/* * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include "../common/gic_common_private.h" #include "gicv2_private.h" static const gicv2_driver_data_t *driver_data; /******************************************************************************* * Enable secure interrupts and use FIQs to route them. Disable legacy bypass * and set the priority mask register to allow all interrupts to trickle in. ******************************************************************************/ void gicv2_cpuif_enable(void) { unsigned int val; assert(driver_data); assert(driver_data->gicc_base); /* * Enable the Group 0 interrupts, FIQEn and disable Group 0/1 * bypass. */ val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; /* Program the idle priority in the PMR */ gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK); gicc_write_ctlr(driver_data->gicc_base, val); } /******************************************************************************* * Place the cpu interface in a state where it can never make a cpu exit wfi as * as result of an asserted interrupt. This is critical for powering down a cpu ******************************************************************************/ void gicv2_cpuif_disable(void) { unsigned int val; assert(driver_data); assert(driver_data->gicc_base); /* Disable secure, non-secure interrupts and disable their bypass */ val = gicc_read_ctlr(driver_data->gicc_base); val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT); val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; gicc_write_ctlr(driver_data->gicc_base, val); } /******************************************************************************* * Per cpu gic distributor setup which will be done by all cpus after a cold * boot/hotplug. This marks out the secure SPIs and PPIs & enables them. ******************************************************************************/ void gicv2_pcpu_distif_init(void) { assert(driver_data); assert(driver_data->gicd_base); assert(driver_data->g0_interrupt_array); gicv2_secure_ppi_sgi_setup(driver_data->gicd_base, driver_data->g0_interrupt_num, driver_data->g0_interrupt_array); } /******************************************************************************* * Global gic distributor init which will be done by the primary cpu after a * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It * then enables the secure GIC distributor interface. ******************************************************************************/ void gicv2_distif_init(void) { unsigned int ctlr; assert(driver_data); assert(driver_data->gicd_base); assert(driver_data->g0_interrupt_array); /* Disable the distributor before going further */ ctlr = gicd_read_ctlr(driver_data->gicd_base); gicd_write_ctlr(driver_data->gicd_base, ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT)); /* Set the default attribute of all SPIs */ gicv2_spis_configure_defaults(driver_data->gicd_base); /* Configure the G0 SPIs */ gicv2_secure_spis_configure(driver_data->gicd_base, driver_data->g0_interrupt_num, driver_data->g0_interrupt_array); /* Re-enable the secure SPIs now that they have been configured */ gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT); } /******************************************************************************* * Initialize the ARM GICv2 driver with the provided platform inputs ******************************************************************************/ void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data) { unsigned int gic_version; assert(plat_driver_data); assert(plat_driver_data->gicd_base); assert(plat_driver_data->gicc_base); /* * The platform should provide a list of atleast one type of * interrupts */ assert(plat_driver_data->g0_interrupt_array); /* * If there are no interrupts of a particular type, then the number of * interrupts of that type should be 0 and vice-versa. */ assert(plat_driver_data->g0_interrupt_array ? plat_driver_data->g0_interrupt_num : plat_driver_data->g0_interrupt_num == 0); /* Ensure that this is a GICv2 system */ gic_version = gicd_read_pidr2(plat_driver_data->gicd_base); gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT) & PIDR2_ARCH_REV_MASK; assert(gic_version == ARCH_REV_GICV2); driver_data = plat_driver_data; /* * The GIC driver data is initialized by the primary CPU with caches * enabled. When the secondary CPU boots up, it initializes the * GICC/GICR interface with the caches disabled. Hence flush the * driver_data to ensure coherency. This is not required if the * platform has HW_ASSISTED_COHERENCY enabled. */ #if !HW_ASSISTED_COHERENCY flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data)); flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data)); #endif INFO("ARM GICv2 driver initialized\n"); } /****************************************************************************** * This function returns whether FIQ is enabled in the GIC CPU interface. *****************************************************************************/ unsigned int gicv2_is_fiq_enabled(void) { unsigned int gicc_ctlr; assert(driver_data); assert(driver_data->gicc_base); gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base); return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1; } /******************************************************************************* * This function returns the type of the highest priority pending interrupt at * the GIC cpu interface. The return values can be one of the following : * PENDING_G1_INTID : The interrupt type is non secure Group 1. * 0 - 1019 : The interrupt type is secure Group 0. * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with * sufficient priority to be signaled ******************************************************************************/ unsigned int gicv2_get_pending_interrupt_type(void) { assert(driver_data); assert(driver_data->gicc_base); return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK; } /******************************************************************************* * This function returns the id of the highest priority pending interrupt at * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no * interrupt pending. ******************************************************************************/ unsigned int gicv2_get_pending_interrupt_id(void) { unsigned int id; assert(driver_data); assert(driver_data->gicc_base); id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK; /* * Find out which non-secure interrupt it is under the assumption that * the GICC_CTLR.AckCtl bit is 0. */ if (id == PENDING_G1_INTID) id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK; return id; } /******************************************************************************* * This functions reads the GIC cpu interface Interrupt Acknowledge register * to start handling the pending secure 0 interrupt. It returns the * contents of the IAR. ******************************************************************************/ unsigned int gicv2_acknowledge_interrupt(void) { assert(driver_data); assert(driver_data->gicc_base); return gicc_read_IAR(driver_data->gicc_base); } /******************************************************************************* * This functions writes the GIC cpu interface End Of Interrupt register with * the passed value to finish handling the active secure group 0 interrupt. ******************************************************************************/ void gicv2_end_of_interrupt(unsigned int id) { assert(driver_data); assert(driver_data->gicc_base); gicc_write_EOIR(driver_data->gicc_base, id); } /******************************************************************************* * This function returns the type of the interrupt id depending upon the group * this interrupt has been configured under by the interrupt controller i.e. * group0 secure or group1 non secure. It returns zero for Group 0 secure and * one for Group 1 non secure interrupt. ******************************************************************************/ unsigned int gicv2_get_interrupt_group(unsigned int id) { assert(driver_data); assert(driver_data->gicd_base); return gicd_get_igroupr(driver_data->gicd_base, id); } /******************************************************************************* * This function returns the priority of the interrupt the processor is * currently servicing. ******************************************************************************/ unsigned int gicv2_get_running_priority(void) { assert(driver_data); assert(driver_data->gicc_base); return gicc_read_rpr(driver_data->gicc_base); }