/* * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Register used to clear CPU reset signals. Each CPU has two reset * signals: CPU reset (3:0) and Core reset (19:16). */ #define CPU_CMPLX_RESET_CLR 0x454 #define CPU_CORE_RESET_MASK 0x10001 /* Clock and Reset controller registers for system clock's settings */ #define SCLK_RATE 0x30 #define SCLK_BURST_POLICY 0x28 #define SCLK_BURST_POLICY_DEFAULT 0x10000000 static int cpu_powergate_mask[PLATFORM_MAX_CPUS_PER_CLUSTER]; static bool tegra_bpmp_available = true; int32_t tegra_soc_validate_power_state(unsigned int power_state, psci_power_state_t *req_state) { int state_id = psci_get_pstate_id(power_state); const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); /* Sanity check the requested state id */ switch (state_id) { case PSTATE_ID_CORE_POWERDN: /* * Core powerdown request only for afflvl 0 */ req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id & 0xff; break; case PSTATE_ID_CLUSTER_IDLE: /* * Cluster idle request for afflvl 0 */ req_state->pwr_domain_state[MPIDR_AFFLVL0] = PSTATE_ID_CORE_POWERDN; req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id; break; case PSTATE_ID_SOC_POWERDN: /* * sc7entry-fw must be present in the system when the bpmp * firmware is not present, for a successful System Suspend * entry. */ if (!tegra_bpmp_init() && !plat_params->sc7entry_fw_base) return PSCI_E_NOT_SUPPORTED; /* * System powerdown request only for afflvl 2 */ for (uint32_t i = MPIDR_AFFLVL0; i < PLAT_MAX_PWR_LVL; i++) req_state->pwr_domain_state[i] = PLAT_MAX_OFF_STATE; req_state->pwr_domain_state[PLAT_MAX_PWR_LVL] = PLAT_SYS_SUSPEND_STATE_ID; break; default: ERROR("%s: unsupported state id (%d)\n", __func__, state_id); return PSCI_E_INVALID_PARAMS; } return PSCI_E_SUCCESS; } /******************************************************************************* * Platform handler to calculate the proper target power level at the * specified affinity level. ******************************************************************************/ plat_local_state_t tegra_soc_get_target_pwr_state(unsigned int lvl, const plat_local_state_t *states, unsigned int ncpu) { plat_local_state_t target = PSCI_LOCAL_STATE_RUN; int cpu = plat_my_core_pos(); int core_pos = read_mpidr() & MPIDR_CPU_MASK; uint32_t bpmp_reply, data[3], val; int ret; /* get the power state at this level */ if (lvl == MPIDR_AFFLVL1) target = *(states + core_pos); if (lvl == MPIDR_AFFLVL2) target = *(states + cpu); if ((lvl == MPIDR_AFFLVL1) && (target == PSTATE_ID_CLUSTER_IDLE)) { /* initialize the bpmp interface */ ret = tegra_bpmp_init(); if (ret != 0U) { /* Cluster idle not allowed */ target = PSCI_LOCAL_STATE_RUN; /******************************************* * BPMP is not present, so handle CC6 entry * from the CPU ******************************************/ /* check if cluster idle state has been enabled */ val = mmio_read_32(TEGRA_CL_DVFS_BASE + DVFS_DFLL_CTRL); if (val == ENABLE_CLOSED_LOOP) { /* * flag to indicate that BPMP firmware is not * available and the CPU has to handle entry/exit * for all power states */ tegra_bpmp_available = false; /* * Acquire the cluster idle lock to stop * other CPUs from powering up. */ tegra_fc_ccplex_pgexit_lock(); /* Cluster idle only from the last standing CPU */ if (tegra_pmc_is_last_on_cpu() && tegra_fc_is_ccx_allowed()) { /* Cluster idle allowed */ target = PSTATE_ID_CLUSTER_IDLE; } else { /* release cluster idle lock */ tegra_fc_ccplex_pgexit_unlock(); } } } else { /* Cluster power-down */ data[0] = (uint32_t)cpu; data[1] = TEGRA_PM_CC6; data[2] = TEGRA_PM_SC1; ret = tegra_bpmp_send_receive_atomic(MRQ_DO_IDLE, (void *)&data, (int)sizeof(data), (void *)&bpmp_reply, (int)sizeof(bpmp_reply)); /* check if cluster power down is allowed */ if ((ret != 0L) || (bpmp_reply != BPMP_CCx_ALLOWED)) { /* Cluster power down not allowed */ target = PSCI_LOCAL_STATE_RUN; } } } else if (((lvl == MPIDR_AFFLVL2) || (lvl == MPIDR_AFFLVL1)) && (target == PSTATE_ID_SOC_POWERDN)) { /* System Suspend */ target = PSTATE_ID_SOC_POWERDN; } else { ; /* do nothing */ } return target; } int tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state) { u_register_t mpidr = read_mpidr(); const plat_local_state_t *pwr_domain_state = target_state->pwr_domain_state; unsigned int stateid_afflvl2 = pwr_domain_state[MPIDR_AFFLVL2]; unsigned int stateid_afflvl1 = pwr_domain_state[MPIDR_AFFLVL1]; unsigned int stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0]; uint32_t cfg; int ret = PSCI_E_SUCCESS; uint32_t val; if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { assert((stateid_afflvl0 == PLAT_MAX_OFF_STATE) || (stateid_afflvl0 == PSTATE_ID_SOC_POWERDN)); assert((stateid_afflvl1 == PLAT_MAX_OFF_STATE) || (stateid_afflvl1 == PSTATE_ID_SOC_POWERDN)); if (tegra_chipid_is_t210_b01()) { /* Suspend se/se2 and pka1 */ if (tegra_se_suspend() != 0) { ret = PSCI_E_INTERN_FAIL; } } } else if (stateid_afflvl1 == PSTATE_ID_CLUSTER_IDLE) { assert(stateid_afflvl0 == PSTATE_ID_CORE_POWERDN); if (!tegra_bpmp_available) { /* Find if the platform uses OVR2/MAX77621 PMIC */ cfg = mmio_read_32(TEGRA_CL_DVFS_BASE + DVFS_DFLL_OUTPUT_CFG); if (cfg & DFLL_OUTPUT_CFG_CLK_EN_BIT) { /* OVR2 */ /* PWM tristate */ val = mmio_read_32(TEGRA_MISC_BASE + PINMUX_AUX_DVFS_PWM); val |= PINMUX_PWM_TRISTATE; mmio_write_32(TEGRA_MISC_BASE + PINMUX_AUX_DVFS_PWM, val); /* * SCRATCH201[1] is being used to identify CPU * PMIC in warmboot code. * 0 : OVR2 * 1 : MAX77621 */ tegra_pmc_write_32(PMC_SCRATCH201, 0x0); } else { /* MAX77621 */ tegra_pmc_write_32(PMC_SCRATCH201, 0x2); } } /* Prepare for cluster idle */ tegra_fc_cluster_idle(mpidr); } else if (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN) { /* Prepare for cpu powerdn */ tegra_fc_cpu_powerdn(mpidr); } else { ERROR("%s: Unknown state id (%d, %d, %d)\n", __func__, stateid_afflvl2, stateid_afflvl1, stateid_afflvl0); ret = PSCI_E_NOT_SUPPORTED; } return ret; } static void tegra_reset_all_dma_masters(void) { uint32_t val, mask; /* * Reset all possible DMA masters in the system. */ val = GPU_RESET_BIT; mmio_write_32(TEGRA_CAR_RESET_BASE + TEGRA_GPU_RESET_REG_OFFSET, val); val = NVENC_RESET_BIT | TSECB_RESET_BIT | APE_RESET_BIT | NVJPG_RESET_BIT | NVDEC_RESET_BIT; mmio_write_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_Y, val); val = HOST1X_RESET_BIT | ISP_RESET_BIT | USBD_RESET_BIT | VI_RESET_BIT | SDMMC4_RESET_BIT | SDMMC1_RESET_BIT | SDMMC2_RESET_BIT; mmio_write_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_L, val); val = USB2_RESET_BIT | APBDMA_RESET_BIT | AHBDMA_RESET_BIT; mmio_write_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_H, val); val = XUSB_DEV_RESET_BIT | XUSB_HOST_RESET_BIT | TSEC_RESET_BIT | PCIE_RESET_BIT | SDMMC3_RESET_BIT; mmio_write_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_U, val); val = SE_RESET_BIT | HDA_RESET_BIT | SATA_RESET_BIT; mmio_write_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_V, val); /* * If any of the DMA masters are still alive, assume * that the system has been compromised and reboot. */ val = mmio_read_32(TEGRA_CAR_RESET_BASE + TEGRA_GPU_RESET_REG_OFFSET); mask = GPU_RESET_BIT; if ((val & mask) != mask) tegra_pmc_system_reset(); mask = NVENC_RESET_BIT | TSECB_RESET_BIT | APE_RESET_BIT | NVJPG_RESET_BIT | NVDEC_RESET_BIT; val = mmio_read_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_Y); if ((val & mask) != mask) tegra_pmc_system_reset(); mask = HOST1X_RESET_BIT | ISP_RESET_BIT | USBD_RESET_BIT | VI_RESET_BIT | SDMMC4_RESET_BIT | SDMMC1_RESET_BIT | SDMMC2_RESET_BIT; val = mmio_read_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_L); if ((val & mask) != mask) tegra_pmc_system_reset(); mask = USB2_RESET_BIT | APBDMA_RESET_BIT | AHBDMA_RESET_BIT; val = mmio_read_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_H); if ((val & mask) != mask) tegra_pmc_system_reset(); mask = XUSB_DEV_RESET_BIT | XUSB_HOST_RESET_BIT | TSEC_RESET_BIT | PCIE_RESET_BIT | SDMMC3_RESET_BIT; val = mmio_read_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_U); if ((val & mask) != mask) tegra_pmc_system_reset(); val = mmio_read_32(TEGRA_CAR_RESET_BASE + TEGRA_RST_DEV_SET_V); mask = SE_RESET_BIT | HDA_RESET_BIT | SATA_RESET_BIT; if ((val & mask) != mask) tegra_pmc_system_reset(); } int tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state) { u_register_t mpidr = read_mpidr(); const plat_local_state_t *pwr_domain_state = target_state->pwr_domain_state; unsigned int stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL]; const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); uint32_t val; if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { if (tegra_chipid_is_t210_b01()) { /* Save tzram contents */ tegra_se_save_tzram(); } /* de-init the interface */ tegra_bpmp_suspend(); /* * The CPU needs to load the System suspend entry firmware * if nothing is running on the BPMP. */ if (!tegra_bpmp_available) { /* * BPMP firmware is not running on the co-processor, so * we need to explicitly load the firmware to enable * entry/exit to/from System Suspend and set the BPMP * on its way. */ /* Power off BPMP before we proceed */ tegra_fc_bpmp_off(); /* bond out IRAM banks B, C and D */ mmio_write_32(TEGRA_CAR_RESET_BASE + TEGRA_BOND_OUT_U, IRAM_B_LOCK_BIT | IRAM_C_LOCK_BIT | IRAM_D_LOCK_BIT); /* bond out APB/AHB DMAs */ mmio_write_32(TEGRA_CAR_RESET_BASE + TEGRA_BOND_OUT_H, APB_DMA_LOCK_BIT | AHB_DMA_LOCK_BIT); /* Power off BPMP before we proceed */ tegra_fc_bpmp_off(); /* * Reset all the hardware blocks that can act as DMA * masters on the bus. */ tegra_reset_all_dma_masters(); /* clean up IRAM of any cruft */ zeromem((void *)(uintptr_t)TEGRA_IRAM_BASE, TEGRA_IRAM_A_SIZE); /* Copy the firmware to BPMP's internal RAM */ (void)memcpy((void *)(uintptr_t)TEGRA_IRAM_BASE, (const void *)(plat_params->sc7entry_fw_base + SC7ENTRY_FW_HEADER_SIZE_BYTES), plat_params->sc7entry_fw_size - SC7ENTRY_FW_HEADER_SIZE_BYTES); /* Power on the BPMP and execute from IRAM base */ tegra_fc_bpmp_on(TEGRA_IRAM_BASE); /* Wait until BPMP powers up */ do { val = mmio_read_32(TEGRA_RES_SEMA_BASE + STA_OFFSET); } while (val != SIGN_OF_LIFE); } /* enter system suspend */ tegra_fc_soc_powerdn(mpidr); } return PSCI_E_SUCCESS; } int tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state) { const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); uint32_t cfg; uint32_t val, entrypoint = 0; uint64_t offset; /* platform parameter passed by the previous bootloader */ if (plat_params->l2_ecc_parity_prot_dis != 1) { /* Enable ECC Parity Protection for Cortex-A57 CPUs */ val = read_l2ctlr_el1(); val |= (uint64_t)CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT; write_l2ctlr_el1(val); } /* * Check if we are exiting from SOC_POWERDN. */ if (target_state->pwr_domain_state[PLAT_MAX_PWR_LVL] == PLAT_SYS_SUSPEND_STATE_ID) { /* * Security engine resume */ if (tegra_chipid_is_t210_b01()) { tegra_se_resume(); } /* * Lock scratch registers which hold the CPU vectors */ tegra_pmc_lock_cpu_vectors(); /* * Enable WRAP to INCR burst type conversions for * incoming requests on the AXI slave ports. */ val = mmio_read_32(TEGRA_MSELECT_BASE + MSELECT_CONFIG); val &= ~ENABLE_UNSUP_TX_ERRORS; val |= ENABLE_WRAP_TO_INCR_BURSTS; mmio_write_32(TEGRA_MSELECT_BASE + MSELECT_CONFIG, val); /* * Restore Boot and Power Management Processor (BPMP) reset * address and reset it, if it is supported by the platform. */ if (!tegra_bpmp_available) { tegra_fc_bpmp_off(); } else { entrypoint = tegra_pmc_read_32(PMC_SCRATCH39); tegra_fc_bpmp_on(entrypoint); /* initialise the interface */ tegra_bpmp_resume(); } /* sc7entry-fw is part of TZDRAM area */ if (plat_params->sc7entry_fw_base != 0U) { offset = plat_params->tzdram_base - plat_params->sc7entry_fw_base; tegra_memctrl_tzdram_setup(plat_params->sc7entry_fw_base, plat_params->tzdram_size + offset); } } /* * Check if we are exiting cluster idle state */ if (target_state->pwr_domain_state[MPIDR_AFFLVL1] == PSTATE_ID_CLUSTER_IDLE) { if (!tegra_bpmp_available) { /* PWM un-tristate */ cfg = mmio_read_32(TEGRA_CL_DVFS_BASE + DVFS_DFLL_OUTPUT_CFG); if (cfg & DFLL_OUTPUT_CFG_CLK_EN_BIT) { val = mmio_read_32(TEGRA_MISC_BASE + PINMUX_AUX_DVFS_PWM); val &= ~PINMUX_PWM_TRISTATE; mmio_write_32(TEGRA_MISC_BASE + PINMUX_AUX_DVFS_PWM, val); } /* release cluster idle lock */ tegra_fc_ccplex_pgexit_unlock(); } } /* * T210 has a dedicated ARMv7 boot and power mgmt processor, BPMP. It's * used for power management and boot purposes. Inform the BPMP that * we have completed the cluster power up. */ tegra_fc_lock_active_cluster(); return PSCI_E_SUCCESS; } int tegra_soc_pwr_domain_on(u_register_t mpidr) { int cpu = mpidr & MPIDR_CPU_MASK; uint32_t mask = CPU_CORE_RESET_MASK << cpu; /* Deassert CPU reset signals */ mmio_write_32(TEGRA_CAR_RESET_BASE + CPU_CMPLX_RESET_CLR, mask); /* Turn on CPU using flow controller or PMC */ if (cpu_powergate_mask[cpu] == 0) { tegra_pmc_cpu_on(cpu); cpu_powergate_mask[cpu] = 1; } else { tegra_fc_cpu_on(cpu); } return PSCI_E_SUCCESS; } int tegra_soc_pwr_domain_off(const psci_power_state_t *target_state) { tegra_fc_cpu_off(read_mpidr() & MPIDR_CPU_MASK); return PSCI_E_SUCCESS; } int tegra_soc_prepare_system_reset(void) { /* * Set System Clock (SCLK) to POR default so that the clock source * for the PMC APB clock would not be changed due to system reset. */ mmio_write_32((uintptr_t)TEGRA_CAR_RESET_BASE + SCLK_BURST_POLICY, SCLK_BURST_POLICY_DEFAULT); mmio_write_32((uintptr_t)TEGRA_CAR_RESET_BASE + SCLK_RATE, 0); /* Wait 1 ms to make sure clock source/device logic is stabilized. */ mdelay(1); return PSCI_E_SUCCESS; }