/* * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bl1_private.h" /* BL1 Service UUID */ DEFINE_SVC_UUID2(bl1_svc_uid, 0xd46739fd, 0xcb72, 0x9a4d, 0xb5, 0x75, 0x67, 0x15, 0xd6, 0xf4, 0xbb, 0x4a); static void bl1_load_bl2(void); /******************************************************************************* * Helper utility to calculate the BL2 memory layout taking into consideration * the BL1 RW data assuming that it is at the top of the memory layout. ******************************************************************************/ void bl1_calc_bl2_mem_layout(const meminfo_t *bl1_mem_layout, meminfo_t *bl2_mem_layout) { assert(bl1_mem_layout != NULL); assert(bl2_mem_layout != NULL); /* * Remove BL1 RW data from the scope of memory visible to BL2. * This is assuming BL1 RW data is at the top of bl1_mem_layout. */ assert(BL1_RW_BASE > bl1_mem_layout->total_base); bl2_mem_layout->total_base = bl1_mem_layout->total_base; bl2_mem_layout->total_size = BL1_RW_BASE - bl1_mem_layout->total_base; flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t)); } #if !ERROR_DEPRECATED /******************************************************************************* * Compatibility default implementation for deprecated API. This has a weak * definition. Platform specific code can override it if it wishes to. ******************************************************************************/ #pragma weak bl1_init_bl2_mem_layout /******************************************************************************* * Function that takes a memory layout into which BL2 has been loaded and * populates a new memory layout for BL2 that ensures that BL1's data sections * resident in secure RAM are not visible to BL2. ******************************************************************************/ void bl1_init_bl2_mem_layout(const struct meminfo *bl1_mem_layout, struct meminfo *bl2_mem_layout) { bl1_calc_bl2_mem_layout(bl1_mem_layout, bl2_mem_layout); } #endif /******************************************************************************* * Function to perform late architectural and platform specific initialization. * It also queries the platform to load and run next BL image. Only called * by the primary cpu after a cold boot. ******************************************************************************/ void bl1_main(void) { unsigned int image_id; /* Announce our arrival */ NOTICE(FIRMWARE_WELCOME_STR); NOTICE("BL1: %s\n", version_string); NOTICE("BL1: %s\n", build_message); INFO("BL1: RAM %p - %p\n", (void *)BL1_RAM_BASE, (void *)BL1_RAM_LIMIT); print_errata_status(); #if ENABLE_ASSERTIONS u_register_t val; /* * Ensure that MMU/Caches and coherency are turned on */ #ifdef AARCH32 val = read_sctlr(); #else val = read_sctlr_el3(); #endif assert(val & SCTLR_M_BIT); assert(val & SCTLR_C_BIT); assert(val & SCTLR_I_BIT); /* * Check that Cache Writeback Granule (CWG) in CTR_EL0 matches the * provided platform value */ val = (read_ctr_el0() >> CTR_CWG_SHIFT) & CTR_CWG_MASK; /* * If CWG is zero, then no CWG information is available but we can * at least check the platform value is less than the architectural * maximum. */ if (val != 0) assert(CACHE_WRITEBACK_GRANULE == SIZE_FROM_LOG2_WORDS(val)); else assert(CACHE_WRITEBACK_GRANULE <= MAX_CACHE_LINE_SIZE); #endif /* ENABLE_ASSERTIONS */ /* Perform remaining generic architectural setup from EL3 */ bl1_arch_setup(); #if TRUSTED_BOARD_BOOT /* Initialize authentication module */ auth_mod_init(); #endif /* TRUSTED_BOARD_BOOT */ /* Perform platform setup in BL1. */ bl1_platform_setup(); /* Get the image id of next image to load and run. */ image_id = bl1_plat_get_next_image_id(); /* * We currently interpret any image id other than * BL2_IMAGE_ID as the start of firmware update. */ if (image_id == BL2_IMAGE_ID) bl1_load_bl2(); else NOTICE("BL1-FWU: *******FWU Process Started*******\n"); bl1_prepare_next_image(image_id); console_flush(); } /******************************************************************************* * This function locates and loads the BL2 raw binary image in the trusted SRAM. * Called by the primary cpu after a cold boot. * TODO: Add support for alternative image load mechanism e.g using virtio/elf * loader etc. ******************************************************************************/ static void bl1_load_bl2(void) { image_desc_t *image_desc; image_info_t *image_info; int err; /* Get the image descriptor */ image_desc = bl1_plat_get_image_desc(BL2_IMAGE_ID); assert(image_desc); /* Get the image info */ image_info = &image_desc->image_info; INFO("BL1: Loading BL2\n"); err = bl1_plat_handle_pre_image_load(BL2_IMAGE_ID); if (err) { ERROR("Failure in pre image load handling of BL2 (%d)\n", err); plat_error_handler(err); } err = load_auth_image(BL2_IMAGE_ID, image_info); if (err) { ERROR("Failed to load BL2 firmware.\n"); plat_error_handler(err); } /* Allow platform to handle image information. */ err = bl1_plat_handle_post_image_load(BL2_IMAGE_ID); if (err) { ERROR("Failure in post image load handling of BL2 (%d)\n", err); plat_error_handler(err); } NOTICE("BL1: Booting BL2\n"); } /******************************************************************************* * Function called just before handing over to the next BL to inform the user * about the boot progress. In debug mode, also print details about the BL * image's execution context. ******************************************************************************/ void bl1_print_next_bl_ep_info(const entry_point_info_t *bl_ep_info) { #ifdef AARCH32 NOTICE("BL1: Booting BL32\n"); #else NOTICE("BL1: Booting BL31\n"); #endif /* AARCH32 */ print_entry_point_info(bl_ep_info); } #if SPIN_ON_BL1_EXIT void print_debug_loop_message(void) { NOTICE("BL1: Debug loop, spinning forever\n"); NOTICE("BL1: Please connect the debugger to continue\n"); } #endif /******************************************************************************* * Top level handler for servicing BL1 SMCs. ******************************************************************************/ register_t bl1_smc_handler(unsigned int smc_fid, register_t x1, register_t x2, register_t x3, register_t x4, void *cookie, void *handle, unsigned int flags) { #if TRUSTED_BOARD_BOOT /* * Dispatch FWU calls to FWU SMC handler and return its return * value */ if (is_fwu_fid(smc_fid)) { return bl1_fwu_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); } #endif switch (smc_fid) { case BL1_SMC_CALL_COUNT: SMC_RET1(handle, BL1_NUM_SMC_CALLS); case BL1_SMC_UID: SMC_UUID_RET(handle, bl1_svc_uid); case BL1_SMC_VERSION: SMC_RET1(handle, BL1_SMC_MAJOR_VER | BL1_SMC_MINOR_VER); default: break; } WARN("Unimplemented BL1 SMC Call: 0x%x \n", smc_fid); SMC_RET1(handle, SMC_UNK); } /******************************************************************************* * BL1 SMC wrapper. This function is only used in AArch32 mode to ensure ABI * compliance when invoking bl1_smc_handler. ******************************************************************************/ register_t bl1_smc_wrapper(uint32_t smc_fid, void *cookie, void *handle, unsigned int flags) { register_t x1, x2, x3, x4; assert(handle); get_smc_params_from_ctx(handle, x1, x2, x3, x4); return bl1_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); }