/* * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern uint32_t __tegra194_cpu_reset_handler_data, __tegra194_cpu_reset_handler_end; /* TZDRAM offset for saving SMMU context */ #define TEGRA194_SMMU_CTX_OFFSET 16U /* state id mask */ #define TEGRA194_STATE_ID_MASK 0xFU /* constants to get power state's wake time */ #define TEGRA194_WAKE_TIME_MASK 0x0FFFFFF0U #define TEGRA194_WAKE_TIME_SHIFT 4U /* default core wake mask for CPU_SUSPEND */ #define TEGRA194_CORE_WAKE_MASK 0x180cU static struct t19x_psci_percpu_data { uint32_t wake_time; } __aligned(CACHE_WRITEBACK_GRANULE) t19x_percpu_data[PLATFORM_CORE_COUNT]; int32_t tegra_soc_validate_power_state(uint32_t power_state, psci_power_state_t *req_state) { uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) & TEGRA194_STATE_ID_MASK; uint32_t cpu = plat_my_core_pos(); int32_t ret = PSCI_E_SUCCESS; /* save the core wake time (in TSC ticks)*/ t19x_percpu_data[cpu].wake_time = (power_state & TEGRA194_WAKE_TIME_MASK) << TEGRA194_WAKE_TIME_SHIFT; /* * Clean t19x_percpu_data[cpu] to DRAM. This needs to be done to ensure * that the correct value is read in tegra_soc_pwr_domain_suspend(), * which is called with caches disabled. It is possible to read a stale * value from DRAM in that function, because the L2 cache is not flushed * unless the cluster is entering CC6/CC7. */ clean_dcache_range((uint64_t)&t19x_percpu_data[cpu], sizeof(t19x_percpu_data[cpu])); /* Sanity check the requested state id */ switch (state_id) { case PSTATE_ID_CORE_IDLE: /* Core idle request */ req_state->pwr_domain_state[MPIDR_AFFLVL0] = PLAT_MAX_RET_STATE; req_state->pwr_domain_state[MPIDR_AFFLVL1] = PSCI_LOCAL_STATE_RUN; break; case PSTATE_ID_CORE_POWERDN: /* Core powerdown request */ req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id; req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id; break; default: ERROR("%s: unsupported state id (%d)\n", __func__, state_id); ret = PSCI_E_INVALID_PARAMS; break; } return ret; } int32_t tegra_soc_cpu_standby(plat_local_state_t cpu_state) { uint32_t cpu = plat_my_core_pos(); mce_cstate_info_t cstate_info = { 0 }; /* Program default wake mask */ cstate_info.wake_mask = TEGRA194_CORE_WAKE_MASK; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); /* Enter CPU idle */ (void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)TEGRA_NVG_CORE_C6, t19x_percpu_data[cpu].wake_time, 0U); return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state) { const plat_local_state_t *pwr_domain_state; uint8_t stateid_afflvl0, stateid_afflvl2; plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); uint64_t mc_ctx_base; uint32_t val; mce_cstate_info_t sc7_cstate_info = { .cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6, .ccplex = (uint32_t)TEGRA_NVG_CG_CG7, .system = (uint32_t)TEGRA_NVG_SYSTEM_SC7, .system_state_force = 1U, .update_wake_mask = 1U, }; uint32_t cpu = plat_my_core_pos(); int32_t ret = 0; /* get the state ID */ pwr_domain_state = target_state->pwr_domain_state; stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] & TEGRA194_STATE_ID_MASK; stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] & TEGRA194_STATE_ID_MASK; if (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN) { /* Enter CPU powerdown */ (void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)TEGRA_NVG_CORE_C7, t19x_percpu_data[cpu].wake_time, 0U); } else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { /* save 'Secure Boot' Processor Feature Config Register */ val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG); mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val); /* save MC context */ mc_ctx_base = params_from_bl2->tzdram_base + tegra194_get_mc_ctx_offset(); tegra_mc_save_context((uintptr_t)mc_ctx_base); /* * Suspend SE, RNG1 and PKA1 only on silcon and fpga, * since VDK does not support atomic se ctx save */ if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) { ret = tegra_se_suspend(); assert(ret == 0); } /* Prepare for system suspend */ mce_update_cstate_info(&sc7_cstate_info); do { val = (uint32_t)mce_command_handler( (uint32_t)MCE_CMD_IS_SC7_ALLOWED, (uint32_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); } while (val == 0U); /* Instruct the MCE to enter system suspend state */ ret = mce_command_handler( (uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); assert(ret == 0); /* set system suspend state for house-keeping */ tegra194_set_system_suspend_entry(); } else { ; /* do nothing */ } return PSCI_E_SUCCESS; } /******************************************************************************* * Helper function to check if this is the last ON CPU in the cluster ******************************************************************************/ static bool tegra_last_on_cpu_in_cluster(const plat_local_state_t *states, uint32_t ncpu) { plat_local_state_t target; bool last_on_cpu = true; uint32_t num_cpus = ncpu, pos = 0; do { target = states[pos]; if (target != PLAT_MAX_OFF_STATE) { last_on_cpu = false; } --num_cpus; pos++; } while (num_cpus != 0U); return last_on_cpu; } /******************************************************************************* * Helper function to get target power state for the cluster ******************************************************************************/ static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states, uint32_t ncpu) { uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK; plat_local_state_t target = states[core_pos]; mce_cstate_info_t cstate_info = { 0 }; /* CPU suspend */ if (target == PSTATE_ID_CORE_POWERDN) { /* Program default wake mask */ cstate_info.wake_mask = TEGRA194_CORE_WAKE_MASK; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); } /* CPU off */ if (target == PLAT_MAX_OFF_STATE) { /* Enable cluster powerdn from last CPU in the cluster */ if (tegra_last_on_cpu_in_cluster(states, ncpu)) { /* Enable CC6 state and turn off wake mask */ cstate_info.cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6; cstate_info.ccplex = (uint32_t)TEGRA_NVG_CG_CG7; cstate_info.system_state_force = 1; cstate_info.update_wake_mask = 1U; mce_update_cstate_info(&cstate_info); } else { /* Turn off wake_mask */ cstate_info.update_wake_mask = 1U; mce_update_cstate_info(&cstate_info); target = PSCI_LOCAL_STATE_RUN; } } return target; } /******************************************************************************* * Platform handler to calculate the proper target power level at the * specified affinity level ******************************************************************************/ plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl, const plat_local_state_t *states, uint32_t ncpu) { plat_local_state_t target = PSCI_LOCAL_STATE_RUN; uint32_t cpu = plat_my_core_pos(); /* System Suspend */ if ((lvl == (uint32_t)MPIDR_AFFLVL2) && (states[cpu] == PSTATE_ID_SOC_POWERDN)) { target = PSTATE_ID_SOC_POWERDN; } /* CPU off, CPU suspend */ if (lvl == (uint32_t)MPIDR_AFFLVL1) { target = tegra_get_afflvl1_pwr_state(states, ncpu); } /* target cluster/system state */ return target; } int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state) { const plat_local_state_t *pwr_domain_state = target_state->pwr_domain_state; plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] & TEGRA194_STATE_ID_MASK; uint64_t src_len_in_bytes = (uintptr_t)&__BL31_END__ - (uintptr_t)BL31_BASE; uint64_t val; int32_t ret = PSCI_E_SUCCESS; if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { val = params_from_bl2->tzdram_base + tegra194_get_cpu_reset_handler_size(); /* initialise communication channel with BPMP */ ret = tegra_bpmp_ipc_init(); assert(ret == 0); /* Enable SE clock before SE context save */ ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE); assert(ret == 0); /* * It is very unlikely that the BL31 image would be * bigger than 2^32 bytes */ assert(src_len_in_bytes < UINT32_MAX); if (tegra_se_calculate_save_sha256(BL31_BASE, (uint32_t)src_len_in_bytes) != 0) { ERROR("Hash calculation failed. Reboot\n"); (void)tegra_soc_prepare_system_reset(); } /* * The TZRAM loses power when we enter system suspend. To * allow graceful exit from system suspend, we need to copy * BL3-1 over to TZDRAM. */ val = params_from_bl2->tzdram_base + tegra194_get_cpu_reset_handler_size(); memcpy((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE, src_len_in_bytes); /* Disable SE clock after SE context save */ ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE); assert(ret == 0); } return ret; } int32_t tegra_soc_pwr_domain_suspend_pwrdown_early(const psci_power_state_t *target_state) { return PSCI_E_NOT_SUPPORTED; } int32_t tegra_soc_pwr_domain_on(u_register_t mpidr) { uint64_t target_cpu = mpidr & MPIDR_CPU_MASK; uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS; int32_t ret = 0; if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) { ERROR("%s: unsupported CPU (0x%lx)\n", __func__ , mpidr); return PSCI_E_NOT_PRESENT; } /* construct the target CPU # */ target_cpu += (target_cluster << 1U); ret = mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U); if (ret < 0) { return PSCI_E_DENIED; } return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state) { const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); uint8_t enable_ccplex_lock_step = params_from_bl2->enable_ccplex_lock_step; uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL]; cpu_context_t *ctx = cm_get_context(NON_SECURE); uint64_t actlr_elx; /* * Reset power state info for CPUs when onlining, we set * deepest power when offlining a core but that may not be * requested by non-secure sw which controls idle states. It * will re-init this info from non-secure software when the * core come online. */ /* * Check if we are exiting from deep sleep and restore SE * context if we are. */ if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { #if ENABLE_STRICT_CHECKING_MODE /* * Enable strict checking after programming the GSC for * enabling TZSRAM and TZDRAM */ mce_enable_strict_checking(); #endif /* Init SMMU */ tegra_smmu_init(); /* Resume SE, RNG1 and PKA1 */ tegra_se_resume(); /* * Program XUSB STREAMIDs * ====================== * T19x XUSB has support for XUSB virtualization. It will * have one physical function (PF) and four Virtual functions * (VF) * * There were below two SIDs for XUSB until T186. * 1) #define TEGRA_SID_XUSB_HOST 0x1bU * 2) #define TEGRA_SID_XUSB_DEV 0x1cU * * We have below four new SIDs added for VF(s) * 3) #define TEGRA_SID_XUSB_VF0 0x5dU * 4) #define TEGRA_SID_XUSB_VF1 0x5eU * 5) #define TEGRA_SID_XUSB_VF2 0x5fU * 6) #define TEGRA_SID_XUSB_VF3 0x60U * * When virtualization is enabled then we have to disable SID * override and program above SIDs in below newly added SID * registers in XUSB PADCTL MMIO space. These registers are * TZ protected and so need to be done in ATF. * * a) #define XUSB_PADCTL_HOST_AXI_STREAMID_PF_0 (0x136cU) * b) #define XUSB_PADCTL_DEV_AXI_STREAMID_PF_0 (0x139cU) * c) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_0 (0x1370U) * d) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_1 (0x1374U) * e) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_2 (0x1378U) * f) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_3 (0x137cU) * * This change disables SID override and programs XUSB SIDs * in above registers to support both virtualization and * non-virtualization platforms */ if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) { mmio_write_32(TEGRA_XUSB_PADCTL_BASE + XUSB_PADCTL_HOST_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_HOST); mmio_write_32(TEGRA_XUSB_PADCTL_BASE + XUSB_PADCTL_HOST_AXI_STREAMID_VF_0, TEGRA_SID_XUSB_VF0); mmio_write_32(TEGRA_XUSB_PADCTL_BASE + XUSB_PADCTL_HOST_AXI_STREAMID_VF_1, TEGRA_SID_XUSB_VF1); mmio_write_32(TEGRA_XUSB_PADCTL_BASE + XUSB_PADCTL_HOST_AXI_STREAMID_VF_2, TEGRA_SID_XUSB_VF2); mmio_write_32(TEGRA_XUSB_PADCTL_BASE + XUSB_PADCTL_HOST_AXI_STREAMID_VF_3, TEGRA_SID_XUSB_VF3); mmio_write_32(TEGRA_XUSB_PADCTL_BASE + XUSB_PADCTL_DEV_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_DEV); } } /* * Enable dual execution optimized translations for all ELx. */ if (enable_ccplex_lock_step != 0U) { actlr_elx = read_actlr_el3(); actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL3; write_actlr_el3(actlr_elx); actlr_elx = read_actlr_el2(); actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL2; write_actlr_el2(actlr_elx); actlr_elx = read_actlr_el1(); actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL1; write_actlr_el1(actlr_elx); } return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state) { uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK; int32_t ret = 0; (void)target_state; /* Disable Denver's DCO operations */ if (impl == DENVER_IMPL) { denver_disable_dco(); } /* Turn off CPU */ ret = mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); assert(ret == 0); return PSCI_E_SUCCESS; } __dead2 void tegra_soc_prepare_system_off(void) { /* System power off */ mce_system_shutdown(); wfi(); /* wait for the system to power down */ for (;;) { ; } } int32_t tegra_soc_prepare_system_reset(void) { /* System reboot */ mce_system_reboot(); return PSCI_E_SUCCESS; }