/* * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include /* Table of regions to map using the MMU. */ const mmap_region_t plat_rk_mmap[] = { MAP_REGION_FLAT(DEV_RNG0_BASE, DEV_RNG0_SIZE, MT_DEVICE | MT_RW | MT_SECURE), MAP_REGION_FLAT(PMUSRAM_BASE, PMUSRAM_SIZE, MT_MEMORY | MT_RW | MT_SECURE), { 0 } }; /* The RockChip power domain tree descriptor */ const unsigned char rockchip_power_domain_tree_desc[] = { /* No of root nodes */ PLATFORM_SYSTEM_COUNT, /* No of children for the root node */ PLATFORM_CLUSTER_COUNT, /* No of children for the first cluster node */ PLATFORM_CLUSTER0_CORE_COUNT, /* No of children for the second cluster node */ PLATFORM_CLUSTER1_CORE_COUNT }; void secure_timer_init(void) { mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_END_COUNT0, 0xffffffff); mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_END_COUNT1, 0xffffffff); mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_INIT_COUNT0, 0x0); mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_INIT_COUNT0, 0x0); /* auto reload & enable the timer */ mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_CONTROL_REG, TIMER_EN | TIMER_FMODE); } void sgrf_init(void) { /* security config for master */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON3_7(5), SGRF_SOC_CON_WMSK | SGRF_SOC_ALLMST_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON3_7(6), SGRF_SOC_CON_WMSK | SGRF_SOC_ALLMST_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON3_7(7), SGRF_SOC_CON_WMSK | SGRF_SOC_ALLMST_NS); /* security config for slave */ mmio_write_32(SGRF_BASE + SGRF_PMU_SLV_CON0_1(0), SGRF_PMU_SLV_S_CFGED | SGRF_PMU_SLV_CRYPTO1_NS); mmio_write_32(SGRF_BASE + SGRF_PMU_SLV_CON0_1(1), SGRF_PMU_SLV_CON1_CFG); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(0), SGRF_SLV_S_WMSK | SGRF_SLV_S_ALL_NS); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(1), SGRF_SLV_S_WMSK | SGRF_SLV_S_ALL_NS); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(2), SGRF_SLV_S_WMSK | SGRF_SLV_S_ALL_NS); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(3), SGRF_SLV_S_WMSK | SGRF_SLV_S_ALL_NS); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(4), SGRF_SLV_S_WMSK | SGRF_SLV_S_ALL_NS); } static void dma_secure_cfg(uint32_t secure) { if (secure) { /* rgn0 secure for dmac0 and dmac1 */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON20_34(22), SGRF_L_MST_S_DDR_RGN(0) | /* dmac0 */ SGRF_H_MST_S_DDR_RGN(0) /* dmac1 */ ); /* set dmac0 boot, under secure state */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(8), SGRF_DMAC_CFG_S); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(9), SGRF_DMAC_CFG_S); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(10), SGRF_DMAC_CFG_S); /* dmac0 soft reset */ mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(10), CRU_DMAC0_RST); udelay(5); mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(10), CRU_DMAC0_RST_RLS); /* set dmac1 boot, under secure state */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(11), SGRF_DMAC_CFG_S); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(12), SGRF_DMAC_CFG_S); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(13), SGRF_DMAC_CFG_S); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(14), SGRF_DMAC_CFG_S); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(15), SGRF_DMAC_CFG_S); /* dmac1 soft reset */ mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(10), CRU_DMAC1_RST); udelay(5); mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(10), CRU_DMAC1_RST_RLS); } else { /* rgn non-secure for dmac0 and dmac1 */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON20_34(22), DMAC1_RGN_NS | DMAC0_RGN_NS); /* set dmac0 boot, under non-secure state */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(8), DMAC0_BOOT_CFG_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(9), DMAC0_BOOT_PERIPH_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(10), DMAC0_BOOT_ADDR_NS); /* dmac0 soft reset */ mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(10), CRU_DMAC0_RST); udelay(5); mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(10), CRU_DMAC0_RST_RLS); /* set dmac1 boot, under non-secure state */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(11), DMAC1_BOOT_CFG_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(12), DMAC1_BOOT_PERIPH_L_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(13), DMAC1_BOOT_ADDR_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(14), DMAC1_BOOT_PERIPH_H_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON8_15(15), DMAC1_BOOT_IRQ_NS); /* dmac1 soft reset */ mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(10), CRU_DMAC1_RST); udelay(5); mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(10), CRU_DMAC1_RST_RLS); } } /* pll suspend */ struct deepsleep_data_s slp_data; void secure_watchdog_disable(void) { slp_data.sgrf_con[3] = mmio_read_32(SGRF_BASE + SGRF_SOC_CON3_7(3)); /* disable CA53 wdt pclk */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON3_7(3), BITS_WITH_WMASK(WDT_CA53_DIS, WDT_CA53_1BIT_MASK, PCLK_WDT_CA53_GATE_SHIFT)); /* disable CM0 wdt pclk */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON3_7(3), BITS_WITH_WMASK(WDT_CM0_DIS, WDT_CM0_1BIT_MASK, PCLK_WDT_CM0_GATE_SHIFT)); } void secure_watchdog_restore(void) { mmio_write_32(SGRF_BASE + SGRF_SOC_CON3_7(3), slp_data.sgrf_con[3] | WMSK_BIT(PCLK_WDT_CA53_GATE_SHIFT) | WMSK_BIT(PCLK_WDT_CM0_GATE_SHIFT)); } static void sgrf_ddr_rgn_global_bypass(uint32_t bypass) { if (bypass) /* set bypass (non-secure regions) for whole ddr regions */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(16), SGRF_DDR_RGN_BYPS); else /* cancel bypass for whole ddr regions */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(16), SGRF_DDR_RGN_NO_BYPS); } /** * There are 8 + 1 regions for DDR secure control: * DDR_RGN_0 ~ DDR_RGN_7: Per DDR_RGNs grain size is 1MB * DDR_RGN_X - the memories of exclude DDR_RGN_0 ~ DDR_RGN_7 * * DDR_RGN_0 - start address of the RGN0 * DDR_RGN_8 - end address of the RGN0 * DDR_RGN_1 - start address of the RGN1 * DDR_RGN_9 - end address of the RGN1 * ... * DDR_RGN_7 - start address of the RGN7 * DDR_RGN_15 - end address of the RGN7 * DDR_RGN_16 - bit 0 ~ 7 is bitmap for RGN0~7 secure,0: disable, 1: enable * bit 8 is setting for RGNx, the rest of the memory and region * which excludes RGN0~7, 0: disable, 1: enable * bit 9, the global secure configuration via bypass, 0: disable * bypass, 1: enable bypass * * @rgn - the DDR regions 0 ~ 7 which are can be configured. * The @st_mb and @ed_mb indicate the start and end addresses for which to set * the security, and the unit is megabyte. When the st_mb == 0, ed_mb == 0, the * address range 0x0 ~ 0xfffff is secure. * * For example, if we would like to set the range [0, 32MB) is security via * DDR_RGN0, then rgn == 0, st_mb == 0, ed_mb == 31. */ static void sgrf_ddr_rgn_config(uint32_t rgn, uintptr_t st, uintptr_t ed) { uintptr_t st_mb, ed_mb; assert(rgn <= 7); assert(st < ed); /* check aligned 1MB */ assert(st % SIZE_M(1) == 0); assert(ed % SIZE_M(1) == 0); st_mb = st / SIZE_M(1); ed_mb = ed / SIZE_M(1); /* set ddr region addr start */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(rgn), BITS_WITH_WMASK(st_mb, SGRF_DDR_RGN_0_16_WMSK, 0)); /* set ddr region addr end */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(rgn + 8), BITS_WITH_WMASK((ed_mb - 1), SGRF_DDR_RGN_0_16_WMSK, 0)); mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(16), BIT_WITH_WMSK(rgn)); } static void secure_sgrf_ddr_rgn_init(void) { sgrf_ddr_rgn_config(0, TZRAM_BASE, TZRAM_SIZE); sgrf_ddr_rgn_global_bypass(0); } static void set_pll_slow_mode(uint32_t pll_id) { if (pll_id == PPLL_ID) mmio_write_32(PMUCRU_BASE + PMUCRU_PPLL_CON(3), PLL_SLOW_MODE); else mmio_write_32((CRU_BASE + CRU_PLL_CON(pll_id, 3)), PLL_SLOW_MODE); } static void set_pll_normal_mode(uint32_t pll_id) { if (pll_id == PPLL_ID) mmio_write_32(PMUCRU_BASE + PMUCRU_PPLL_CON(3), PLL_NOMAL_MODE); else mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3), PLL_NOMAL_MODE); } static void set_pll_bypass(uint32_t pll_id) { if (pll_id == PPLL_ID) mmio_write_32(PMUCRU_BASE + PMUCRU_PPLL_CON(3), PLL_BYPASS_MODE); else mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3), PLL_BYPASS_MODE); } static void _pll_suspend(uint32_t pll_id) { set_pll_slow_mode(pll_id); set_pll_bypass(pll_id); } /** * disable_dvfs_plls - To suspend the specific PLLs * * When we close the center logic, the DPLL will be closed, * so we need to keep the ABPLL and switch to it to supply * clock for DDR during suspend, then we should not close * the ABPLL and exclude ABPLL_ID. */ void disable_dvfs_plls(void) { _pll_suspend(CPLL_ID); _pll_suspend(NPLL_ID); _pll_suspend(VPLL_ID); _pll_suspend(GPLL_ID); _pll_suspend(ALPLL_ID); } /** * disable_nodvfs_plls - To suspend the PPLL */ void disable_nodvfs_plls(void) { _pll_suspend(PPLL_ID); } /** * restore_pll - Copy PLL settings from memory to a PLL. * * This will copy PLL settings from an array in memory to the memory mapped * registers for a PLL. * * Note that: above the PLL exclude PPLL. * * pll_id: One of the values from enum plls_id * src: Pointer to the array of values to restore from */ static void restore_pll(int pll_id, uint32_t *src) { /* Nice to have PLL off while configuring */ mmio_write_32((CRU_BASE + CRU_PLL_CON(pll_id, 3)), PLL_SLOW_MODE); mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 0), src[0] | REG_SOC_WMSK); mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 1), src[1] | REG_SOC_WMSK); mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 2), src[2]); mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 4), src[4] | REG_SOC_WMSK); mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 5), src[5] | REG_SOC_WMSK); /* Do PLL_CON3 since that will enable things */ mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3), src[3] | REG_SOC_WMSK); /* Wait for PLL lock done */ while ((mmio_read_32(CRU_BASE + CRU_PLL_CON(pll_id, 2)) & 0x80000000) == 0x0) ; } /** * save_pll - Copy PLL settings a PLL to memory * * This will copy PLL settings from the memory mapped registers for a PLL to * an array in memory. * * Note that: above the PLL exclude PPLL. * * pll_id: One of the values from enum plls_id * src: Pointer to the array of values to save to. */ static void save_pll(uint32_t *dst, int pll_id) { int i; for (i = 0; i < PLL_CON_COUNT; i++) dst[i] = mmio_read_32(CRU_BASE + CRU_PLL_CON(pll_id, i)); } /** * prepare_abpll_for_ddrctrl - Copy DPLL settings to ABPLL * * This will copy DPLL settings from the memory mapped registers for a PLL to * an array in memory. */ void prepare_abpll_for_ddrctrl(void) { save_pll(slp_data.plls_con[ABPLL_ID], ABPLL_ID); save_pll(slp_data.plls_con[DPLL_ID], DPLL_ID); restore_pll(ABPLL_ID, slp_data.plls_con[DPLL_ID]); } void restore_abpll(void) { restore_pll(ABPLL_ID, slp_data.plls_con[ABPLL_ID]); } void restore_dpll(void) { restore_pll(DPLL_ID, slp_data.plls_con[DPLL_ID]); } void clk_gate_con_save(void) { uint32_t i = 0; for (i = 0; i < PMUCRU_GATE_COUNT; i++) slp_data.pmucru_gate_con[i] = mmio_read_32(PMUCRU_BASE + PMUCRU_GATE_CON(i)); for (i = 0; i < CRU_GATE_COUNT; i++) slp_data.cru_gate_con[i] = mmio_read_32(CRU_BASE + CRU_GATE_CON(i)); } void clk_gate_con_disable(void) { uint32_t i; for (i = 0; i < PMUCRU_GATE_COUNT; i++) mmio_write_32(PMUCRU_BASE + PMUCRU_GATE_CON(i), REG_SOC_WMSK); for (i = 0; i < CRU_GATE_COUNT; i++) mmio_write_32(CRU_BASE + CRU_GATE_CON(i), REG_SOC_WMSK); } void clk_gate_con_restore(void) { uint32_t i; for (i = 0; i < PMUCRU_GATE_COUNT; i++) mmio_write_32(PMUCRU_BASE + PMUCRU_GATE_CON(i), REG_SOC_WMSK | slp_data.pmucru_gate_con[i]); for (i = 0; i < CRU_GATE_COUNT; i++) mmio_write_32(CRU_BASE + CRU_GATE_CON(i), REG_SOC_WMSK | slp_data.cru_gate_con[i]); } static void set_plls_nobypass(uint32_t pll_id) { if (pll_id == PPLL_ID) mmio_write_32(PMUCRU_BASE + PMUCRU_PPLL_CON(3), PLL_NO_BYPASS_MODE); else mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3), PLL_NO_BYPASS_MODE); } static void _pll_resume(uint32_t pll_id) { set_plls_nobypass(pll_id); set_pll_normal_mode(pll_id); } /** * enable_dvfs_plls - To resume the specific PLLs * * Please see the comment at the disable_dvfs_plls() * we don't suspend the ABPLL, so don't need resume * it too. */ void enable_dvfs_plls(void) { _pll_resume(ALPLL_ID); _pll_resume(GPLL_ID); _pll_resume(VPLL_ID); _pll_resume(NPLL_ID); _pll_resume(CPLL_ID); } /** * enable_nodvfs_plls - To resume the PPLL */ void enable_nodvfs_plls(void) { _pll_resume(PPLL_ID); } void soc_global_soft_reset_init(void) { mmio_write_32(PMUCRU_BASE + CRU_PMU_RSTHOLD_CON(1), CRU_PMU_SGRF_RST_RLS); mmio_clrbits_32(CRU_BASE + CRU_GLB_RST_CON, CRU_PMU_WDTRST_MSK | CRU_PMU_FIRST_SFTRST_MSK); } void __dead2 soc_global_soft_reset(void) { set_pll_slow_mode(VPLL_ID); set_pll_slow_mode(NPLL_ID); set_pll_slow_mode(GPLL_ID); set_pll_slow_mode(CPLL_ID); set_pll_slow_mode(PPLL_ID); set_pll_slow_mode(ABPLL_ID); set_pll_slow_mode(ALPLL_ID); dsb(); mmio_write_32(CRU_BASE + CRU_GLB_SRST_FST, GLB_SRST_FST_CFG_VAL); /* * Maybe the HW needs some times to reset the system, * so we do not hope the core to excute valid codes. */ while (1) ; } void plat_rockchip_soc_init(void) { secure_timer_init(); dma_secure_cfg(0); sgrf_init(); secure_sgrf_ddr_rgn_init(); soc_global_soft_reset_init(); plat_rockchip_gpio_init(); m0_init(); dram_init(); dram_dfs_init(); }