/* * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include "xlat_tables_private.h" /* * MMU configuration register values for the active translation context. Used * from the MMU assembly helpers. */ uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX]; /* * Each platform can define the size of its physical and virtual address spaces. * If the platform hasn't defined one or both of them, default to * ADDR_SPACE_SIZE. The latter is deprecated, though. */ #if ERROR_DEPRECATED # ifdef ADDR_SPACE_SIZE # error "ADDR_SPACE_SIZE is deprecated. Use PLAT_xxx_ADDR_SPACE_SIZE instead." # endif #elif defined(ADDR_SPACE_SIZE) # ifndef PLAT_PHY_ADDR_SPACE_SIZE # define PLAT_PHY_ADDR_SPACE_SIZE ADDR_SPACE_SIZE # endif # ifndef PLAT_VIRT_ADDR_SPACE_SIZE # define PLAT_VIRT_ADDR_SPACE_SIZE ADDR_SPACE_SIZE # endif #endif /* * Allocate and initialise the default translation context for the BL image * currently executing. */ REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES, PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE); void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size, unsigned int attr) { mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); mmap_add_region_ctx(&tf_xlat_ctx, &mm); } void mmap_add(const mmap_region_t *mm) { mmap_add_ctx(&tf_xlat_ctx, mm); } #if PLAT_XLAT_TABLES_DYNAMIC int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, size_t size, unsigned int attr) { mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm); } int mmap_remove_dynamic_region(uintptr_t base_va, size_t size) { return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx, base_va, size); } #endif /* PLAT_XLAT_TABLES_DYNAMIC */ void init_xlat_tables(void) { assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID); unsigned int current_el = xlat_arch_current_el(); if (current_el == 1U) { tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME; } else { assert(current_el == 3U); tf_xlat_ctx.xlat_regime = EL3_REGIME; } init_xlat_tables_ctx(&tf_xlat_ctx); } int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr) { return xlat_get_mem_attributes_ctx(&tf_xlat_ctx, base_va, attr); } int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr) { return xlat_change_mem_attributes_ctx(&tf_xlat_ctx, base_va, size, attr); } /* * If dynamic allocation of new regions is disabled then by the time we call the * function enabling the MMU, we'll have registered all the memory regions to * map for the system's lifetime. Therefore, at this point we know the maximum * physical address that will ever be mapped. * * If dynamic allocation is enabled then we can't make any such assumption * because the maximum physical address could get pushed while adding a new * region. Therefore, in this case we have to assume that the whole address * space size might be mapped. */ #ifdef PLAT_XLAT_TABLES_DYNAMIC #define MAX_PHYS_ADDR tf_xlat_ctx.pa_max_address #else #define MAX_PHYS_ADDR tf_xlat_ctx.max_pa #endif #ifdef AARCH32 void enable_mmu_secure(unsigned int flags) { setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, tf_xlat_ctx.va_max_address, EL1_EL0_REGIME); enable_mmu_direct(flags); } #else void enable_mmu_el1(unsigned int flags) { setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, tf_xlat_ctx.va_max_address, EL1_EL0_REGIME); enable_mmu_direct_el1(flags); } void enable_mmu_el3(unsigned int flags) { setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, tf_xlat_ctx.va_max_address, EL3_REGIME); enable_mmu_direct_el3(flags); } #endif /* AARCH32 */