/* * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include "../common/gic_common_private.h" #include "gicv2_private.h" static const gicv2_driver_data_t *driver_data; /* * Spinlock to guard registers needing read-modify-write. APIs protected by this * spinlock are used either at boot time (when only a single CPU is active), or * when the system is fully coherent. */ spinlock_t gic_lock; /******************************************************************************* * Enable secure interrupts and use FIQs to route them. Disable legacy bypass * and set the priority mask register to allow all interrupts to trickle in. ******************************************************************************/ void gicv2_cpuif_enable(void) { unsigned int val; assert(driver_data); assert(driver_data->gicc_base); /* * Enable the Group 0 interrupts, FIQEn and disable Group 0/1 * bypass. */ val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; /* Program the idle priority in the PMR */ gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK); gicc_write_ctlr(driver_data->gicc_base, val); } /******************************************************************************* * Place the cpu interface in a state where it can never make a cpu exit wfi as * as result of an asserted interrupt. This is critical for powering down a cpu ******************************************************************************/ void gicv2_cpuif_disable(void) { unsigned int val; assert(driver_data); assert(driver_data->gicc_base); /* Disable secure, non-secure interrupts and disable their bypass */ val = gicc_read_ctlr(driver_data->gicc_base); val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT); val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; gicc_write_ctlr(driver_data->gicc_base, val); } /******************************************************************************* * Per cpu gic distributor setup which will be done by all cpus after a cold * boot/hotplug. This marks out the secure SPIs and PPIs & enables them. ******************************************************************************/ void gicv2_pcpu_distif_init(void) { assert(driver_data); assert(driver_data->gicd_base); assert(driver_data->g0_interrupt_array); gicv2_secure_ppi_sgi_setup(driver_data->gicd_base, driver_data->g0_interrupt_num, driver_data->g0_interrupt_array); } /******************************************************************************* * Global gic distributor init which will be done by the primary cpu after a * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It * then enables the secure GIC distributor interface. ******************************************************************************/ void gicv2_distif_init(void) { unsigned int ctlr; assert(driver_data); assert(driver_data->gicd_base); assert(driver_data->g0_interrupt_array); /* Disable the distributor before going further */ ctlr = gicd_read_ctlr(driver_data->gicd_base); gicd_write_ctlr(driver_data->gicd_base, ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT)); /* Set the default attribute of all SPIs */ gicv2_spis_configure_defaults(driver_data->gicd_base); /* Configure the G0 SPIs */ gicv2_secure_spis_configure(driver_data->gicd_base, driver_data->g0_interrupt_num, driver_data->g0_interrupt_array); /* Re-enable the secure SPIs now that they have been configured */ gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT); } /******************************************************************************* * Initialize the ARM GICv2 driver with the provided platform inputs ******************************************************************************/ void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data) { unsigned int gic_version; assert(plat_driver_data); assert(plat_driver_data->gicd_base); assert(plat_driver_data->gicc_base); /* * The platform should provide a list of atleast one type of * interrupts */ assert(plat_driver_data->g0_interrupt_array); /* * If there are no interrupts of a particular type, then the number of * interrupts of that type should be 0 and vice-versa. */ assert(plat_driver_data->g0_interrupt_array ? plat_driver_data->g0_interrupt_num : plat_driver_data->g0_interrupt_num == 0); /* Ensure that this is a GICv2 system */ gic_version = gicd_read_pidr2(plat_driver_data->gicd_base); gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT) & PIDR2_ARCH_REV_MASK; assert(gic_version == ARCH_REV_GICV2); driver_data = plat_driver_data; /* * The GIC driver data is initialized by the primary CPU with caches * enabled. When the secondary CPU boots up, it initializes the * GICC/GICR interface with the caches disabled. Hence flush the * driver_data to ensure coherency. This is not required if the * platform has HW_ASSISTED_COHERENCY enabled. */ #if !HW_ASSISTED_COHERENCY flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data)); flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data)); #endif INFO("ARM GICv2 driver initialized\n"); } /****************************************************************************** * This function returns whether FIQ is enabled in the GIC CPU interface. *****************************************************************************/ unsigned int gicv2_is_fiq_enabled(void) { unsigned int gicc_ctlr; assert(driver_data); assert(driver_data->gicc_base); gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base); return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1; } /******************************************************************************* * This function returns the type of the highest priority pending interrupt at * the GIC cpu interface. The return values can be one of the following : * PENDING_G1_INTID : The interrupt type is non secure Group 1. * 0 - 1019 : The interrupt type is secure Group 0. * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with * sufficient priority to be signaled ******************************************************************************/ unsigned int gicv2_get_pending_interrupt_type(void) { assert(driver_data); assert(driver_data->gicc_base); return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK; } /******************************************************************************* * This function returns the id of the highest priority pending interrupt at * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no * interrupt pending. ******************************************************************************/ unsigned int gicv2_get_pending_interrupt_id(void) { unsigned int id; assert(driver_data); assert(driver_data->gicc_base); id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK; /* * Find out which non-secure interrupt it is under the assumption that * the GICC_CTLR.AckCtl bit is 0. */ if (id == PENDING_G1_INTID) id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK; return id; } /******************************************************************************* * This functions reads the GIC cpu interface Interrupt Acknowledge register * to start handling the pending secure 0 interrupt. It returns the * contents of the IAR. ******************************************************************************/ unsigned int gicv2_acknowledge_interrupt(void) { assert(driver_data); assert(driver_data->gicc_base); return gicc_read_IAR(driver_data->gicc_base); } /******************************************************************************* * This functions writes the GIC cpu interface End Of Interrupt register with * the passed value to finish handling the active secure group 0 interrupt. ******************************************************************************/ void gicv2_end_of_interrupt(unsigned int id) { assert(driver_data); assert(driver_data->gicc_base); gicc_write_EOIR(driver_data->gicc_base, id); } /******************************************************************************* * This function returns the type of the interrupt id depending upon the group * this interrupt has been configured under by the interrupt controller i.e. * group0 secure or group1 non secure. It returns zero for Group 0 secure and * one for Group 1 non secure interrupt. ******************************************************************************/ unsigned int gicv2_get_interrupt_group(unsigned int id) { assert(driver_data); assert(driver_data->gicd_base); return gicd_get_igroupr(driver_data->gicd_base, id); } /******************************************************************************* * This function returns the priority of the interrupt the processor is * currently servicing. ******************************************************************************/ unsigned int gicv2_get_running_priority(void) { assert(driver_data); assert(driver_data->gicc_base); return gicc_read_rpr(driver_data->gicc_base); } /******************************************************************************* * This function sets the GICv2 target mask pattern for the current PE. The PE * target mask is used to translate linear PE index (returned by platform core * position) to a bit mask used when targeting interrupts to a PE, viz. when * raising SGIs and routing SPIs. ******************************************************************************/ void gicv2_set_pe_target_mask(unsigned int proc_num) { assert(driver_data); assert(driver_data->gicd_base); assert(driver_data->target_masks); assert(proc_num < GICV2_MAX_TARGET_PE); assert(proc_num < driver_data->target_masks_num); /* Return if the target mask is already populated */ if (driver_data->target_masks[proc_num]) return; /* Read target register corresponding to this CPU */ driver_data->target_masks[proc_num] = gicv2_get_cpuif_id(driver_data->gicd_base); } /******************************************************************************* * This function returns the active status of the interrupt (either because the * state is active, or active and pending). ******************************************************************************/ unsigned int gicv2_get_interrupt_active(unsigned int id) { assert(driver_data); assert(driver_data->gicd_base); assert(id <= MAX_SPI_ID); return gicd_get_isactiver(driver_data->gicd_base, id); } /******************************************************************************* * This function enables the interrupt identified by id. ******************************************************************************/ void gicv2_enable_interrupt(unsigned int id) { assert(driver_data); assert(driver_data->gicd_base); assert(id <= MAX_SPI_ID); /* * Ensure that any shared variable updates depending on out of band * interrupt trigger are observed before enabling interrupt. */ dsbishst(); gicd_set_isenabler(driver_data->gicd_base, id); } /******************************************************************************* * This function disables the interrupt identified by id. ******************************************************************************/ void gicv2_disable_interrupt(unsigned int id) { assert(driver_data); assert(driver_data->gicd_base); assert(id <= MAX_SPI_ID); /* * Disable interrupt, and ensure that any shared variable updates * depending on out of band interrupt trigger are observed afterwards. */ gicd_set_icenabler(driver_data->gicd_base, id); dsbishst(); } /******************************************************************************* * This function sets the interrupt priority as supplied for the given interrupt * id. ******************************************************************************/ void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority) { assert(driver_data); assert(driver_data->gicd_base); assert(id <= MAX_SPI_ID); gicd_set_ipriorityr(driver_data->gicd_base, id, priority); } /******************************************************************************* * This function assigns group for the interrupt identified by id. The group can * be any of GICV2_INTR_GROUP* ******************************************************************************/ void gicv2_set_interrupt_type(unsigned int id, unsigned int type) { assert(driver_data); assert(driver_data->gicd_base); assert(id <= MAX_SPI_ID); /* Serialize read-modify-write to Distributor registers */ spin_lock(&gic_lock); switch (type) { case GICV2_INTR_GROUP1: gicd_set_igroupr(driver_data->gicd_base, id); break; case GICV2_INTR_GROUP0: gicd_clr_igroupr(driver_data->gicd_base, id); break; default: assert(0); } spin_unlock(&gic_lock); } /******************************************************************************* * This function raises the specified SGI to requested targets. * * The proc_num parameter must be the linear index of the target PE in the * system. ******************************************************************************/ void gicv2_raise_sgi(int sgi_num, int proc_num) { unsigned int sgir_val, target; assert(driver_data); assert(proc_num < GICV2_MAX_TARGET_PE); assert(driver_data->gicd_base); /* * Target masks array must have been supplied, and the core position * should be valid. */ assert(driver_data->target_masks); assert(proc_num < driver_data->target_masks_num); /* Don't raise SGI if the mask hasn't been populated */ target = driver_data->target_masks[proc_num]; assert(target != 0); sgir_val = GICV2_SGIR_VALUE(SGIR_TGT_SPECIFIC, target, sgi_num); /* * Ensure that any shared variable updates depending on out of band * interrupt trigger are observed before raising SGI. */ dsbishst(); gicd_write_sgir(driver_data->gicd_base, sgir_val); } /******************************************************************************* * This function sets the interrupt routing for the given SPI interrupt id. * The interrupt routing is specified in routing mode. The proc_num parameter is * linear index of the PE to target SPI. When proc_num < 0, the SPI may target * all PEs. ******************************************************************************/ void gicv2_set_spi_routing(unsigned int id, int proc_num) { int target; assert(driver_data); assert(driver_data->gicd_base); assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID); /* * Target masks array must have been supplied, and the core position * should be valid. */ assert(driver_data->target_masks); assert(proc_num < GICV2_MAX_TARGET_PE); assert(proc_num < driver_data->target_masks_num); if (proc_num < 0) { /* Target all PEs */ target = GIC_TARGET_CPU_MASK; } else { /* Don't route interrupt if the mask hasn't been populated */ target = driver_data->target_masks[proc_num]; assert(target != 0); } gicd_set_itargetsr(driver_data->gicd_base, id, target); } /******************************************************************************* * This function clears the pending status of an interrupt identified by id. ******************************************************************************/ void gicv2_clear_interrupt_pending(unsigned int id) { assert(driver_data); assert(driver_data->gicd_base); /* SGIs can't be cleared pending */ assert(id >= MIN_PPI_ID); /* * Clear pending interrupt, and ensure that any shared variable updates * depending on out of band interrupt trigger are observed afterwards. */ gicd_set_icpendr(driver_data->gicd_base, id); dsbishst(); } /******************************************************************************* * This function sets the pending status of an interrupt identified by id. ******************************************************************************/ void gicv2_set_interrupt_pending(unsigned int id) { assert(driver_data); assert(driver_data->gicd_base); /* SGIs can't be cleared pending */ assert(id >= MIN_PPI_ID); /* * Ensure that any shared variable updates depending on out of band * interrupt trigger are observed before setting interrupt pending. */ dsbishst(); gicd_set_ispendr(driver_data->gicd_base, id); }