/* * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DEFINE_BAKERY_LOCK(rockchip_pd_lock); static uint32_t cpu_warm_boot_addr; static char store_sram[SRAM_BIN_LIMIT + SRAM_TEXT_LIMIT + SRAM_DATA_LIMIT]; static uint32_t store_cru[CRU_SDIO0_CON1 / 4]; static uint32_t store_usbphy0[7]; static uint32_t store_usbphy1[7]; static uint32_t store_grf_io_vsel; static uint32_t store_grf_soc_con0; static uint32_t store_grf_soc_con1; static uint32_t store_grf_soc_con2; static uint32_t store_grf_soc_con3; static uint32_t store_grf_soc_con4; static uint32_t store_grf_soc_con7; static uint32_t store_grf_ddrc_con[4]; static uint32_t store_wdt0[2]; static uint32_t store_wdt1[2]; /* * There are two ways to powering on or off on core. * 1) Control it power domain into on or off in PMU_PWRDN_CON reg, * it is core_pwr_pd mode * 2) Enable the core power manage in PMU_CORE_PM_CON reg, * then, if the core enter into wfi, it power domain will be * powered off automatically. it is core_pwr_wfi or core_pwr_wfi_int mode * so we need core_pm_cfg_info to distinguish which method be used now. */ static uint32_t core_pm_cfg_info[PLATFORM_CORE_COUNT] #if USE_COHERENT_MEM __attribute__ ((section("tzfw_coherent_mem"))) #endif ;/* coheront */ static void pmu_bus_idle_req(uint32_t bus, uint32_t state) { uint32_t bus_id = BIT(bus); uint32_t bus_req; uint32_t wait_cnt = 0; uint32_t bus_state, bus_ack; if (state) bus_req = BIT(bus); else bus_req = 0; mmio_clrsetbits_32(PMU_BASE + PMU_BUS_IDLE_REQ, bus_id, bus_req); do { bus_state = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST) & bus_id; bus_ack = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK) & bus_id; wait_cnt++; } while ((bus_state != bus_req || bus_ack != bus_req) && (wait_cnt < MAX_WAIT_COUNT)); if (bus_state != bus_req || bus_ack != bus_req) { INFO("%s:st=%x(%x)\n", __func__, mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST), bus_state); INFO("%s:st=%x(%x)\n", __func__, mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK), bus_ack); } } struct pmu_slpdata_s pmu_slpdata; static void qos_restore(void) { if (pmu_power_domain_st(PD_GPU) == pmu_pd_on) RESTORE_QOS(pmu_slpdata.gpu_qos, GPU); if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) { RESTORE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0); RESTORE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1); } if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) { RESTORE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0); RESTORE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1); } if (pmu_power_domain_st(PD_VO) == pmu_pd_on) { RESTORE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R); RESTORE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W); RESTORE_QOS(pmu_slpdata.vop_little, VOP_LITTLE); } if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on) RESTORE_QOS(pmu_slpdata.hdcp_qos, HDCP); if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on) RESTORE_QOS(pmu_slpdata.gmac_qos, GMAC); if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) { RESTORE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0); RESTORE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1); } if (pmu_power_domain_st(PD_SD) == pmu_pd_on) RESTORE_QOS(pmu_slpdata.sdmmc_qos, SDMMC); if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on) RESTORE_QOS(pmu_slpdata.emmc_qos, EMMC); if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on) RESTORE_QOS(pmu_slpdata.sdio_qos, SDIO); if (pmu_power_domain_st(PD_GIC) == pmu_pd_on) RESTORE_QOS(pmu_slpdata.gic_qos, GIC); if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) { RESTORE_QOS(pmu_slpdata.rga_r_qos, RGA_R); RESTORE_QOS(pmu_slpdata.rga_w_qos, RGA_W); } if (pmu_power_domain_st(PD_IEP) == pmu_pd_on) RESTORE_QOS(pmu_slpdata.iep_qos, IEP); if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) { RESTORE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0); RESTORE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1); } if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) { RESTORE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0); RESTORE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1); RESTORE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP); } if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) { RESTORE_QOS(pmu_slpdata.dmac0_qos, DMAC0); RESTORE_QOS(pmu_slpdata.dmac1_qos, DMAC1); RESTORE_QOS(pmu_slpdata.dcf_qos, DCF); RESTORE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0); RESTORE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1); RESTORE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP); RESTORE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP); RESTORE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1); } if (pmu_power_domain_st(PD_VDU) == pmu_pd_on) RESTORE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0); if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) { RESTORE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R); RESTORE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W); } } static void qos_save(void) { if (pmu_power_domain_st(PD_GPU) == pmu_pd_on) SAVE_QOS(pmu_slpdata.gpu_qos, GPU); if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) { SAVE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0); SAVE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1); } if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) { SAVE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0); SAVE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1); } if (pmu_power_domain_st(PD_VO) == pmu_pd_on) { SAVE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R); SAVE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W); SAVE_QOS(pmu_slpdata.vop_little, VOP_LITTLE); } if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on) SAVE_QOS(pmu_slpdata.hdcp_qos, HDCP); if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on) SAVE_QOS(pmu_slpdata.gmac_qos, GMAC); if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) { SAVE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0); SAVE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1); } if (pmu_power_domain_st(PD_SD) == pmu_pd_on) SAVE_QOS(pmu_slpdata.sdmmc_qos, SDMMC); if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on) SAVE_QOS(pmu_slpdata.emmc_qos, EMMC); if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on) SAVE_QOS(pmu_slpdata.sdio_qos, SDIO); if (pmu_power_domain_st(PD_GIC) == pmu_pd_on) SAVE_QOS(pmu_slpdata.gic_qos, GIC); if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) { SAVE_QOS(pmu_slpdata.rga_r_qos, RGA_R); SAVE_QOS(pmu_slpdata.rga_w_qos, RGA_W); } if (pmu_power_domain_st(PD_IEP) == pmu_pd_on) SAVE_QOS(pmu_slpdata.iep_qos, IEP); if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) { SAVE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0); SAVE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1); } if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) { SAVE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0); SAVE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1); SAVE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP); } if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) { SAVE_QOS(pmu_slpdata.dmac0_qos, DMAC0); SAVE_QOS(pmu_slpdata.dmac1_qos, DMAC1); SAVE_QOS(pmu_slpdata.dcf_qos, DCF); SAVE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0); SAVE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1); SAVE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP); SAVE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP); SAVE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1); } if (pmu_power_domain_st(PD_VDU) == pmu_pd_on) SAVE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0); if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) { SAVE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R); SAVE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W); } } static int pmu_set_power_domain(uint32_t pd_id, uint32_t pd_state) { uint32_t state; if (pmu_power_domain_st(pd_id) == pd_state) goto out; if (pd_state == pmu_pd_on) pmu_power_domain_ctr(pd_id, pd_state); state = (pd_state == pmu_pd_off) ? BUS_IDLE : BUS_ACTIVE; switch (pd_id) { case PD_GPU: pmu_bus_idle_req(BUS_ID_GPU, state); break; case PD_VIO: pmu_bus_idle_req(BUS_ID_VIO, state); break; case PD_ISP0: pmu_bus_idle_req(BUS_ID_ISP0, state); break; case PD_ISP1: pmu_bus_idle_req(BUS_ID_ISP1, state); break; case PD_VO: pmu_bus_idle_req(BUS_ID_VOPB, state); pmu_bus_idle_req(BUS_ID_VOPL, state); break; case PD_HDCP: pmu_bus_idle_req(BUS_ID_HDCP, state); break; case PD_TCPD0: break; case PD_TCPD1: break; case PD_GMAC: pmu_bus_idle_req(BUS_ID_GMAC, state); break; case PD_CCI: pmu_bus_idle_req(BUS_ID_CCIM0, state); pmu_bus_idle_req(BUS_ID_CCIM1, state); break; case PD_SD: pmu_bus_idle_req(BUS_ID_SD, state); break; case PD_EMMC: pmu_bus_idle_req(BUS_ID_EMMC, state); break; case PD_EDP: pmu_bus_idle_req(BUS_ID_EDP, state); break; case PD_SDIOAUDIO: pmu_bus_idle_req(BUS_ID_SDIOAUDIO, state); break; case PD_GIC: pmu_bus_idle_req(BUS_ID_GIC, state); break; case PD_RGA: pmu_bus_idle_req(BUS_ID_RGA, state); break; case PD_VCODEC: pmu_bus_idle_req(BUS_ID_VCODEC, state); break; case PD_VDU: pmu_bus_idle_req(BUS_ID_VDU, state); break; case PD_IEP: pmu_bus_idle_req(BUS_ID_IEP, state); break; case PD_USB3: pmu_bus_idle_req(BUS_ID_USB3, state); break; case PD_PERIHP: pmu_bus_idle_req(BUS_ID_PERIHP, state); break; default: break; } if (pd_state == pmu_pd_off) pmu_power_domain_ctr(pd_id, pd_state); out: return 0; } static uint32_t pmu_powerdomain_state; static void pmu_power_domains_suspend(void) { clk_gate_con_save(); clk_gate_con_disable(); qos_save(); pmu_powerdomain_state = mmio_read_32(PMU_BASE + PMU_PWRDN_ST); pmu_set_power_domain(PD_GPU, pmu_pd_off); pmu_set_power_domain(PD_TCPD0, pmu_pd_off); pmu_set_power_domain(PD_TCPD1, pmu_pd_off); pmu_set_power_domain(PD_VO, pmu_pd_off); pmu_set_power_domain(PD_ISP0, pmu_pd_off); pmu_set_power_domain(PD_ISP1, pmu_pd_off); pmu_set_power_domain(PD_HDCP, pmu_pd_off); pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_off); pmu_set_power_domain(PD_GMAC, pmu_pd_off); pmu_set_power_domain(PD_EDP, pmu_pd_off); pmu_set_power_domain(PD_IEP, pmu_pd_off); pmu_set_power_domain(PD_RGA, pmu_pd_off); pmu_set_power_domain(PD_VCODEC, pmu_pd_off); pmu_set_power_domain(PD_VDU, pmu_pd_off); pmu_set_power_domain(PD_USB3, pmu_pd_off); pmu_set_power_domain(PD_EMMC, pmu_pd_off); pmu_set_power_domain(PD_VIO, pmu_pd_off); pmu_set_power_domain(PD_SD, pmu_pd_off); pmu_set_power_domain(PD_PERIHP, pmu_pd_off); clk_gate_con_restore(); } static void pmu_power_domains_resume(void) { clk_gate_con_save(); clk_gate_con_disable(); if (!(pmu_powerdomain_state & BIT(PD_VDU))) pmu_set_power_domain(PD_VDU, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_VCODEC))) pmu_set_power_domain(PD_VCODEC, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_RGA))) pmu_set_power_domain(PD_RGA, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_IEP))) pmu_set_power_domain(PD_IEP, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_EDP))) pmu_set_power_domain(PD_EDP, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_GMAC))) pmu_set_power_domain(PD_GMAC, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_SDIOAUDIO))) pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_HDCP))) pmu_set_power_domain(PD_HDCP, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_ISP1))) pmu_set_power_domain(PD_ISP1, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_ISP0))) pmu_set_power_domain(PD_ISP0, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_VO))) pmu_set_power_domain(PD_VO, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_TCPD1))) pmu_set_power_domain(PD_TCPD1, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_TCPD0))) pmu_set_power_domain(PD_TCPD0, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_GPU))) pmu_set_power_domain(PD_GPU, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_USB3))) pmu_set_power_domain(PD_USB3, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_EMMC))) pmu_set_power_domain(PD_EMMC, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_VIO))) pmu_set_power_domain(PD_VIO, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_SD))) pmu_set_power_domain(PD_SD, pmu_pd_on); if (!(pmu_powerdomain_state & BIT(PD_PERIHP))) pmu_set_power_domain(PD_PERIHP, pmu_pd_on); qos_restore(); clk_gate_con_restore(); } void rk3399_flush_l2_b(void) { uint32_t wait_cnt = 0; mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B)); dsb(); /* * The Big cluster flush L2 cache took ~4ms by default, give 10ms for * the enough margin. */ while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) & BIT(L2_FLUSHDONE_CLUSTER_B))) { wait_cnt++; udelay(10); if (wait_cnt == 10000 / 10) WARN("L2 cache flush on suspend took longer than 10ms\n"); } mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B)); } static void pmu_scu_b_pwrdn(void) { uint32_t wait_cnt = 0; if ((mmio_read_32(PMU_BASE + PMU_PWRDN_ST) & (BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) != (BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) { ERROR("%s: not all cpus is off\n", __func__); return; } rk3399_flush_l2_b(); mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG)); while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) & BIT(STANDBY_BY_WFIL2_CLUSTER_B))) { wait_cnt++; if (wait_cnt >= MAX_WAIT_COUNT) ERROR("%s:wait cluster-b l2(%x)\n", __func__, mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST)); } } static void pmu_scu_b_pwrup(void) { mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG)); } static inline uint32_t get_cpus_pwr_domain_cfg_info(uint32_t cpu_id) { assert(cpu_id < PLATFORM_CORE_COUNT); return core_pm_cfg_info[cpu_id]; } static inline void set_cpus_pwr_domain_cfg_info(uint32_t cpu_id, uint32_t value) { assert(cpu_id < PLATFORM_CORE_COUNT); core_pm_cfg_info[cpu_id] = value; #if !USE_COHERENT_MEM flush_dcache_range((uintptr_t)&core_pm_cfg_info[cpu_id], sizeof(uint32_t)); #endif } static int cpus_power_domain_on(uint32_t cpu_id) { uint32_t cfg_info; uint32_t cpu_pd = PD_CPUL0 + cpu_id; /* * There are two ways to powering on or off on core. * 1) Control it power domain into on or off in PMU_PWRDN_CON reg * 2) Enable the core power manage in PMU_CORE_PM_CON reg, * then, if the core enter into wfi, it power domain will be * powered off automatically. */ cfg_info = get_cpus_pwr_domain_cfg_info(cpu_id); if (cfg_info == core_pwr_pd) { /* disable core_pm cfg */ mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), CORES_PM_DISABLE); /* if the cores have be on, power off it firstly */ if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) { mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), 0); pmu_power_domain_ctr(cpu_pd, pmu_pd_off); } pmu_power_domain_ctr(cpu_pd, pmu_pd_on); } else { if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) { WARN("%s: cpu%d is not in off,!\n", __func__, cpu_id); return -EINVAL; } mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), BIT(core_pm_sft_wakeup_en)); dsb(); } return 0; } static int cpus_power_domain_off(uint32_t cpu_id, uint32_t pd_cfg) { uint32_t cpu_pd; uint32_t core_pm_value; cpu_pd = PD_CPUL0 + cpu_id; if (pmu_power_domain_st(cpu_pd) == pmu_pd_off) return 0; if (pd_cfg == core_pwr_pd) { if (check_cpu_wfie(cpu_id, CKECK_WFEI_MSK)) return -EINVAL; /* disable core_pm cfg */ mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), CORES_PM_DISABLE); set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg); pmu_power_domain_ctr(cpu_pd, pmu_pd_off); } else { set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg); core_pm_value = BIT(core_pm_en); if (pd_cfg == core_pwr_wfi_int) core_pm_value |= BIT(core_pm_int_wakeup_en); mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), core_pm_value); dsb(); } return 0; } static inline void clst_pwr_domain_suspend(plat_local_state_t lvl_state) { uint32_t cpu_id = plat_my_core_pos(); uint32_t pll_id, clst_st_msk, clst_st_chk_msk, pmu_st; assert(cpu_id < PLATFORM_CORE_COUNT); if (lvl_state == PLAT_MAX_OFF_STATE) { if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT) { pll_id = ALPLL_ID; clst_st_msk = CLST_L_CPUS_MSK; } else { pll_id = ABPLL_ID; clst_st_msk = CLST_B_CPUS_MSK << PLATFORM_CLUSTER0_CORE_COUNT; } clst_st_chk_msk = clst_st_msk & ~(BIT(cpu_id)); pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST); pmu_st &= clst_st_msk; if (pmu_st == clst_st_chk_msk) { mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3), PLL_SLOW_MODE); clst_warmboot_data[pll_id] = PMU_CLST_RET; pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST); pmu_st &= clst_st_msk; if (pmu_st == clst_st_chk_msk) return; /* * it is mean that others cpu is up again, * we must resume the cfg at once. */ mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3), PLL_NOMAL_MODE); clst_warmboot_data[pll_id] = 0; } } } static int clst_pwr_domain_resume(plat_local_state_t lvl_state) { uint32_t cpu_id = plat_my_core_pos(); uint32_t pll_id, pll_st; assert(cpu_id < PLATFORM_CORE_COUNT); if (lvl_state == PLAT_MAX_OFF_STATE) { if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT) pll_id = ALPLL_ID; else pll_id = ABPLL_ID; pll_st = mmio_read_32(CRU_BASE + CRU_PLL_CON(pll_id, 3)) >> PLL_MODE_SHIFT; if (pll_st != NORMAL_MODE) { WARN("%s: clst (%d) is in error mode (%d)\n", __func__, pll_id, pll_st); return -1; } } return 0; } static void nonboot_cpus_off(void) { uint32_t boot_cpu, cpu; boot_cpu = plat_my_core_pos(); /* turn off noboot cpus */ for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++) { if (cpu == boot_cpu) continue; cpus_power_domain_off(cpu, core_pwr_pd); } } int rockchip_soc_cores_pwr_dm_on(unsigned long mpidr, uint64_t entrypoint) { uint32_t cpu_id = plat_core_pos_by_mpidr(mpidr); assert(cpu_id < PLATFORM_CORE_COUNT); assert(cpuson_flags[cpu_id] == 0); cpuson_flags[cpu_id] = PMU_CPU_HOTPLUG; cpuson_entry_point[cpu_id] = entrypoint; dsb(); cpus_power_domain_on(cpu_id); return PSCI_E_SUCCESS; } int rockchip_soc_cores_pwr_dm_off(void) { uint32_t cpu_id = plat_my_core_pos(); cpus_power_domain_off(cpu_id, core_pwr_wfi); return PSCI_E_SUCCESS; } int rockchip_soc_hlvl_pwr_dm_off(uint32_t lvl, plat_local_state_t lvl_state) { switch (lvl) { case MPIDR_AFFLVL1: clst_pwr_domain_suspend(lvl_state); break; default: break; } return PSCI_E_SUCCESS; } int rockchip_soc_cores_pwr_dm_suspend(void) { uint32_t cpu_id = plat_my_core_pos(); assert(cpu_id < PLATFORM_CORE_COUNT); assert(cpuson_flags[cpu_id] == 0); cpuson_flags[cpu_id] = PMU_CPU_AUTO_PWRDN; cpuson_entry_point[cpu_id] = plat_get_sec_entrypoint(); dsb(); cpus_power_domain_off(cpu_id, core_pwr_wfi_int); return PSCI_E_SUCCESS; } int rockchip_soc_hlvl_pwr_dm_suspend(uint32_t lvl, plat_local_state_t lvl_state) { switch (lvl) { case MPIDR_AFFLVL1: clst_pwr_domain_suspend(lvl_state); break; default: break; } return PSCI_E_SUCCESS; } int rockchip_soc_cores_pwr_dm_on_finish(void) { uint32_t cpu_id = plat_my_core_pos(); mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), CORES_PM_DISABLE); return PSCI_E_SUCCESS; } int rockchip_soc_hlvl_pwr_dm_on_finish(uint32_t lvl, plat_local_state_t lvl_state) { switch (lvl) { case MPIDR_AFFLVL1: clst_pwr_domain_resume(lvl_state); break; default: break; } return PSCI_E_SUCCESS; } int rockchip_soc_cores_pwr_dm_resume(void) { uint32_t cpu_id = plat_my_core_pos(); /* Disable core_pm */ mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), CORES_PM_DISABLE); return PSCI_E_SUCCESS; } int rockchip_soc_hlvl_pwr_dm_resume(uint32_t lvl, plat_local_state_t lvl_state) { switch (lvl) { case MPIDR_AFFLVL1: clst_pwr_domain_resume(lvl_state); default: break; } return PSCI_E_SUCCESS; } /** * init_pmu_counts - Init timing counts in the PMU register area * * At various points when we power up or down parts of the system we need * a delay to wait for power / clocks to become stable. The PMU has counters * to help software do the delay properly. Basically, it works like this: * - Software sets up counter values * - When software turns on something in the PMU, the counter kicks off * - The hardware sets a bit automatically when the counter has finished and * software knows that the initialization is done. * * It's software's job to setup these counters. The hardware power on default * for these settings is conservative, setting everything to 0x5dc0 * (750 ms in 32 kHz counts or 1 ms in 24 MHz counts). * * Note that some of these counters are only really used at suspend/resume * time (for instance, that's the only time we turn off/on the oscillator) and * others are used during normal runtime (like turning on/off a CPU or GPU) but * it doesn't hurt to init everything at boot. * * Also note that these counters can run off the 32 kHz clock or the 24 MHz * clock. While the 24 MHz clock can give us more precision, it's not always * available (like when we turn the oscillator off at sleep time). The * pmu_use_lf (lf: low freq) is available in power mode. Current understanding * is that counts work like this: * IF (pmu_use_lf == 0) || (power_mode_en == 0) * use the 24M OSC for counts * ELSE * use the 32K OSC for counts * * Notes: * - There is a separate bit for the PMU called PMU_24M_EN_CFG. At the moment * we always keep that 0. This apparently choose between using the PLL as * the source for the PMU vs. the 24M clock. If we ever set it to 1 we * should consider how it affects these counts (if at all). * - The power_mode_en is documented to auto-clear automatically when we leave * "power mode". That's why most clocks are on 24M. Only timings used when * in "power mode" are 32k. * - In some cases the kernel may override these counts. * * The PMU_STABLE_CNT / PMU_OSC_CNT / PMU_PLLLOCK_CNT are important CNTs * in power mode, we need to ensure that they are available. */ static void init_pmu_counts(void) { /* COUNTS FOR INSIDE POWER MODE */ /* * From limited testing, need PMU stable >= 2ms, but go overkill * and choose 30 ms to match testing on past SoCs. Also let * OSC have 30 ms for stabilization. */ mmio_write_32(PMU_BASE + PMU_STABLE_CNT, CYCL_32K_CNT_MS(30)); mmio_write_32(PMU_BASE + PMU_OSC_CNT, CYCL_32K_CNT_MS(30)); /* Unclear what these should be; try 3 ms */ mmio_write_32(PMU_BASE + PMU_WAKEUP_RST_CLR_CNT, CYCL_32K_CNT_MS(3)); /* Unclear what this should be, but set the default explicitly */ mmio_write_32(PMU_BASE + PMU_TIMEOUT_CNT, 0x5dc0); /* COUNTS FOR OUTSIDE POWER MODE */ /* Put something sorta conservative here until we know better */ mmio_write_32(PMU_BASE + PMU_PLLLOCK_CNT, CYCL_24M_CNT_MS(3)); mmio_write_32(PMU_BASE + PMU_DDRIO_PWRON_CNT, CYCL_24M_CNT_MS(1)); mmio_write_32(PMU_BASE + PMU_CENTER_PWRDN_CNT, CYCL_24M_CNT_MS(1)); mmio_write_32(PMU_BASE + PMU_CENTER_PWRUP_CNT, CYCL_24M_CNT_MS(1)); /* * when we enable PMU_CLR_PERILP, it will shut down the SRAM, but * M0 code run in SRAM, and we need it to check whether cpu enter * FSM status, so we must wait M0 finish their code and enter WFI, * then we can shutdown SRAM, according FSM order: * ST_NORMAL->..->ST_SCU_L_PWRDN->..->ST_CENTER_PWRDN->ST_PERILP_PWRDN * we can add delay when shutdown ST_SCU_L_PWRDN to guarantee M0 get * the FSM status and enter WFI, then enable PMU_CLR_PERILP. */ mmio_write_32(PMU_BASE + PMU_SCU_L_PWRDN_CNT, CYCL_24M_CNT_MS(5)); mmio_write_32(PMU_BASE + PMU_SCU_L_PWRUP_CNT, CYCL_24M_CNT_US(1)); /* * Set CPU/GPU to 1 us. * * NOTE: Even though ATF doesn't configure the GPU we'll still setup * counts here. After all ATF controls all these other bits and also * chooses which clock these counters use. */ mmio_write_32(PMU_BASE + PMU_SCU_B_PWRDN_CNT, CYCL_24M_CNT_US(1)); mmio_write_32(PMU_BASE + PMU_SCU_B_PWRUP_CNT, CYCL_24M_CNT_US(1)); mmio_write_32(PMU_BASE + PMU_GPU_PWRDN_CNT, CYCL_24M_CNT_US(1)); mmio_write_32(PMU_BASE + PMU_GPU_PWRUP_CNT, CYCL_24M_CNT_US(1)); } static uint32_t clk_ddrc_save; static void sys_slp_config(void) { uint32_t slp_mode_cfg = 0; /* keep enabling clk_ddrc_bpll_src_en gate for DDRC */ clk_ddrc_save = mmio_read_32(CRU_BASE + CRU_CLKGATE_CON(3)); mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(3), WMSK_BIT(1)); prepare_abpll_for_ddrctrl(); sram_func_set_ddrctl_pll(ABPLL_ID); mmio_write_32(GRF_BASE + GRF_SOC_CON4, CCI_FORCE_WAKEUP); mmio_write_32(PMU_BASE + PMU_CCI500_CON, BIT_WITH_WMSK(PMU_CLR_PREQ_CCI500_HW) | BIT_WITH_WMSK(PMU_CLR_QREQ_CCI500_HW) | BIT_WITH_WMSK(PMU_QGATING_CCI500_CFG)); mmio_write_32(PMU_BASE + PMU_ADB400_CON, BIT_WITH_WMSK(PMU_CLR_CORE_L_HW) | BIT_WITH_WMSK(PMU_CLR_CORE_L_2GIC_HW) | BIT_WITH_WMSK(PMU_CLR_GIC2_CORE_L_HW)); slp_mode_cfg = BIT(PMU_PWR_MODE_EN) | BIT(PMU_INPUT_CLAMP_EN) | BIT(PMU_POWER_OFF_REQ_CFG) | BIT(PMU_CPU0_PD_EN) | BIT(PMU_L2_FLUSH_EN) | BIT(PMU_L2_IDLE_EN) | BIT(PMU_SCU_PD_EN) | BIT(PMU_CCI_PD_EN) | BIT(PMU_CLK_CORE_SRC_GATE_EN) | BIT(PMU_ALIVE_USE_LF) | BIT(PMU_SREF0_ENTER_EN) | BIT(PMU_SREF1_ENTER_EN) | BIT(PMU_DDRC0_GATING_EN) | BIT(PMU_DDRC1_GATING_EN) | BIT(PMU_DDRIO0_RET_EN) | BIT(PMU_DDRIO0_RET_DE_REQ) | BIT(PMU_DDRIO1_RET_EN) | BIT(PMU_DDRIO1_RET_DE_REQ) | BIT(PMU_DDRIO_RET_HW_DE_REQ) | BIT(PMU_CENTER_PD_EN) | BIT(PMU_PERILP_PD_EN) | BIT(PMU_CLK_PERILP_SRC_GATE_EN) | BIT(PMU_PLL_PD_EN) | BIT(PMU_CLK_CENTER_SRC_GATE_EN) | BIT(PMU_OSC_DIS) | BIT(PMU_PMU_USE_LF); mmio_setbits_32(PMU_BASE + PMU_WKUP_CFG4, BIT(PMU_GPIO_WKUP_EN)); mmio_write_32(PMU_BASE + PMU_PWRMODE_CON, slp_mode_cfg); mmio_write_32(PMU_BASE + PMU_PLL_CON, PLL_PD_HW); mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON0, EXTERNAL_32K); mmio_write_32(PMUGRF_BASE, IOMUX_CLK_32K); /* 32k iomux */ } static void set_hw_idle(uint32_t hw_idle) { mmio_setbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle); } static void clr_hw_idle(uint32_t hw_idle) { mmio_clrbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle); } static uint32_t iomux_status[12]; static uint32_t pull_mode_status[12]; static uint32_t gpio_direction[3]; static uint32_t gpio_2_4_clk_gate; static void suspend_apio(void) { struct apio_info *suspend_apio; int i; suspend_apio = plat_get_rockchip_suspend_apio(); if (!suspend_apio) return; /* save gpio2 ~ gpio4 iomux and pull mode */ for (i = 0; i < 12; i++) { iomux_status[i] = mmio_read_32(GRF_BASE + GRF_GPIO2A_IOMUX + i * 4); pull_mode_status[i] = mmio_read_32(GRF_BASE + GRF_GPIO2A_P + i * 4); } /* store gpio2 ~ gpio4 clock gate state */ gpio_2_4_clk_gate = (mmio_read_32(CRU_BASE + CRU_CLKGATE_CON(31)) >> PCLK_GPIO2_GATE_SHIFT) & 0x07; /* enable gpio2 ~ gpio4 clock gate */ mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31), BITS_WITH_WMASK(0, 0x07, PCLK_GPIO2_GATE_SHIFT)); /* save gpio2 ~ gpio4 direction */ gpio_direction[0] = mmio_read_32(GPIO2_BASE + 0x04); gpio_direction[1] = mmio_read_32(GPIO3_BASE + 0x04); gpio_direction[2] = mmio_read_32(GPIO4_BASE + 0x04); /* apio1 charge gpio3a0 ~ gpio3c7 */ if (suspend_apio->apio1) { /* set gpio3a0 ~ gpio3c7 iomux to gpio */ mmio_write_32(GRF_BASE + GRF_GPIO3A_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); mmio_write_32(GRF_BASE + GRF_GPIO3B_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); mmio_write_32(GRF_BASE + GRF_GPIO3C_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); /* set gpio3a0 ~ gpio3c7 pull mode to pull none */ mmio_write_32(GRF_BASE + GRF_GPIO3A_P, REG_SOC_WMSK | 0); mmio_write_32(GRF_BASE + GRF_GPIO3B_P, REG_SOC_WMSK | 0); mmio_write_32(GRF_BASE + GRF_GPIO3C_P, REG_SOC_WMSK | 0); /* set gpio3a0 ~ gpio3c7 to input */ mmio_clrbits_32(GPIO3_BASE + 0x04, 0x00ffffff); } /* apio2 charge gpio2a0 ~ gpio2b4 */ if (suspend_apio->apio2) { /* set gpio2a0 ~ gpio2b4 iomux to gpio */ mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); mmio_write_32(GRF_BASE + GRF_GPIO2B_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); /* set gpio2a0 ~ gpio2b4 pull mode to pull none */ mmio_write_32(GRF_BASE + GRF_GPIO2A_P, REG_SOC_WMSK | 0); mmio_write_32(GRF_BASE + GRF_GPIO2B_P, REG_SOC_WMSK | 0); /* set gpio2a0 ~ gpio2b4 to input */ mmio_clrbits_32(GPIO2_BASE + 0x04, 0x00001fff); } /* apio3 charge gpio2c0 ~ gpio2d4*/ if (suspend_apio->apio3) { /* set gpio2a0 ~ gpio2b4 iomux to gpio */ mmio_write_32(GRF_BASE + GRF_GPIO2C_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); mmio_write_32(GRF_BASE + GRF_GPIO2D_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); /* set gpio2c0 ~ gpio2d4 pull mode to pull none */ mmio_write_32(GRF_BASE + GRF_GPIO2C_P, REG_SOC_WMSK | 0); mmio_write_32(GRF_BASE + GRF_GPIO2D_P, REG_SOC_WMSK | 0); /* set gpio2c0 ~ gpio2d4 to input */ mmio_clrbits_32(GPIO2_BASE + 0x04, 0x1fff0000); } /* apio4 charge gpio4c0 ~ gpio4c7, gpio4d0 ~ gpio4d6 */ if (suspend_apio->apio4) { /* set gpio4c0 ~ gpio4d6 iomux to gpio */ mmio_write_32(GRF_BASE + GRF_GPIO4C_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); mmio_write_32(GRF_BASE + GRF_GPIO4D_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); /* set gpio4c0 ~ gpio4d6 pull mode to pull none */ mmio_write_32(GRF_BASE + GRF_GPIO4C_P, REG_SOC_WMSK | 0); mmio_write_32(GRF_BASE + GRF_GPIO4D_P, REG_SOC_WMSK | 0); /* set gpio4c0 ~ gpio4d6 to input */ mmio_clrbits_32(GPIO4_BASE + 0x04, 0x7fff0000); } /* apio5 charge gpio3d0 ~ gpio3d7, gpio4a0 ~ gpio4a7*/ if (suspend_apio->apio5) { /* set gpio3d0 ~ gpio4a7 iomux to gpio */ mmio_write_32(GRF_BASE + GRF_GPIO3D_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); mmio_write_32(GRF_BASE + GRF_GPIO4A_IOMUX, REG_SOC_WMSK | GRF_IOMUX_GPIO); /* set gpio3d0 ~ gpio4a7 pull mode to pull none */ mmio_write_32(GRF_BASE + GRF_GPIO3D_P, REG_SOC_WMSK | 0); mmio_write_32(GRF_BASE + GRF_GPIO4A_P, REG_SOC_WMSK | 0); /* set gpio4c0 ~ gpio4d6 to input */ mmio_clrbits_32(GPIO3_BASE + 0x04, 0xff000000); mmio_clrbits_32(GPIO4_BASE + 0x04, 0x000000ff); } } static void resume_apio(void) { struct apio_info *suspend_apio; int i; suspend_apio = plat_get_rockchip_suspend_apio(); if (!suspend_apio) return; for (i = 0; i < 12; i++) { mmio_write_32(GRF_BASE + GRF_GPIO2A_P + i * 4, REG_SOC_WMSK | pull_mode_status[i]); mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX + i * 4, REG_SOC_WMSK | iomux_status[i]); } /* set gpio2 ~ gpio4 direction back to store value */ mmio_write_32(GPIO2_BASE + 0x04, gpio_direction[0]); mmio_write_32(GPIO3_BASE + 0x04, gpio_direction[1]); mmio_write_32(GPIO4_BASE + 0x04, gpio_direction[2]); /* set gpio2 ~ gpio4 clock gate back to store value */ mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31), BITS_WITH_WMASK(gpio_2_4_clk_gate, 0x07, PCLK_GPIO2_GATE_SHIFT)); } static void suspend_gpio(void) { struct gpio_info *suspend_gpio; uint32_t count; int i; suspend_gpio = plat_get_rockchip_suspend_gpio(&count); for (i = 0; i < count; i++) { gpio_set_value(suspend_gpio[i].index, suspend_gpio[i].polarity); gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT); udelay(1); } } static void resume_gpio(void) { struct gpio_info *suspend_gpio; uint32_t count; int i; suspend_gpio = plat_get_rockchip_suspend_gpio(&count); for (i = count - 1; i >= 0; i--) { gpio_set_value(suspend_gpio[i].index, !suspend_gpio[i].polarity); gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT); udelay(1); } } static void m0_configure_suspend(void) { /* set PARAM to M0_FUNC_SUSPEND */ mmio_write_32(M0_PARAM_ADDR + PARAM_M0_FUNC, M0_FUNC_SUSPEND); } void sram_save(void) { size_t text_size = (char *)&__bl31_sram_text_real_end - (char *)&__bl31_sram_text_start; size_t data_size = (char *)&__bl31_sram_data_real_end - (char *)&__bl31_sram_data_start; size_t incbin_size = (char *)&__sram_incbin_real_end - (char *)&__sram_incbin_start; memcpy(&store_sram[0], &__bl31_sram_text_start, text_size); memcpy(&store_sram[text_size], &__bl31_sram_data_start, data_size); memcpy(&store_sram[text_size + data_size], &__sram_incbin_start, incbin_size); } void sram_restore(void) { size_t text_size = (char *)&__bl31_sram_text_real_end - (char *)&__bl31_sram_text_start; size_t data_size = (char *)&__bl31_sram_data_real_end - (char *)&__bl31_sram_data_start; size_t incbin_size = (char *)&__sram_incbin_real_end - (char *)&__sram_incbin_start; memcpy(&__bl31_sram_text_start, &store_sram[0], text_size); memcpy(&__bl31_sram_data_start, &store_sram[text_size], data_size); memcpy(&__sram_incbin_start, &store_sram[text_size + data_size], incbin_size); } struct uart_debug { uint32_t uart_dll; uint32_t uart_dlh; uint32_t uart_ier; uint32_t uart_fcr; uint32_t uart_mcr; uint32_t uart_lcr; }; #define UART_DLL 0x00 #define UART_DLH 0x04 #define UART_IER 0x04 #define UART_FCR 0x08 #define UART_LCR 0x0c #define UART_MCR 0x10 #define UARTSRR 0x88 #define UART_RESET BIT(0) #define UARTFCR_FIFOEN BIT(0) #define RCVR_FIFO_RESET BIT(1) #define XMIT_FIFO_RESET BIT(2) #define DIAGNOSTIC_MODE BIT(4) #define UARTLCR_DLAB BIT(7) static struct uart_debug uart_save; void suspend_uart(void) { uart_save.uart_lcr = mmio_read_32(PLAT_RK_UART_BASE + UART_LCR); uart_save.uart_ier = mmio_read_32(PLAT_RK_UART_BASE + UART_IER); uart_save.uart_mcr = mmio_read_32(PLAT_RK_UART_BASE + UART_MCR); mmio_write_32(PLAT_RK_UART_BASE + UART_LCR, uart_save.uart_lcr | UARTLCR_DLAB); uart_save.uart_dll = mmio_read_32(PLAT_RK_UART_BASE + UART_DLL); uart_save.uart_dlh = mmio_read_32(PLAT_RK_UART_BASE + UART_DLH); mmio_write_32(PLAT_RK_UART_BASE + UART_LCR, uart_save.uart_lcr); } void resume_uart(void) { uint32_t uart_lcr; mmio_write_32(PLAT_RK_UART_BASE + UARTSRR, XMIT_FIFO_RESET | RCVR_FIFO_RESET | UART_RESET); uart_lcr = mmio_read_32(PLAT_RK_UART_BASE + UART_LCR); mmio_write_32(PLAT_RK_UART_BASE + UART_MCR, DIAGNOSTIC_MODE); mmio_write_32(PLAT_RK_UART_BASE + UART_LCR, uart_lcr | UARTLCR_DLAB); mmio_write_32(PLAT_RK_UART_BASE + UART_DLL, uart_save.uart_dll); mmio_write_32(PLAT_RK_UART_BASE + UART_DLH, uart_save.uart_dlh); mmio_write_32(PLAT_RK_UART_BASE + UART_LCR, uart_save.uart_lcr); mmio_write_32(PLAT_RK_UART_BASE + UART_IER, uart_save.uart_ier); mmio_write_32(PLAT_RK_UART_BASE + UART_FCR, UARTFCR_FIFOEN); mmio_write_32(PLAT_RK_UART_BASE + UART_MCR, uart_save.uart_mcr); } void save_usbphy(void) { store_usbphy0[0] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL0); store_usbphy0[1] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL2); store_usbphy0[2] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL3); store_usbphy0[3] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL12); store_usbphy0[4] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL13); store_usbphy0[5] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL15); store_usbphy0[6] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL16); store_usbphy1[0] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL0); store_usbphy1[1] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL2); store_usbphy1[2] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL3); store_usbphy1[3] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL12); store_usbphy1[4] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL13); store_usbphy1[5] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL15); store_usbphy1[6] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL16); } void restore_usbphy(void) { mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL0, REG_SOC_WMSK | store_usbphy0[0]); mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL2, REG_SOC_WMSK | store_usbphy0[1]); mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL3, REG_SOC_WMSK | store_usbphy0[2]); mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL12, REG_SOC_WMSK | store_usbphy0[3]); mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL13, REG_SOC_WMSK | store_usbphy0[4]); mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL15, REG_SOC_WMSK | store_usbphy0[5]); mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL16, REG_SOC_WMSK | store_usbphy0[6]); mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL0, REG_SOC_WMSK | store_usbphy1[0]); mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL2, REG_SOC_WMSK | store_usbphy1[1]); mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL3, REG_SOC_WMSK | store_usbphy1[2]); mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL12, REG_SOC_WMSK | store_usbphy1[3]); mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL13, REG_SOC_WMSK | store_usbphy1[4]); mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL15, REG_SOC_WMSK | store_usbphy1[5]); mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL16, REG_SOC_WMSK | store_usbphy1[6]); } void grf_register_save(void) { int i; store_grf_soc_con0 = mmio_read_32(GRF_BASE + GRF_SOC_CON(0)); store_grf_soc_con1 = mmio_read_32(GRF_BASE + GRF_SOC_CON(1)); store_grf_soc_con2 = mmio_read_32(GRF_BASE + GRF_SOC_CON(2)); store_grf_soc_con3 = mmio_read_32(GRF_BASE + GRF_SOC_CON(3)); store_grf_soc_con4 = mmio_read_32(GRF_BASE + GRF_SOC_CON(4)); store_grf_soc_con7 = mmio_read_32(GRF_BASE + GRF_SOC_CON(7)); for (i = 0; i < 4; i++) store_grf_ddrc_con[i] = mmio_read_32(GRF_BASE + GRF_DDRC0_CON0 + i * 4); store_grf_io_vsel = mmio_read_32(GRF_BASE + GRF_IO_VSEL); } void grf_register_restore(void) { int i; mmio_write_32(GRF_BASE + GRF_SOC_CON(0), REG_SOC_WMSK | store_grf_soc_con0); mmio_write_32(GRF_BASE + GRF_SOC_CON(1), REG_SOC_WMSK | store_grf_soc_con1); mmio_write_32(GRF_BASE + GRF_SOC_CON(2), REG_SOC_WMSK | store_grf_soc_con2); mmio_write_32(GRF_BASE + GRF_SOC_CON(3), REG_SOC_WMSK | store_grf_soc_con3); mmio_write_32(GRF_BASE + GRF_SOC_CON(4), REG_SOC_WMSK | store_grf_soc_con4); mmio_write_32(GRF_BASE + GRF_SOC_CON(7), REG_SOC_WMSK | store_grf_soc_con7); for (i = 0; i < 4; i++) mmio_write_32(GRF_BASE + GRF_DDRC0_CON0 + i * 4, REG_SOC_WMSK | store_grf_ddrc_con[i]); mmio_write_32(GRF_BASE + GRF_IO_VSEL, REG_SOC_WMSK | store_grf_io_vsel); } void cru_register_save(void) { int i; for (i = 0; i <= CRU_SDIO0_CON1; i = i + 4) store_cru[i / 4] = mmio_read_32(CRU_BASE + i); } void cru_register_restore(void) { int i; for (i = 0; i <= CRU_SDIO0_CON1; i = i + 4) { /* * since DPLL, CRU_CLKSEL_CON6 have been restore in * dmc_resume, ABPLL will resote later, so skip them */ if ((i == CRU_CLKSEL_CON6) || (i >= CRU_PLL_CON(ABPLL_ID, 0) && i <= CRU_PLL_CON(DPLL_ID, 5))) continue; if ((i == CRU_PLL_CON(ALPLL_ID, 2)) || (i == CRU_PLL_CON(CPLL_ID, 2)) || (i == CRU_PLL_CON(GPLL_ID, 2)) || (i == CRU_PLL_CON(NPLL_ID, 2)) || (i == CRU_PLL_CON(VPLL_ID, 2))) mmio_write_32(CRU_BASE + i, store_cru[i / 4]); /* * CRU_GLB_CNT_TH and CRU_CLKSEL_CON97~CRU_CLKSEL_CON107 * not need do high 16bit mask */ else if ((i > 0x27c && i < 0x2b0) || (i == 0x508)) mmio_write_32(CRU_BASE + i, store_cru[i / 4]); else mmio_write_32(CRU_BASE + i, REG_SOC_WMSK | store_cru[i / 4]); } } void wdt_register_save(void) { int i; for (i = 0; i < 2; i++) { store_wdt0[i] = mmio_read_32(WDT0_BASE + i * 4); store_wdt1[i] = mmio_read_32(WDT1_BASE + i * 4); } } void wdt_register_restore(void) { int i; for (i = 0; i < 2; i++) { mmio_write_32(WDT0_BASE + i * 4, store_wdt0[i]); mmio_write_32(WDT1_BASE + i * 4, store_wdt1[i]); } } int rockchip_soc_sys_pwr_dm_suspend(void) { uint32_t wait_cnt = 0; uint32_t status = 0; ddr_prepare_for_sys_suspend(); dmc_suspend(); pmu_scu_b_pwrdn(); /* need to save usbphy before shutdown PERIHP PD */ save_usbphy(); pmu_power_domains_suspend(); set_hw_idle(BIT(PMU_CLR_CENTER1) | BIT(PMU_CLR_ALIVE) | BIT(PMU_CLR_MSCH0) | BIT(PMU_CLR_MSCH1) | BIT(PMU_CLR_CCIM0) | BIT(PMU_CLR_CCIM1) | BIT(PMU_CLR_CENTER) | BIT(PMU_CLR_PERILP) | BIT(PMU_CLR_PERILPM0) | BIT(PMU_CLR_GIC)); set_pmu_rsthold(); sys_slp_config(); m0_configure_suspend(); m0_start(); pmu_sgrf_rst_hld(); mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1), ((uintptr_t)&pmu_cpuson_entrypoint >> CPU_BOOT_ADDR_ALIGN) | CPU_BOOT_ADDR_WMASK); mmio_write_32(PMU_BASE + PMU_ADB400_CON, BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) | BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_SW) | BIT_WITH_WMSK(PMU_PWRDWN_REQ_GIC2_CORE_B_SW)); dsb(); status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) | BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) | BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST); while ((mmio_read_32(PMU_BASE + PMU_ADB400_ST) & status) != status) { wait_cnt++; if (wait_cnt >= MAX_WAIT_COUNT) { ERROR("%s:wait cluster-b l2(%x)\n", __func__, mmio_read_32(PMU_BASE + PMU_ADB400_ST)); panic(); } } mmio_setbits_32(PMU_BASE + PMU_PWRDN_CON, BIT(PMU_SCU_B_PWRDWN_EN)); secure_watchdog_disable(); /* * Disabling PLLs/PWM/DVFS is approaching WFI which is * the last steps in suspend. */ disable_dvfs_plls(); disable_pwms(); disable_nodvfs_plls(); suspend_apio(); suspend_gpio(); suspend_uart(); grf_register_save(); cru_register_save(); wdt_register_save(); sram_save(); plat_rockchip_save_gpio(); return 0; } int rockchip_soc_sys_pwr_dm_resume(void) { uint32_t wait_cnt = 0; uint32_t status = 0; plat_rockchip_restore_gpio(); wdt_register_restore(); cru_register_restore(); grf_register_restore(); resume_uart(); resume_apio(); resume_gpio(); enable_nodvfs_plls(); enable_pwms(); /* PWM regulators take time to come up; give 300us to be safe. */ udelay(300); enable_dvfs_plls(); secure_watchdog_enable(); secure_sgrf_init(); secure_sgrf_ddr_rgn_init(); /* restore clk_ddrc_bpll_src_en gate */ mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(3), BITS_WITH_WMASK(clk_ddrc_save, 0xff, 0)); /* * The wakeup status is not cleared by itself, we need to clear it * manually. Otherwise we will alway query some interrupt next time. * * NOTE: If the kernel needs to query this, we might want to stash it * somewhere. */ mmio_write_32(PMU_BASE + PMU_WAKEUP_STATUS, 0xffffffff); mmio_write_32(PMU_BASE + PMU_WKUP_CFG4, 0x00); mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1), (cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) | CPU_BOOT_ADDR_WMASK); mmio_write_32(PMU_BASE + PMU_CCI500_CON, WMSK_BIT(PMU_CLR_PREQ_CCI500_HW) | WMSK_BIT(PMU_CLR_QREQ_CCI500_HW) | WMSK_BIT(PMU_QGATING_CCI500_CFG)); dsb(); mmio_clrbits_32(PMU_BASE + PMU_PWRDN_CON, BIT(PMU_SCU_B_PWRDWN_EN)); mmio_write_32(PMU_BASE + PMU_ADB400_CON, WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) | WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_SW) | WMSK_BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW) | WMSK_BIT(PMU_CLR_CORE_L_HW) | WMSK_BIT(PMU_CLR_CORE_L_2GIC_HW) | WMSK_BIT(PMU_CLR_GIC2_CORE_L_HW)); status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) | BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) | BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST); while ((mmio_read_32(PMU_BASE + PMU_ADB400_ST) & status)) { wait_cnt++; if (wait_cnt >= MAX_WAIT_COUNT) { ERROR("%s:wait cluster-b l2(%x)\n", __func__, mmio_read_32(PMU_BASE + PMU_ADB400_ST)); panic(); } } pmu_sgrf_rst_hld_release(); pmu_scu_b_pwrup(); pmu_power_domains_resume(); restore_abpll(); restore_pmu_rsthold(); clr_hw_idle(BIT(PMU_CLR_CENTER1) | BIT(PMU_CLR_ALIVE) | BIT(PMU_CLR_MSCH0) | BIT(PMU_CLR_MSCH1) | BIT(PMU_CLR_CCIM0) | BIT(PMU_CLR_CCIM1) | BIT(PMU_CLR_CENTER) | BIT(PMU_CLR_PERILP) | BIT(PMU_CLR_PERILPM0) | BIT(PMU_CLR_GIC)); plat_rockchip_gic_cpuif_enable(); m0_stop(); restore_usbphy(); ddr_prepare_for_sys_resume(); return 0; } void __dead2 rockchip_soc_soft_reset(void) { struct gpio_info *rst_gpio; rst_gpio = plat_get_rockchip_gpio_reset(); if (rst_gpio) { gpio_set_direction(rst_gpio->index, GPIO_DIR_OUT); gpio_set_value(rst_gpio->index, rst_gpio->polarity); } else { soc_global_soft_reset(); } while (1) ; } void __dead2 rockchip_soc_system_off(void) { struct gpio_info *poweroff_gpio; poweroff_gpio = plat_get_rockchip_gpio_poweroff(); if (poweroff_gpio) { /* * if use tsadc over temp pin(GPIO1A6) as shutdown gpio, * need to set this pin iomux back to gpio function */ if (poweroff_gpio->index == TSADC_INT_PIN) { mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO1A_IOMUX, GPIO1A6_IOMUX); } gpio_set_direction(poweroff_gpio->index, GPIO_DIR_OUT); gpio_set_value(poweroff_gpio->index, poweroff_gpio->polarity); } else { WARN("Do nothing when system off\n"); } while (1) ; } void rockchip_plat_mmu_el3(void) { size_t sram_size; /* sram.text size */ sram_size = (char *)&__bl31_sram_text_end - (char *)&__bl31_sram_text_start; mmap_add_region((unsigned long)&__bl31_sram_text_start, (unsigned long)&__bl31_sram_text_start, sram_size, MT_MEMORY | MT_RO | MT_SECURE); /* sram.data size */ sram_size = (char *)&__bl31_sram_data_end - (char *)&__bl31_sram_data_start; mmap_add_region((unsigned long)&__bl31_sram_data_start, (unsigned long)&__bl31_sram_data_start, sram_size, MT_MEMORY | MT_RW | MT_SECURE); sram_size = (char *)&__bl31_sram_stack_end - (char *)&__bl31_sram_stack_start; mmap_add_region((unsigned long)&__bl31_sram_stack_start, (unsigned long)&__bl31_sram_stack_start, sram_size, MT_MEMORY | MT_RW | MT_SECURE); sram_size = (char *)&__sram_incbin_end - (char *)&__sram_incbin_start; mmap_add_region((unsigned long)&__sram_incbin_start, (unsigned long)&__sram_incbin_start, sram_size, MT_NON_CACHEABLE | MT_RW | MT_SECURE); } void plat_rockchip_pmu_init(void) { uint32_t cpu; rockchip_pd_lock_init(); /* register requires 32bits mode, switch it to 32 bits */ cpu_warm_boot_addr = (uint64_t)platform_cpu_warmboot; for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++) cpuson_flags[cpu] = 0; for (cpu = 0; cpu < PLATFORM_CLUSTER_COUNT; cpu++) clst_warmboot_data[cpu] = 0; /* config cpu's warm boot address */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1), (cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) | CPU_BOOT_ADDR_WMASK); mmio_write_32(PMU_BASE + PMU_NOC_AUTO_ENA, NOC_AUTO_ENABLE); /* * Enable Schmitt trigger for better 32 kHz input signal, which is * important for suspend/resume reliability among other things. */ mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO0A_SMT, GPIO0A0_SMT_ENABLE); init_pmu_counts(); nonboot_cpus_off(); INFO("%s(%d): pd status %x\n", __func__, __LINE__, mmio_read_32(PMU_BASE + PMU_PWRDN_ST)); }