/* * Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include "zynqmp_private.h" /* * Declarations of linker defined symbols which will help us find the layout * of trusted SRAM */ extern unsigned long __RO_START__; extern unsigned long __RO_END__; extern unsigned long __COHERENT_RAM_START__; extern unsigned long __COHERENT_RAM_END__; /* * The next 2 constants identify the extents of the code & RO data region. * These addresses are used by the MMU setup code and therefore they must be * page-aligned. It is the responsibility of the linker script to ensure that * __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses. */ #define BL31_RO_BASE (unsigned long)(&__RO_START__) #define BL31_RO_LIMIT (unsigned long)(&__RO_END__) /* * The next 2 constants identify the extents of the coherent memory region. * These addresses are used by the MMU setup code and therefore they must be * page-aligned. It is the responsibility of the linker script to ensure that * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols * refer to page-aligned addresses. */ #define BL31_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__) #define BL31_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__) static entry_point_info_t bl32_image_ep_info; static entry_point_info_t bl33_image_ep_info; /* * Return a pointer to the 'entry_point_info' structure of the next image for * the security state specified. BL33 corresponds to the non-secure image type * while BL32 corresponds to the secure image type. A NULL pointer is returned * if the image does not exist. */ entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type) { assert(sec_state_is_valid(type)); if (type == NON_SECURE) return &bl33_image_ep_info; return &bl32_image_ep_info; } /* * Perform any BL31 specific platform actions. Here is an opportunity to copy * parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they * are lost (potentially). This needs to be done before the MMU is initialized * so that the memory layout can be used while creating page tables. */ void bl31_early_platform_setup(bl31_params_t *from_bl2, void *plat_params_from_bl2) { /* Initialize the console to provide early debug support */ console_init(ZYNQMP_UART0_BASE, zynqmp_get_uart_clk(), ZYNQMP_UART_BAUDRATE); /* Initialize the platform config for future decision making */ zynqmp_config_setup(); /* There are no parameters from BL2 if BL31 is a reset vector */ assert(from_bl2 == NULL); assert(plat_params_from_bl2 == NULL); /* * Do initial security configuration to allow DRAM/device access. On * Base ZYNQMP only DRAM security is programmable (via TrustZone), but * other platforms might have more programmable security devices * present. */ /* Populate common information for BL32 and BL33 */ SET_PARAM_HEAD(&bl32_image_ep_info, PARAM_EP, VERSION_1, 0); SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE); SET_PARAM_HEAD(&bl33_image_ep_info, PARAM_EP, VERSION_1, 0); SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE); if (zynqmp_get_bootmode() == ZYNQMP_BOOTMODE_JTAG) { /* use build time defaults in JTAG boot mode */ bl32_image_ep_info.pc = BL32_BASE; bl32_image_ep_info.spsr = arm_get_spsr_for_bl32_entry(); bl33_image_ep_info.pc = plat_get_ns_image_entrypoint(); bl33_image_ep_info.spsr = SPSR_64(MODE_EL2, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); } else { /* use parameters from FSBL */ fsbl_atf_handover(&bl32_image_ep_info, &bl33_image_ep_info); } NOTICE("BL31: Secure code at 0x%lx\n", bl32_image_ep_info.pc); NOTICE("BL31: Non secure code at 0x%lx\n", bl33_image_ep_info.pc); } void bl31_platform_setup(void) { /* Initialize the gic cpu and distributor interfaces */ plat_arm_gic_driver_init(); plat_arm_gic_init(); } void bl31_plat_runtime_setup(void) { } /* * Perform the very early platform specific architectural setup here. At the * moment this is only intializes the MMU in a quick and dirty way. */ void bl31_plat_arch_setup(void) { plat_arm_interconnect_init(); plat_arm_interconnect_enter_coherency(); arm_configure_mmu_el3(BL31_RO_BASE, BL31_COHERENT_RAM_LIMIT - BL31_RO_BASE, BL31_RO_BASE, BL31_RO_LIMIT, BL31_COHERENT_RAM_BASE, BL31_COHERENT_RAM_LIMIT); }