/* * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include "xlat_tables_private.h" #if LOG_LEVEL < LOG_LEVEL_VERBOSE void xlat_mmap_print(__unused mmap_region_t *const mmap) { /* Empty */ } void xlat_tables_print(__unused xlat_ctx_t *ctx) { /* Empty */ } #else /* if LOG_LEVEL >= LOG_LEVEL_VERBOSE */ void xlat_mmap_print(mmap_region_t *const mmap) { tf_printf("mmap:\n"); const mmap_region_t *mm = mmap; while (mm->size != 0U) { tf_printf(" VA:0x%lx PA:0x%llx size:0x%zx attr:0x%x " "granularity:0x%zx\n", mm->base_va, mm->base_pa, mm->size, mm->attr, mm->granularity); ++mm; }; tf_printf("\n"); } /* Print the attributes of the specified block descriptor. */ static void xlat_desc_print(const xlat_ctx_t *ctx, uint64_t desc) { int mem_type_index = ATTR_INDEX_GET(desc); int xlat_regime = ctx->xlat_regime; if (mem_type_index == ATTR_IWBWA_OWBWA_NTR_INDEX) { tf_printf("MEM"); } else if (mem_type_index == ATTR_NON_CACHEABLE_INDEX) { tf_printf("NC"); } else { assert(mem_type_index == ATTR_DEVICE_INDEX); tf_printf("DEV"); } if (xlat_regime == EL3_REGIME) { /* For EL3 only check the AP[2] and XN bits. */ tf_printf((desc & LOWER_ATTRS(AP_RO)) ? "-RO" : "-RW"); tf_printf((desc & UPPER_ATTRS(XN)) ? "-XN" : "-EXEC"); } else { assert(xlat_regime == EL1_EL0_REGIME); /* * For EL0 and EL1: * - In AArch64 PXN and UXN can be set independently but in * AArch32 there is no UXN (XN affects both privilege levels). * For consistency, we set them simultaneously in both cases. * - RO and RW permissions must be the same in EL1 and EL0. If * EL0 can access that memory region, so can EL1, with the * same permissions. */ #if ENABLE_ASSERTIONS uint64_t xn_mask = xlat_arch_regime_get_xn_desc(EL1_EL0_REGIME); uint64_t xn_perm = desc & xn_mask; assert((xn_perm == xn_mask) || (xn_perm == 0ULL)); #endif tf_printf((desc & LOWER_ATTRS(AP_RO)) ? "-RO" : "-RW"); /* Only check one of PXN and UXN, the other one is the same. */ tf_printf((desc & UPPER_ATTRS(PXN)) ? "-XN" : "-EXEC"); /* * Privileged regions can only be accessed from EL1, user * regions can be accessed from EL1 and EL0. */ tf_printf((desc & LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED)) ? "-USER" : "-PRIV"); } tf_printf(LOWER_ATTRS(NS) & desc ? "-NS" : "-S"); } static const char * const level_spacers[] = { "[LV0] ", " [LV1] ", " [LV2] ", " [LV3] " }; static const char *invalid_descriptors_ommited = "%s(%d invalid descriptors omitted)\n"; /* * Recursive function that reads the translation tables passed as an argument * and prints their status. */ static void xlat_tables_print_internal(xlat_ctx_t *ctx, const uintptr_t table_base_va, uint64_t *const table_base, const int table_entries, const unsigned int level) { assert(level <= XLAT_TABLE_LEVEL_MAX); uint64_t desc; uintptr_t table_idx_va = table_base_va; int table_idx = 0; size_t level_size = XLAT_BLOCK_SIZE(level); /* * Keep track of how many invalid descriptors are counted in a row. * Whenever multiple invalid descriptors are found, only the first one * is printed, and a line is added to inform about how many descriptors * have been omitted. */ int invalid_row_count = 0; while (table_idx < table_entries) { desc = table_base[table_idx]; if ((desc & DESC_MASK) == INVALID_DESC) { if (invalid_row_count == 0) { tf_printf("%sVA:%p size:0x%zx\n", level_spacers[level], (void *)table_idx_va, level_size); } invalid_row_count++; } else { if (invalid_row_count > 1) { tf_printf(invalid_descriptors_ommited, level_spacers[level], invalid_row_count - 1); } invalid_row_count = 0; /* * Check if this is a table or a block. Tables are only * allowed in levels other than 3, but DESC_PAGE has the * same value as DESC_TABLE, so we need to check. */ if (((desc & DESC_MASK) == TABLE_DESC) && (level < XLAT_TABLE_LEVEL_MAX)) { /* * Do not print any PA for a table descriptor, * as it doesn't directly map physical memory * but instead points to the next translation * table in the translation table walk. */ tf_printf("%sVA:%p size:0x%zx\n", level_spacers[level], (void *)table_idx_va, level_size); uintptr_t addr_inner = desc & TABLE_ADDR_MASK; xlat_tables_print_internal(ctx, table_idx_va, (uint64_t *)addr_inner, XLAT_TABLE_ENTRIES, level + 1); } else { tf_printf("%sVA:%p PA:0x%llx size:0x%zx ", level_spacers[level], (void *)table_idx_va, (unsigned long long)(desc & TABLE_ADDR_MASK), level_size); xlat_desc_print(ctx, desc); tf_printf("\n"); } } table_idx++; table_idx_va += level_size; } if (invalid_row_count > 1) { tf_printf(invalid_descriptors_ommited, level_spacers[level], invalid_row_count - 1); } } void xlat_tables_print(xlat_ctx_t *ctx) { const char *xlat_regime_str; if (ctx->xlat_regime == EL1_EL0_REGIME) { xlat_regime_str = "1&0"; } else { assert(ctx->xlat_regime == EL3_REGIME); xlat_regime_str = "3"; } VERBOSE("Translation tables state:\n"); VERBOSE(" Xlat regime: EL%s\n", xlat_regime_str); VERBOSE(" Max allowed PA: 0x%llx\n", ctx->pa_max_address); VERBOSE(" Max allowed VA: %p\n", (void *) ctx->va_max_address); VERBOSE(" Max mapped PA: 0x%llx\n", ctx->max_pa); VERBOSE(" Max mapped VA: %p\n", (void *) ctx->max_va); VERBOSE(" Initial lookup level: %i\n", ctx->base_level); VERBOSE(" Entries @initial lookup level: %i\n", ctx->base_table_entries); int used_page_tables; #if PLAT_XLAT_TABLES_DYNAMIC used_page_tables = 0; for (unsigned int i = 0; i < ctx->tables_num; ++i) { if (ctx->tables_mapped_regions[i] != 0) ++used_page_tables; } #else used_page_tables = ctx->next_table; #endif VERBOSE(" Used %i sub-tables out of %i (spare: %i)\n", used_page_tables, ctx->tables_num, ctx->tables_num - used_page_tables); xlat_tables_print_internal(ctx, 0, ctx->base_table, ctx->base_table_entries, ctx->base_level); } #endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */ /* * Do a translation table walk to find the block or page descriptor that maps * virtual_addr. * * On success, return the address of the descriptor within the translation * table. Its lookup level is stored in '*out_level'. * On error, return NULL. * * xlat_table_base * Base address for the initial lookup level. * xlat_table_base_entries * Number of entries in the translation table for the initial lookup level. * virt_addr_space_size * Size in bytes of the virtual address space. */ static uint64_t *find_xlat_table_entry(uintptr_t virtual_addr, void *xlat_table_base, int xlat_table_base_entries, unsigned long long virt_addr_space_size, int *out_level) { unsigned int start_level; uint64_t *table; int entries; VERBOSE("%s(%p)\n", __func__, (void *)virtual_addr); start_level = GET_XLAT_TABLE_LEVEL_BASE(virt_addr_space_size); VERBOSE("Starting translation table walk from level %i\n", start_level); table = xlat_table_base; entries = xlat_table_base_entries; for (unsigned int level = start_level; level <= XLAT_TABLE_LEVEL_MAX; ++level) { int idx; uint64_t desc; uint64_t desc_type; VERBOSE("Table address: %p\n", (void *)table); idx = XLAT_TABLE_IDX(virtual_addr, level); VERBOSE("Index into level %i table: %i\n", level, idx); if (idx >= entries) { VERBOSE("Invalid address\n"); return NULL; } desc = table[idx]; desc_type = desc & DESC_MASK; VERBOSE("Descriptor at level %i: 0x%llx\n", level, (unsigned long long)desc); if (desc_type == INVALID_DESC) { VERBOSE("Invalid entry (memory not mapped)\n"); return NULL; } if (level == XLAT_TABLE_LEVEL_MAX) { /* * There can't be table entries at the final lookup * level. */ assert(desc_type == PAGE_DESC); VERBOSE("Descriptor mapping a memory page (size: 0x%llx)\n", (unsigned long long)XLAT_BLOCK_SIZE(XLAT_TABLE_LEVEL_MAX)); *out_level = level; return &table[idx]; } if (desc_type == BLOCK_DESC) { VERBOSE("Descriptor mapping a memory block (size: 0x%llx)\n", (unsigned long long)XLAT_BLOCK_SIZE(level)); *out_level = level; return &table[idx]; } assert(desc_type == TABLE_DESC); VERBOSE("Table descriptor, continuing xlat table walk...\n"); table = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK); entries = XLAT_TABLE_ENTRIES; } /* * This shouldn't be reached, the translation table walk should end at * most at level XLAT_TABLE_LEVEL_MAX and return from inside the loop. */ assert(0); return NULL; } static int get_mem_attributes_internal(const xlat_ctx_t *ctx, uintptr_t base_va, uint32_t *attributes, uint64_t **table_entry, unsigned long long *addr_pa, int *table_level) { uint64_t *entry; uint64_t desc; int level; unsigned long long virt_addr_space_size; /* * Sanity-check arguments. */ assert(ctx != NULL); assert(ctx->initialized); assert(ctx->xlat_regime == EL1_EL0_REGIME || ctx->xlat_regime == EL3_REGIME); virt_addr_space_size = (unsigned long long)ctx->va_max_address + 1; assert(virt_addr_space_size > 0); entry = find_xlat_table_entry(base_va, ctx->base_table, ctx->base_table_entries, virt_addr_space_size, &level); if (entry == NULL) { WARN("Address %p is not mapped.\n", (void *)base_va); return -EINVAL; } if (addr_pa != NULL) { *addr_pa = *entry & TABLE_ADDR_MASK; } if (table_entry != NULL) { *table_entry = entry; } if (table_level != NULL) { *table_level = level; } desc = *entry; #if LOG_LEVEL >= LOG_LEVEL_VERBOSE VERBOSE("Attributes: "); xlat_desc_print(ctx, desc); tf_printf("\n"); #endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */ assert(attributes != NULL); *attributes = 0; int attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK; if (attr_index == ATTR_IWBWA_OWBWA_NTR_INDEX) { *attributes |= MT_MEMORY; } else if (attr_index == ATTR_NON_CACHEABLE_INDEX) { *attributes |= MT_NON_CACHEABLE; } else { assert(attr_index == ATTR_DEVICE_INDEX); *attributes |= MT_DEVICE; } int ap2_bit = (desc >> AP2_SHIFT) & 1; if (ap2_bit == AP2_RW) *attributes |= MT_RW; if (ctx->xlat_regime == EL1_EL0_REGIME) { int ap1_bit = (desc >> AP1_SHIFT) & 1; if (ap1_bit == AP1_ACCESS_UNPRIVILEGED) *attributes |= MT_USER; } int ns_bit = (desc >> NS_SHIFT) & 1; if (ns_bit == 1) *attributes |= MT_NS; uint64_t xn_mask = xlat_arch_regime_get_xn_desc(ctx->xlat_regime); if ((desc & xn_mask) == xn_mask) { *attributes |= MT_EXECUTE_NEVER; } else { assert((desc & xn_mask) == 0); } return 0; } int get_mem_attributes(const xlat_ctx_t *ctx, uintptr_t base_va, uint32_t *attributes) { return get_mem_attributes_internal(ctx, base_va, attributes, NULL, NULL, NULL); } int change_mem_attributes(xlat_ctx_t *ctx, uintptr_t base_va, size_t size, uint32_t attr) { /* Note: This implementation isn't optimized. */ assert(ctx != NULL); assert(ctx->initialized); unsigned long long virt_addr_space_size = (unsigned long long)ctx->va_max_address + 1; assert(virt_addr_space_size > 0); if (!IS_PAGE_ALIGNED(base_va)) { WARN("%s: Address %p is not aligned on a page boundary.\n", __func__, (void *)base_va); return -EINVAL; } if (size == 0) { WARN("%s: Size is 0.\n", __func__); return -EINVAL; } if ((size % PAGE_SIZE) != 0) { WARN("%s: Size 0x%zx is not a multiple of a page size.\n", __func__, size); return -EINVAL; } if (((attr & MT_EXECUTE_NEVER) == 0) && ((attr & MT_RW) != 0)) { WARN("%s() doesn't allow to remap memory as read-write and executable.\n", __func__); return -EINVAL; } int pages_count = size / PAGE_SIZE; VERBOSE("Changing memory attributes of %i pages starting from address %p...\n", pages_count, (void *)base_va); uintptr_t base_va_original = base_va; /* * Sanity checks. */ for (int i = 0; i < pages_count; ++i) { uint64_t *entry; uint64_t desc; int level; entry = find_xlat_table_entry(base_va, ctx->base_table, ctx->base_table_entries, virt_addr_space_size, &level); if (entry == NULL) { WARN("Address %p is not mapped.\n", (void *)base_va); return -EINVAL; } desc = *entry; /* * Check that all the required pages are mapped at page * granularity. */ if (((desc & DESC_MASK) != PAGE_DESC) || (level != XLAT_TABLE_LEVEL_MAX)) { WARN("Address %p is not mapped at the right granularity.\n", (void *)base_va); WARN("Granularity is 0x%llx, should be 0x%x.\n", (unsigned long long)XLAT_BLOCK_SIZE(level), PAGE_SIZE); return -EINVAL; } /* * If the region type is device, it shouldn't be executable. */ int attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK; if (attr_index == ATTR_DEVICE_INDEX) { if ((attr & MT_EXECUTE_NEVER) == 0) { WARN("Setting device memory as executable at address %p.", (void *)base_va); return -EINVAL; } } base_va += PAGE_SIZE; } /* Restore original value. */ base_va = base_va_original; VERBOSE("%s: All pages are mapped, now changing their attributes...\n", __func__); for (int i = 0; i < pages_count; ++i) { uint32_t old_attr, new_attr; uint64_t *entry; int level; unsigned long long addr_pa; get_mem_attributes_internal(ctx, base_va, &old_attr, &entry, &addr_pa, &level); VERBOSE("Old attributes: 0x%x\n", old_attr); /* * From attr, only MT_RO/MT_RW, MT_EXECUTE/MT_EXECUTE_NEVER and * MT_USER/MT_PRIVILEGED are taken into account. Any other * information is ignored. */ /* Clean the old attributes so that they can be rebuilt. */ new_attr = old_attr & ~(MT_RW|MT_EXECUTE_NEVER|MT_USER); /* * Update attributes, but filter out the ones this function * isn't allowed to change. */ new_attr |= attr & (MT_RW|MT_EXECUTE_NEVER|MT_USER); VERBOSE("New attributes: 0x%x\n", new_attr); /* * The break-before-make sequence requires writing an invalid * descriptor and making sure that the system sees the change * before writing the new descriptor. */ *entry = INVALID_DESC; /* Invalidate any cached copy of this mapping in the TLBs. */ xlat_arch_tlbi_va_regime(base_va, ctx->xlat_regime); /* Ensure completion of the invalidation. */ xlat_arch_tlbi_va_sync(); /* Write new descriptor */ *entry = xlat_desc(ctx, new_attr, addr_pa, level); base_va += PAGE_SIZE; } /* Ensure that the last descriptor writen is seen by the system. */ dsbish(); return 0; }