/* * Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include "../juno_def.h" .globl plat_reset_handler .globl plat_arm_calc_core_pos #if JUNO_AARCH32_EL3_RUNTIME .globl plat_get_my_entrypoint .globl juno_reset_to_aarch32_state #endif #define JUNO_REVISION(rev) REV_JUNO_R##rev #define JUNO_HANDLER(rev) plat_reset_handler_juno_r##rev #define JUMP_TO_HANDLER_IF_JUNO_R(revision) \ jump_to_handler JUNO_REVISION(revision), JUNO_HANDLER(revision) /* -------------------------------------------------------------------- * Helper macro to jump to the given handler if the board revision * matches. * Expects the Juno board revision in x0. * -------------------------------------------------------------------- */ .macro jump_to_handler _revision, _handler cmp x0, #\_revision b.eq \_handler .endm /* -------------------------------------------------------------------- * Helper macro that reads the part number of the current CPU and jumps * to the given label if it matches the CPU MIDR provided. * * Clobbers x0. * -------------------------------------------------------------------- */ .macro jump_if_cpu_midr _cpu_midr, _label mrs x0, midr_el1 ubfx x0, x0, MIDR_PN_SHIFT, #12 cmp w0, #((\_cpu_midr >> MIDR_PN_SHIFT) & MIDR_PN_MASK) b.eq \_label .endm /* -------------------------------------------------------------------- * Platform reset handler for Juno R0. * * Juno R0 has the following topology: * - Quad core Cortex-A53 processor cluster; * - Dual core Cortex-A57 processor cluster. * * This handler does the following: * - Implement workaround for defect id 831273 by enabling an event * stream every 65536 cycles. * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57 * - Set the L2 Tag RAM latency to 2 (i.e. 3 cycles) for Cortex-A57 * -------------------------------------------------------------------- */ func JUNO_HANDLER(0) /* -------------------------------------------------------------------- * Enable the event stream every 65536 cycles * -------------------------------------------------------------------- */ mov x0, #(0xf << EVNTI_SHIFT) orr x0, x0, #EVNTEN_BIT msr CNTKCTL_EL1, x0 /* -------------------------------------------------------------------- * Nothing else to do on Cortex-A53. * -------------------------------------------------------------------- */ jump_if_cpu_midr CORTEX_A53_MIDR, 1f /* -------------------------------------------------------------------- * Cortex-A57 specific settings * -------------------------------------------------------------------- */ mov x0, #((CORTEX_A57_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_DATA_RAM_LATENCY_SHIFT) | \ (CORTEX_A57_L2_TAG_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_TAG_RAM_LATENCY_SHIFT)) msr CORTEX_A57_L2CTLR_EL1, x0 1: isb ret endfunc JUNO_HANDLER(0) /* -------------------------------------------------------------------- * Platform reset handler for Juno R1. * * Juno R1 has the following topology: * - Quad core Cortex-A53 processor cluster; * - Dual core Cortex-A57 processor cluster. * * This handler does the following: * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57 * * Note that: * - The default value for the L2 Tag RAM latency for Cortex-A57 is * suitable. * - Defect #831273 doesn't affect Juno R1. * -------------------------------------------------------------------- */ func JUNO_HANDLER(1) /* -------------------------------------------------------------------- * Nothing to do on Cortex-A53. * -------------------------------------------------------------------- */ jump_if_cpu_midr CORTEX_A57_MIDR, A57 ret A57: /* -------------------------------------------------------------------- * Cortex-A57 specific settings * -------------------------------------------------------------------- */ mov x0, #(CORTEX_A57_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_DATA_RAM_LATENCY_SHIFT) msr CORTEX_A57_L2CTLR_EL1, x0 isb ret endfunc JUNO_HANDLER(1) /* -------------------------------------------------------------------- * Platform reset handler for Juno R2. * * Juno R2 has the following topology: * - Quad core Cortex-A53 processor cluster; * - Dual core Cortex-A72 processor cluster. * * This handler does the following: * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A72 * - Set the L2 Tag RAM latency to 1 (i.e. 2 cycles) for Cortex-A72 * * Note that: * - Defect #831273 doesn't affect Juno R2. * -------------------------------------------------------------------- */ func JUNO_HANDLER(2) /* -------------------------------------------------------------------- * Nothing to do on Cortex-A53. * -------------------------------------------------------------------- */ jump_if_cpu_midr CORTEX_A72_MIDR, A72 ret A72: /* -------------------------------------------------------------------- * Cortex-A72 specific settings * -------------------------------------------------------------------- */ mov x0, #((CORTEX_A72_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A72_L2CTLR_DATA_RAM_LATENCY_SHIFT) | \ (CORTEX_A72_L2_TAG_RAM_LATENCY_2_CYCLES << CORTEX_A72_L2CTLR_TAG_RAM_LATENCY_SHIFT)) msr CORTEX_A57_L2CTLR_EL1, x0 isb ret endfunc JUNO_HANDLER(2) /* -------------------------------------------------------------------- * void plat_reset_handler(void); * * Determine the Juno board revision and call the appropriate reset * handler. * -------------------------------------------------------------------- */ func plat_reset_handler /* Read the V2M SYS_ID register */ mov_imm x0, (V2M_SYSREGS_BASE + V2M_SYS_ID) ldr w1, [x0] /* Extract board revision from the SYS_ID */ ubfx x0, x1, #V2M_SYS_ID_REV_SHIFT, #4 JUMP_TO_HANDLER_IF_JUNO_R(0) JUMP_TO_HANDLER_IF_JUNO_R(1) JUMP_TO_HANDLER_IF_JUNO_R(2) /* Board revision is not supported */ no_ret plat_panic_handler endfunc plat_reset_handler /* ----------------------------------------------------- * void juno_do_reset_to_aarch32_state(void); * * Request warm reset to AArch32 mode. * ----------------------------------------------------- */ func juno_do_reset_to_aarch32_state mov x0, #RMR_EL3_RR_BIT dsb sy msr rmr_el3, x0 isb wfi endfunc juno_do_reset_to_aarch32_state /* ----------------------------------------------------- * unsigned int plat_arm_calc_core_pos(u_register_t mpidr) * Helper function to calculate the core position. * ----------------------------------------------------- */ func plat_arm_calc_core_pos b css_calc_core_pos_swap_cluster endfunc plat_arm_calc_core_pos #if JUNO_AARCH32_EL3_RUNTIME /* --------------------------------------------------------------------- * uintptr_t plat_get_my_entrypoint (void); * * Main job of this routine is to distinguish between a cold and a warm * boot. On JUNO platform, this distinction is based on the contents of * the Trusted Mailbox. It is initialised to zero by the SCP before the * AP cores are released from reset. Therefore, a zero mailbox means * it's a cold reset. If it is a warm boot then a request to reset to * AArch32 state is issued. This is the only way to reset to AArch32 * in EL3 on Juno. A trampoline located at the high vector address * has already been prepared by BL1. * * This functions returns the contents of the mailbox, i.e.: * - 0 for a cold boot; * - request warm reset in AArch32 state for warm boot case; * --------------------------------------------------------------------- */ func plat_get_my_entrypoint mov_imm x0, PLAT_ARM_TRUSTED_MAILBOX_BASE ldr x0, [x0] cbz x0, return b juno_do_reset_to_aarch32_state 1: b 1b return: ret endfunc plat_get_my_entrypoint /* * Emit a "movw r0, #imm16" which moves the lower * 16 bits of `_val` into r0. */ .macro emit_movw _reg_d, _val mov_imm \_reg_d, (0xe3000000 | \ ((\_val & 0xfff) | \ ((\_val & 0xf000) << 4))) .endm /* * Emit a "movt r0, #imm16" which moves the upper * 16 bits of `_val` into r0. */ .macro emit_movt _reg_d, _val mov_imm \_reg_d, (0xe3400000 | \ (((\_val & 0x0fff0000) >> 16) | \ ((\_val & 0xf0000000) >> 12))) .endm /* * This function writes the trampoline code at HI-VEC (0xFFFF0000) * address which loads r0 with the entrypoint address for * BL32 (a.k.a SP_MIN) when EL3 is in AArch32 mode. A warm reset * to AArch32 mode is then requested by writing into RMR_EL3. */ func juno_reset_to_aarch32_state emit_movw w0, BL32_BASE emit_movt w1, BL32_BASE /* opcode "bx r0" to branch using r0 in AArch32 mode */ mov_imm w2, 0xe12fff10 /* Write the above opcodes at HI-VECTOR location */ mov_imm x3, HI_VECTOR_BASE str w0, [x3], #4 str w1, [x3], #4 str w2, [x3] bl juno_do_reset_to_aarch32_state 1: b 1b endfunc juno_reset_to_aarch32_state #endif /* JUNO_AARCH32_EL3_RUNTIME */