_id = plat_my_core_pos(); /* Restore the generic timer context */ tsp_generic_timer_restore(); /* Update this cpu's statistics */ tsp_stats[linear_id].smc_count++; tsp_stats[linear_id].eret_count++; tsp_stats[linear_id].cpu_resume_count++; #if LOG_LEVEL >= LOG_LEVEL_INFO spin_lock(&console_lock); INFO("TSP: cpu 0x%lx resumed. maximum off power level %lld\n", read_mpidr(), max_off_pwrlvl); INFO("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu resume requests\n", read_mpidr(), tsp_stats[linear_id].smc_count, tsp_stats[linear_id].eret_count, tsp_stats[linear_id].cpu_resume_count); spin_unlock(&console_lock); #endif /* Indicate to the SPD that we have completed this request */ return set_smc_args(TSP_RESUME_DONE, 0, 0, 0, 0, 0, 0, 0); } /******************************************************************************* * This function performs any remaining bookkeeping in the test secure payload * before the system is switched off (in response to a psci SYSTEM_OFF request) ******************************************************************************/ tsp_args_t *tsp_system_off_main(uint64_t arg0, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, uint64_t arg7) { uint32_t linear_id = plat_my_core_pos(); /* Update this cpu's statistics */ tsp_stats[linear_id].smc_count++; tsp_stats[linear_id].eret_count++; #if LOG_LEVEL >= LOG_LEVEL_INFO spin_lock(&console_lock); INFO("TSP: cpu 0x%lx SYSTEM_OFF request\n", read_mpidr()); INFO("TSP: cpu 0x%lx: %d smcs, %d erets requests\n", read_mpidr(), tsp_stats[linear_id].smc_count, tsp_stats[linear_id].eret_count); spin_unlock(&console_lock); #endif /* Indicate to the SPD that we have completed this request */ return set_smc_args(TSP_SYSTEM_OFF_DONE, 0, 0, 0, 0, 0, 0, 0); } /******************************************************************************* * This function performs any remaining bookkeeping in the test secure payload * before the system is reset (in response to a psci SYSTEM_RESET request) ******************************************************************************/ tsp_args_t *tsp_system_reset_main(uint64_t arg0, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, uint64_t arg7) { uint32_t linear_id = plat_my_core_pos(); /* Update this cpu's statistics */ tsp_stats[linear_id].smc_count++; tsp_stats[linear_id].eret_count++; #if LOG_LEVEL >= LOG_LEVEL_INFO spin_lock(&console_lock); INFO("TSP: cpu 0x%lx SYSTEM_RESET request\n", read_mpidr()); INFO("TSP: cpu 0x%lx: %d smcs, %d erets requests\n", read_mpidr(), tsp_stats[linear_id].smc_count, tsp_stats[linear_id].eret_count); spin_unlock(&console_lock); #endif /* Indicate to the SPD that we have completed this request */ return set_smc_args(TSP_SYSTEM_RESET_DONE, 0, 0, 0, 0, 0, 0, 0); } /******************************************************************************* * TSP fast smc handler. The secure monitor jumps to this function by * doing the ERET after populating X0-X7 registers. The arguments are received * in the function arguments in order. Once the service is rendered, this * function returns to Secure Monitor by raising SMC. ******************************************************************************/ tsp_args_t *tsp_smc_handler(uint64_t func, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, uint64_t arg7) { uint64_t results[2]; uint64_t service_args[2]; uint32_t linear_id = plat_my_core_pos(); /* Update this cpu's statistics */ tsp_stats[linear_id].smc_count++; tsp_stats[linear_id].eret_count++; INFO("TSP: cpu 0x%lx received %s smc 0x%llx\n", read_mpidr(), ((func >> 31) & 1) == 1 ? "fast" : "yielding", func); INFO("TSP: cpu 0x%lx: %d smcs, %d erets\n", read_mpidr(), tsp_stats[linear_id].smc_count, tsp_stats[linear_id].eret_count); /* Render secure services and obtain results here */ results[0] = arg1; results[1] = arg2; /* * Request a service back from dispatcher/secure monitor. This call * return and thereafter resume execution */ tsp_get_magic(service_args); #if CTX_INCLUDE_MTE_REGS /* * Write a dummy value to an MTE register, to simulate usage in the * secure world */ write_gcr_el1(0x99); #endif /* Determine the function to perform based on the function ID */ switch (TSP_BARE_FID(func)) { case TSP_ADD: results[0] += service_args[0]; results[1] += service_args[1]; break; case TSP_SUB: results[0] -= service_args[0]; results[1] -= service_args[1]; break; case TSP_MUL: results[0] *= service_args[0]; results[1] *= service_args[1]; break; case TSP_DIV: results[0] /= service_args[0] ? service_args[0] : 1; results[1] /= service_args[1] ? service_args[1] : 1; break; default: break; } return set_smc_args(func, 0, results[0], results[1], 0, 0, 0, 0); } /******************************************************************************* * TSP smc abort handler. This function is called when aborting a preempted * yielding SMC request. It should cleanup all resources owned by the SMC * handler such as locks or dynamically allocated memory so following SMC * request are executed in a clean environment. ******************************************************************************/ tsp_args_t *tsp_abort_smc_handler(uint64_t func, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, uint64_t arg7) { return set_smc_args(TSP_ABORT_DONE, 0, 0, 0, 0, 0, 0, 0); }