/* * Copyright (c) 2016-2019, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include "sm_err.h" #include "smcall.h" /* macro to check if Hypervisor is enabled in the HCR_EL2 register */ #define HYP_ENABLE_FLAG 0x286001U /* length of Trusty's input parameters (in bytes) */ #define TRUSTY_PARAMS_LEN_BYTES (4096U * 2) struct trusty_stack { uint8_t space[PLATFORM_STACK_SIZE] __aligned(16); uint32_t end; }; struct trusty_cpu_ctx { cpu_context_t cpu_ctx; void *saved_sp; uint32_t saved_security_state; int32_t fiq_handler_active; uint64_t fiq_handler_pc; uint64_t fiq_handler_cpsr; uint64_t fiq_handler_sp; uint64_t fiq_pc; uint64_t fiq_cpsr; uint64_t fiq_sp_el1; gp_regs_t fiq_gpregs; struct trusty_stack secure_stack; }; struct smc_args { uint64_t r0; uint64_t r1; uint64_t r2; uint64_t r3; uint64_t r4; uint64_t r5; uint64_t r6; uint64_t r7; }; static struct trusty_cpu_ctx trusty_cpu_ctx[PLATFORM_CORE_COUNT]; struct smc_args trusty_init_context_stack(void **sp, void *new_stack); struct smc_args trusty_context_switch_helper(void **sp, void *smc_params); static uint32_t current_vmid; static struct trusty_cpu_ctx *get_trusty_ctx(void) { return &trusty_cpu_ctx[plat_my_core_pos()]; } static bool is_hypervisor_mode(void) { uint64_t hcr = read_hcr(); return ((hcr & HYP_ENABLE_FLAG) != 0U) ? true : false; } static struct smc_args trusty_context_switch(uint32_t security_state, uint64_t r0, uint64_t r1, uint64_t r2, uint64_t r3) { struct smc_args args, ret_args; struct trusty_cpu_ctx *ctx = get_trusty_ctx(); struct trusty_cpu_ctx *ctx_smc; assert(ctx->saved_security_state != security_state); args.r7 = 0; if (is_hypervisor_mode()) { /* According to the ARM DEN0028A spec, VMID is stored in x7 */ ctx_smc = cm_get_context(NON_SECURE); assert(ctx_smc != NULL); args.r7 = SMC_GET_GP(ctx_smc, CTX_GPREG_X7); } /* r4, r5, r6 reserved for future use. */ args.r6 = 0; args.r5 = 0; args.r4 = 0; args.r3 = r3; args.r2 = r2; args.r1 = r1; args.r0 = r0; /* * To avoid the additional overhead in PSCI flow, skip FP context * saving/restoring in case of CPU suspend and resume, assuming that * when it's needed the PSCI caller has preserved FP context before * going here. */ if (r0 != SMC_FC_CPU_SUSPEND && r0 != SMC_FC_CPU_RESUME) fpregs_context_save(get_fpregs_ctx(cm_get_context(security_state))); cm_el1_sysregs_context_save(security_state); ctx->saved_security_state = security_state; ret_args = trusty_context_switch_helper(&ctx->saved_sp, &args); assert(ctx->saved_security_state == ((security_state == 0U) ? 1U : 0U)); cm_el1_sysregs_context_restore(security_state); if (r0 != SMC_FC_CPU_SUSPEND && r0 != SMC_FC_CPU_RESUME) fpregs_context_restore(get_fpregs_ctx(cm_get_context(security_state))); cm_set_next_eret_context(security_state); return ret_args; } static uint64_t trusty_fiq_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { struct smc_args ret; struct trusty_cpu_ctx *ctx = get_trusty_ctx(); assert(!is_caller_secure(flags)); ret = trusty_context_switch(NON_SECURE, SMC_FC_FIQ_ENTER, 0, 0, 0); if (ret.r0 != 0U) { SMC_RET0(handle); } if (ctx->fiq_handler_active != 0) { INFO("%s: fiq handler already active\n", __func__); SMC_RET0(handle); } ctx->fiq_handler_active = 1; (void)memcpy(&ctx->fiq_gpregs, get_gpregs_ctx(handle), sizeof(ctx->fiq_gpregs)); ctx->fiq_pc = SMC_GET_EL3(handle, CTX_ELR_EL3); ctx->fiq_cpsr = SMC_GET_EL3(handle, CTX_SPSR_EL3); ctx->fiq_sp_el1 = read_ctx_reg(get_el1_sysregs_ctx(handle), CTX_SP_EL1); write_ctx_reg(get_el1_sysregs_ctx(handle), CTX_SP_EL1, ctx->fiq_handler_sp); cm_set_elr_spsr_el3(NON_SECURE, ctx->fiq_handler_pc, (uint32_t)ctx->fiq_handler_cpsr); SMC_RET0(handle); } static uint64_t trusty_set_fiq_handler(void *handle, uint64_t cpu, uint64_t handler, uint64_t stack) { struct trusty_cpu_ctx *ctx; if (cpu >= (uint64_t)PLATFORM_CORE_COUNT) { ERROR("%s: cpu %lld >= %d\n", __func__, cpu, PLATFORM_CORE_COUNT); return (uint64_t)SM_ERR_INVALID_PARAMETERS; } ctx = &trusty_cpu_ctx[cpu]; ctx->fiq_handler_pc = handler; ctx->fiq_handler_cpsr = SMC_GET_EL3(handle, CTX_SPSR_EL3); ctx->fiq_handler_sp = stack; SMC_RET1(handle, 0); } static uint64_t trusty_get_fiq_regs(void *handle) { struct trusty_cpu_ctx *ctx = get_trusty_ctx(); uint64_t sp_el0 = read_ctx_reg(&ctx->fiq_gpregs, CTX_GPREG_SP_EL0); SMC_RET4(handle, ctx->fiq_pc, ctx->fiq_cpsr, sp_el0, ctx->fiq_sp_el1); } static uint64_t trusty_fiq_exit(void *handle, uint64_t x1, uint64_t x2, uint64_t x3) { struct smc_args ret; struct trusty_cpu_ctx *ctx = get_trusty_ctx(); if (ctx->fiq_handler_active == 0) { NOTICE("%s: fiq handler not active\n", __func__); SMC_RET1(handle, (uint64_t)SM_ERR_INVALID_PARAMETERS); } ret = trusty_context_switch(NON_SECURE, SMC_FC_FIQ_EXIT, 0, 0, 0); if (ret.r0 != 1U) { INFO("%s(%p) SMC_FC_FIQ_EXIT returned unexpected value, %lld\n", __func__, handle, ret.r0); } /* * Restore register state to state recorded on fiq entry. * * x0, sp_el1, pc and cpsr need to be restored because el1 cannot * restore them. * * x1-x4 and x8-x17 need to be restored here because smc_handler64 * corrupts them (el1 code also restored them). */ (void)memcpy(get_gpregs_ctx(handle), &ctx->fiq_gpregs, sizeof(ctx->fiq_gpregs)); ctx->fiq_handler_active = 0; write_ctx_reg(get_el1_sysregs_ctx(handle), CTX_SP_EL1, ctx->fiq_sp_el1); cm_set_elr_spsr_el3(NON_SECURE, ctx->fiq_pc, (uint32_t)ctx->fiq_cpsr); SMC_RET0(handle); } static uintptr_t trusty_smc_handler(uint32_t smc_fid, u_register_t x1, u_register_t x2, u_register_t x3, u_register_t x4, void *cookie, void *handle, u_register_t flags) { struct smc_args ret; uint32_t vmid = 0U; entry_point_info_t *ep_info = bl31_plat_get_next_image_ep_info(SECURE); /* * Return success for SET_ROT_PARAMS if Trusty is not present, as * Verified Boot is not even supported and returning success here * would not compromise the boot process. */ if ((ep_info == NULL) && (smc_fid == SMC_YC_SET_ROT_PARAMS)) { SMC_RET1(handle, 0); } else if (ep_info == NULL) { SMC_RET1(handle, SMC_UNK); } else { ; /* do nothing */ } if (is_caller_secure(flags)) { if (smc_fid == SMC_YC_NS_RETURN) { ret = trusty_context_switch(SECURE, x1, 0, 0, 0); SMC_RET8(handle, ret.r0, ret.r1, ret.r2, ret.r3, ret.r4, ret.r5, ret.r6, ret.r7); } INFO("%s (0x%x, 0x%lx, 0x%lx, 0x%lx, 0x%lx, %p, %p, 0x%lx) \ cpu %d, unknown smc\n", __func__, smc_fid, x1, x2, x3, x4, cookie, handle, flags, plat_my_core_pos()); SMC_RET1(handle, SMC_UNK); } else { switch (smc_fid) { case SMC_FC64_SET_FIQ_HANDLER: return trusty_set_fiq_handler(handle, x1, x2, x3); case SMC_FC64_GET_FIQ_REGS: return trusty_get_fiq_regs(handle); case SMC_FC_FIQ_EXIT: return trusty_fiq_exit(handle, x1, x2, x3); default: if (is_hypervisor_mode()) vmid = SMC_GET_GP(handle, CTX_GPREG_X7); if ((current_vmid != 0) && (current_vmid != vmid)) { /* This message will cause SMC mechanism * abnormal in multi-guest environment. * Change it to WARN in case you need it. */ VERBOSE("Previous SMC not finished.\n"); SMC_RET1(handle, SM_ERR_BUSY); } current_vmid = vmid; ret = trusty_context_switch(NON_SECURE, smc_fid, x1, x2, x3); current_vmid = 0; SMC_RET1(handle, ret.r0); } } } static int32_t trusty_init(void) { entry_point_info_t *ep_info; struct smc_args zero_args = {0}; struct trusty_cpu_ctx *ctx = get_trusty_ctx(); uint32_t cpu = plat_my_core_pos(); uint64_t reg_width = GET_RW(read_ctx_reg(get_el3state_ctx(&ctx->cpu_ctx), CTX_SPSR_EL3)); /* * Get information about the Trusty image. Its absence is a critical * failure. */ ep_info = bl31_plat_get_next_image_ep_info(SECURE); assert(ep_info != NULL); fpregs_context_save(get_fpregs_ctx(cm_get_context(NON_SECURE))); cm_el1_sysregs_context_save(NON_SECURE); cm_set_context(&ctx->cpu_ctx, SECURE); cm_init_my_context(ep_info); /* * Adjust secondary cpu entry point for 32 bit images to the * end of exception vectors */ if ((cpu != 0U) && (reg_width == MODE_RW_32)) { INFO("trusty: cpu %d, adjust entry point to 0x%lx\n", cpu, ep_info->pc + (1U << 5)); cm_set_elr_el3(SECURE, ep_info->pc + (1U << 5)); } cm_el1_sysregs_context_restore(SECURE); fpregs_context_restore(get_fpregs_ctx(cm_get_context(SECURE))); cm_set_next_eret_context(SECURE); ctx->saved_security_state = ~0U; /* initial saved state is invalid */ (void)trusty_init_context_stack(&ctx->saved_sp, &ctx->secure_stack.end); (void)trusty_context_switch_helper(&ctx->saved_sp, &zero_args); cm_el1_sysregs_context_restore(NON_SECURE); fpregs_context_restore(get_fpregs_ctx(cm_get_context(NON_SECURE))); cm_set_next_eret_context(NON_SECURE); return 1; } static void trusty_cpu_suspend(uint32_t off) { struct smc_args ret; ret = trusty_context_switch(NON_SECURE, SMC_FC_CPU_SUSPEND, off, 0, 0); if (ret.r0 != 0U) { INFO("%s: cpu %d, SMC_FC_CPU_SUSPEND returned unexpected value, %lld\n", __func__, plat_my_core_pos(), ret.r0); } } static void trusty_cpu_resume(uint32_t on) { struct smc_args ret; ret = trusty_context_switch(NON_SECURE, SMC_FC_CPU_RESUME, on, 0, 0); if (ret.r0 != 0U) { INFO("%s: cpu %d, SMC_FC_CPU_RESUME returned unexpected value, %lld\n", __func__, plat_my_core_pos(), ret.r0); } } static int32_t trusty_cpu_off_handler(u_register_t max_off_lvl) { trusty_cpu_suspend(max_off_lvl); return 0; } static void trusty_cpu_on_finish_handler(u_register_t max_off_lvl) { struct trusty_cpu_ctx *ctx = get_trusty_ctx(); if (ctx->saved_sp == NULL) { (void)trusty_init(); } else { trusty_cpu_resume(max_off_lvl); } } static void trusty_cpu_suspend_handler(u_register_t max_off_lvl) { trusty_cpu_suspend(max_off_lvl); } static void trusty_cpu_suspend_finish_handler(u_register_t max_off_lvl) { trusty_cpu_resume(max_off_lvl); } static const spd_pm_ops_t trusty_pm = { .svc_off = trusty_cpu_off_handler, .svc_suspend = trusty_cpu_suspend_handler, .svc_on_finish = trusty_cpu_on_finish_handler, .svc_suspend_finish = trusty_cpu_suspend_finish_handler, }; void plat_trusty_set_boot_args(aapcs64_params_t *args); #if !defined(TSP_SEC_MEM_SIZE) && defined(BL32_MEM_SIZE) #define TSP_SEC_MEM_SIZE BL32_MEM_SIZE #endif #ifdef TSP_SEC_MEM_SIZE #pragma weak plat_trusty_set_boot_args void plat_trusty_set_boot_args(aapcs64_params_t *args) { args->arg0 = TSP_SEC_MEM_SIZE; } #endif static int32_t trusty_setup(void) { entry_point_info_t *ep_info; uint32_t instr; uint32_t flags; int32_t ret; bool aarch32 = false; /* Get trusty's entry point info */ ep_info = bl31_plat_get_next_image_ep_info(SECURE); if (ep_info == NULL) { INFO("Trusty image missing.\n"); return -1; } /* memmap first page of trusty's code memory before peeking */ ret = mmap_add_dynamic_region(ep_info->pc, /* PA */ ep_info->pc, /* VA */ PAGE_SIZE, /* size */ MT_SECURE | MT_RW_DATA); /* attrs */ assert(ret == 0); /* peek into trusty's code to see if we have a 32-bit or 64-bit image */ instr = *(uint32_t *)ep_info->pc; if (instr >> 24 == 0xeaU) { INFO("trusty: Found 32 bit image\n"); aarch32 = true; } else if (instr >> 8 == 0xd53810U || instr >> 16 == 0x9400U) { INFO("trusty: Found 64 bit image\n"); } else { ERROR("trusty: Found unknown image, 0x%x\n", instr); return -1; } /* unmap trusty's memory page */ (void)mmap_remove_dynamic_region(ep_info->pc, PAGE_SIZE); SET_PARAM_HEAD(ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE); if (!aarch32) ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); else ep_info->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM, SPSR_E_LITTLE, DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT); (void)memset(&ep_info->args, 0, sizeof(ep_info->args)); plat_trusty_set_boot_args(&ep_info->args); /* register init handler */ bl31_register_bl32_init(trusty_init); /* register power management hooks */ psci_register_spd_pm_hook(&trusty_pm); /* register interrupt handler */ flags = 0; set_interrupt_rm_flag(flags, NON_SECURE); ret = register_interrupt_type_handler(INTR_TYPE_S_EL1, trusty_fiq_handler, flags); if (ret != 0) { ERROR("trusty: failed to register fiq handler, ret = %d\n", ret); } if (aarch32) { entry_point_info_t *ns_ep_info; uint32_t spsr; ns_ep_info = bl31_plat_get_next_image_ep_info(NON_SECURE); if (ns_ep_info == NULL) { NOTICE("Trusty: non-secure image missing.\n"); return -1; } spsr = ns_ep_info->spsr; if (GET_RW(spsr) == MODE_RW_64 && GET_EL(spsr) == MODE_EL2) { spsr &= ~(MODE_EL_MASK << MODE_EL_SHIFT); spsr |= MODE_EL1 << MODE_EL_SHIFT; } if (GET_RW(spsr) == MODE_RW_32 && GET_M32(spsr) == MODE32_hyp) { spsr &= ~(MODE32_MASK << MODE32_SHIFT); spsr |= MODE32_svc << MODE32_SHIFT; } if (spsr != ns_ep_info->spsr) { NOTICE("Trusty: Switch bl33 from EL2 to EL1 (spsr 0x%x -> 0x%x)\n", ns_ep_info->spsr, spsr); ns_ep_info->spsr = spsr; } } return 0; } /* Define a SPD runtime service descriptor for fast SMC calls */ DECLARE_RT_SVC( trusty_fast, OEN_TOS_START, SMC_ENTITY_SECURE_MONITOR, SMC_TYPE_FAST, trusty_setup, trusty_smc_handler ); /* Define a SPD runtime service descriptor for yielding SMC calls */ DECLARE_RT_SVC( trusty_std, OEN_TAP_START, SMC_ENTITY_SECURE_MONITOR, SMC_TYPE_YIELD, NULL, trusty_smc_handler );