/* * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Register offsets for ARI request/results ******************************************************************************/ #define ARI_REQUEST 0x0U #define ARI_REQUEST_EVENT_MASK 0x4U #define ARI_STATUS 0x8U #define ARI_REQUEST_DATA_LO 0xCU #define ARI_REQUEST_DATA_HI 0x10U #define ARI_RESPONSE_DATA_LO 0x14U #define ARI_RESPONSE_DATA_HI 0x18U /* Status values for the current request */ #define ARI_REQ_PENDING 1U #define ARI_REQ_ONGOING 3U #define ARI_REQUEST_VALID_BIT (1U << 8) #define ARI_EVT_MASK_STANDBYWFI_BIT (1U << 7) /* default timeout (us) to wait for ARI completion */ #define ARI_MAX_RETRY_COUNT U(2000000) /******************************************************************************* * ARI helper functions ******************************************************************************/ static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg) { return mmio_read_32((uint64_t)ari_base + (uint64_t)reg); } static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg) { mmio_write_32((uint64_t)ari_base + (uint64_t)reg, val); } static inline uint32_t ari_get_request_low(uint32_t ari_base) { return ari_read_32(ari_base, ARI_REQUEST_DATA_LO); } static inline uint32_t ari_get_request_high(uint32_t ari_base) { return ari_read_32(ari_base, ARI_REQUEST_DATA_HI); } static inline uint32_t ari_get_response_low(uint32_t ari_base) { return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO); } static inline uint32_t ari_get_response_high(uint32_t ari_base) { return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI); } static inline void ari_clobber_response(uint32_t ari_base) { ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO); ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI); } static int32_t ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req, uint32_t lo, uint32_t hi) { uint32_t retries = (uint32_t)ARI_MAX_RETRY_COUNT; uint32_t status; int32_t ret = 0; /* program the request, event_mask, hi and lo registers */ ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO); ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI); ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK); ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST); /* * For commands that have an event trigger, we should bypass * ARI_STATUS polling, since MCE is waiting for SW to trigger * the event. */ if (evt_mask != 0U) { ret = 0; } else { /* For shutdown/reboot commands, we dont have to check for timeouts */ if ((req == TEGRA_ARI_MISC_CCPLEX) && ((lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) || (lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) { ret = 0; } else { /* * Wait for the command response for not more than the timeout */ while (retries != 0U) { /* read the command status */ status = ari_read_32(ari_base, ARI_STATUS); if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U) { break; } /* delay 1 us */ udelay(1); /* decrement the retry count */ retries--; } /* assert if the command timed out */ if (retries == 0U) { ERROR("ARI request timed out: req %d on CPU %d\n", req, plat_my_core_pos()); assert(retries != 0U); } } } return ret; } int32_t ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time) { int32_t ret = 0; /* check for allowed power state */ if ((state != TEGRA_ARI_CORE_C0) && (state != TEGRA_ARI_CORE_C1) && (state != TEGRA_ARI_CORE_C6) && (state != TEGRA_ARI_CORE_C7)) { ERROR("%s: unknown cstate (%d)\n", __func__, state); ret = EINVAL; } else { /* clean the previous response state */ ari_clobber_response(ari_base); /* Enter the cstate, to be woken up after wake_time (TSC ticks) */ ret = ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT, (uint32_t)TEGRA_ARI_ENTER_CSTATE, state, wake_time); } return ret; } int32_t ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex, uint32_t system, uint8_t sys_state_force, uint32_t wake_mask, uint8_t update_wake_mask) { uint64_t val = 0U; /* clean the previous response state */ ari_clobber_response(ari_base); /* update CLUSTER_CSTATE? */ if (cluster != 0U) { val |= (cluster & CLUSTER_CSTATE_MASK) | CLUSTER_CSTATE_UPDATE_BIT; } /* update CCPLEX_CSTATE? */ if (ccplex != 0U) { val |= ((ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT) | CCPLEX_CSTATE_UPDATE_BIT; } /* update SYSTEM_CSTATE? */ if (system != 0U) { val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) | (((uint64_t)sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) | SYSTEM_CSTATE_UPDATE_BIT); } /* update wake mask value? */ if (update_wake_mask != 0U) { val |= CSTATE_WAKE_MASK_UPDATE_BIT; } /* set the updated cstate info */ return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_UPDATE_CSTATE_INFO, (uint32_t)val, wake_mask); } int32_t ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time) { int32_t ret = 0; /* sanity check crossover type */ if ((type == TEGRA_ARI_CROSSOVER_C1_C6) || (type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) { ret = EINVAL; } else { /* clean the previous response state */ ari_clobber_response(ari_base); /* update crossover threshold time */ ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_UPDATE_CROSSOVER, type, time); } return ret; } uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state) { int32_t ret; uint64_t result; /* sanity check crossover type */ if (state == 0U) { result = EINVAL; } else { /* clean the previous response state */ ari_clobber_response(ari_base); ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_CSTATE_STATS, state, 0U); if (ret != 0) { result = EINVAL; } else { result = (uint64_t)ari_get_response_low(ari_base); } } return result; } int32_t ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats) { /* clean the previous response state */ ari_clobber_response(ari_base); /* write the cstate stats */ return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_WRITE_CSTATE_STATS, state, stats); } uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data) { uint64_t resp; int32_t ret; uint32_t local_data = data; /* clean the previous response state */ ari_clobber_response(ari_base); /* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */ if (cmd != TEGRA_ARI_MISC_ECHO) { local_data = 0U; } ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MISC, cmd, local_data); if (ret != 0) { resp = (uint64_t)ret; } else { /* get the command response */ resp = ari_get_response_low(ari_base); resp |= ((uint64_t)ari_get_response_high(ari_base) << 32); } return resp; } int32_t ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time) { int32_t ret; uint32_t result; /* clean the previous response state */ ari_clobber_response(ari_base); ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7U, wake_time); if (ret != 0) { ERROR("%s: failed (%d)\n", __func__, ret); result = 0U; } else { result = ari_get_response_low(ari_base) & 0x1U; } /* 1 = CCx allowed, 0 = CCx not allowed */ return (int32_t)result; } int32_t ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time) { int32_t ret, result; /* check for allowed power state */ if ((state != TEGRA_ARI_CORE_C0) && (state != TEGRA_ARI_CORE_C1) && (state != TEGRA_ARI_CORE_C6) && (state != TEGRA_ARI_CORE_C7)) { ERROR("%s: unknown cstate (%d)\n", __func__, state); result = EINVAL; } else { /* clean the previous response state */ ari_clobber_response(ari_base); ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_IS_SC7_ALLOWED, state, wake_time); if (ret != 0) { ERROR("%s: failed (%d)\n", __func__, ret); result = 0; } else { /* 1 = SC7 allowed, 0 = SC7 not allowed */ result = (ari_get_response_low(ari_base) != 0U) ? 1 : 0; } } return result; } int32_t ari_online_core(uint32_t ari_base, uint32_t core) { uint64_t cpu = read_mpidr() & (MPIDR_CPU_MASK); uint64_t cluster = (read_mpidr() & (MPIDR_CLUSTER_MASK)) >> (MPIDR_AFFINITY_BITS); uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK; int32_t ret; /* construct the current CPU # */ cpu |= (cluster << 2); /* sanity check target core id */ if ((core >= MCE_CORE_ID_MAX) || (cpu == (uint64_t)core)) { ERROR("%s: unsupported core id (%d)\n", __func__, core); ret = EINVAL; } else { /* * The Denver cluster has 2 CPUs only - 0, 1. */ if ((impl == DENVER_IMPL) && ((core == 2U) || (core == 3U))) { ERROR("%s: unknown core id (%d)\n", __func__, core); ret = EINVAL; } else { /* clean the previous response state */ ari_clobber_response(ari_base); ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_ONLINE_CORE, core, 0U); } } return ret; } int32_t ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable) { uint32_t val; /* clean the previous response state */ ari_clobber_response(ari_base); /* * If the enable bit is cleared, Auto-CC3 will be disabled by setting * the SW visible voltage/frequency request registers for all non * floorswept cores valid independent of StandbyWFI and disabling * the IDLE voltage/frequency request register. If set, Auto-CC3 * will be enabled by setting the ARM SW visible voltage/frequency * request registers for all non floorswept cores to be enabled by * StandbyWFI or the equivalent signal, and always keeping the IDLE * voltage/frequency request register enabled. */ val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\ ((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\ ((enable != 0U) ? MCE_AUTO_CC3_ENABLE_BIT : 0U)); return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_CC3_CTRL, val, 0U); } int32_t ari_reset_vector_update(uint32_t ari_base) { /* clean the previous response state */ ari_clobber_response(ari_base); /* * Need to program the CPU reset vector one time during cold boot * and SC7 exit */ (void)ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_COPY_MISCREG_AA64_RST, 0U, 0U); return 0; } int32_t ari_roc_flush_cache_trbits(uint32_t ari_base) { /* clean the previous response state */ ari_clobber_response(ari_base); return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS, 0U, 0U); } int32_t ari_roc_flush_cache(uint32_t ari_base) { /* clean the previous response state */ ari_clobber_response(ari_base); return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_ROC_FLUSH_CACHE_ONLY, 0U, 0U); } int32_t ari_roc_clean_cache(uint32_t ari_base) { /* clean the previous response state */ ari_clobber_response(ari_base); return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_ROC_CLEAN_CACHE_ONLY, 0U, 0U); } uint64_t ari_read_write_mca(uint32_t ari_base, uint64_t cmd, uint64_t *data) { uint64_t mca_arg_data, result = 0; uint32_t resp_lo, resp_hi; uint32_t mca_arg_err, mca_arg_finish; int32_t ret; /* Set data (write) */ mca_arg_data = (data != NULL) ? *data : 0ULL; /* Set command */ ari_write_32(ari_base, (uint32_t)cmd, ARI_RESPONSE_DATA_LO); ari_write_32(ari_base, (uint32_t)(cmd >> 32U), ARI_RESPONSE_DATA_HI); ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MCA, (uint32_t)mca_arg_data, (uint32_t)(mca_arg_data >> 32U)); if (ret == 0) { resp_lo = ari_get_response_low(ari_base); resp_hi = ari_get_response_high(ari_base); mca_arg_err = resp_lo & MCA_ARG_ERROR_MASK; mca_arg_finish = (resp_hi >> MCA_ARG_FINISH_SHIFT) & MCA_ARG_FINISH_MASK; if (mca_arg_finish == 0U) { result = (uint64_t)mca_arg_err; } else { if (data != NULL) { resp_lo = ari_get_request_low(ari_base); resp_hi = ari_get_request_high(ari_base); *data = ((uint64_t)resp_hi << 32U) | (uint64_t)resp_lo; } } } return result; } int32_t ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx) { int32_t ret = 0; /* sanity check GSC ID */ if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX) { ret = EINVAL; } else { /* clean the previous response state */ ari_clobber_response(ari_base); /* * The MCE code will read the GSC carveout value, corrseponding to * the ID, from the MC registers and update the internal GSC registers * of the CCPLEX. */ (void)ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0U); } return ret; } void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx) { /* clean the previous response state */ ari_clobber_response(ari_base); /* * The MCE will shutdown or restart the entire system */ (void)ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MISC_CCPLEX, state_idx, 0U); } int32_t ari_read_write_uncore_perfmon(uint32_t ari_base, uint64_t req, uint64_t *data) { int32_t ret, result; uint32_t val, req_status; uint8_t req_cmd; req_cmd = (uint8_t)(req >> UNCORE_PERFMON_CMD_SHIFT); /* clean the previous response state */ ari_clobber_response(ari_base); /* sanity check input parameters */ if ((req_cmd == UNCORE_PERFMON_CMD_READ) && (data == NULL)) { ERROR("invalid parameters\n"); result = EINVAL; } else { /* * For "write" commands get the value that has to be written * to the uncore perfmon registers */ val = (req_cmd == UNCORE_PERFMON_CMD_WRITE) ? (uint32_t)*data : 0U; ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_PERFMON, val, (uint32_t)req); if (ret != 0) { result = ret; } else { /* read the command status value */ req_status = ari_get_response_high(ari_base) & UNCORE_PERFMON_RESP_STATUS_MASK; /* * For "read" commands get the data from the uncore * perfmon registers */ req_status >>= UNCORE_PERFMON_RESP_STATUS_SHIFT; if ((req_status == 0U) && (req_cmd == UNCORE_PERFMON_CMD_READ)) { *data = ari_get_response_low(ari_base); } result = (int32_t)req_status; } } return result; } void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value) { /* * This invokes the ARI_MISC_CCPLEX commands. This can be * used to enable/disable coresight clock gating. */ if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) || ((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) && (value > 1U))) { ERROR("%s: invalid parameters \n", __func__); } else { /* clean the previous response state */ ari_clobber_response(ari_base); (void)ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MISC_CCPLEX, index, value); } }