Commit 8acc21e8 authored by Jeromy's avatar Jeromy
Browse files

Vendor in go-peerstream

parent a9de494f
package peerstream_spdystream
import (
"errors"
"net"
"net/http"
smux "QmPxuHs2NQjz16gnvndgkzHkm5PjtqbB5rwoSpLusBkQ7Q/go-stream-muxer"
ss "QmYewWU9ZnQR7Gct9tNZd97i9tGnyCZfNVLM2GGfNEj5jP/spdystream"
)
var ErrUseServe = errors.New("not implemented, use Serve")
// stream implements smux.Stream using a ss.Stream
type stream ss.Stream
func (s *stream) spdyStream() *ss.Stream {
return (*ss.Stream)(s)
}
func (s *stream) Read(buf []byte) (int, error) {
return s.spdyStream().Read(buf)
}
func (s *stream) Write(buf []byte) (int, error) {
return s.spdyStream().Write(buf)
}
func (s *stream) Close() error {
// Reset is spdystream's full bidirectional close.
// We expose bidirectional close as our `Close`.
// To close only half of the connection, and use other
// spdystream options, just get the stream with:
// ssStream := (*ss.Stream)(stream)
return s.spdyStream().Reset()
}
// Conn is a connection to a remote peer.
type conn struct {
sc *ss.Connection
closed chan struct{}
}
func (c *conn) spdyConn() *ss.Connection {
return c.sc
}
func (c *conn) Close() error {
err := c.spdyConn().CloseWait()
if !c.IsClosed() {
close(c.closed)
}
return err
}
func (c *conn) IsClosed() bool {
select {
case <-c.closed:
return true
case <-c.sc.CloseChan():
return true
default:
return false
}
}
// OpenStream creates a new stream.
func (c *conn) OpenStream() (smux.Stream, error) {
s, err := c.spdyConn().CreateStream(http.Header{
":method": []string{"GET"}, // this is here for HTTP/SPDY interop
":path": []string{"/"}, // this is here for HTTP/SPDY interop
}, nil, false)
if err != nil {
return nil, err
}
// wait for a response before writing. for some reason
// spdystream does not make forward progress unless you do this.
s.Wait()
return (*stream)(s), nil
}
// AcceptStream accepts a stream opened by the other side.
func (c *conn) AcceptStream() (smux.Stream, error) {
return nil, ErrUseServe
}
// Serve starts listening for incoming requests and handles them
// using given StreamHandler
func (c *conn) Serve(handler smux.StreamHandler) {
c.spdyConn().Serve(func(s *ss.Stream) {
// Flow control and backpressure of Opening streams is broken.
// I believe that spdystream has one set of workers that both send
// data AND accept new streams (as it's just more data). there
// is a problem where if the new stream handlers want to throttle,
// they also eliminate the ability to read/write data, which makes
// forward-progress impossible. Thus, throttling this function is
// -- at this moment -- not the solution. Either spdystream must
// change, or we must throttle another way. go-peerstream handles
// every new stream in its own goroutine.
err := s.SendReply(http.Header{}, false)
if err != nil {
// this _could_ error out. not sure how to handle this failure.
// don't return, and let the caller handle a broken stream.
// better than _hiding_ an error.
// return
}
go handler((*stream)(s))
})
}
type transport struct{}
// Transport is a go-peerstream transport that constructs
// spdystream-backed connections.
var Transport = transport{}
func (t transport) NewConn(nc net.Conn, isServer bool) (smux.Conn, error) {
sc, err := ss.NewConnection(nc, isServer)
return &conn{sc: sc, closed: make(chan struct{})}, err
}
package peerstream_spdystream
import (
"testing"
test "QmPxuHs2NQjz16gnvndgkzHkm5PjtqbB5rwoSpLusBkQ7Q/go-stream-muxer/test"
)
func TestSpdyStreamTransport(t *testing.T) {
test.SubtestAll(t, Transport)
}
package sm_test
import (
"bytes"
crand "crypto/rand"
"fmt"
"io"
mrand "math/rand"
"net"
"os"
"reflect"
"runtime"
"runtime/debug"
"sync"
"testing"
smux "QmPxuHs2NQjz16gnvndgkzHkm5PjtqbB5rwoSpLusBkQ7Q/go-stream-muxer"
)
var randomness []byte
func init() {
// read 1MB of randomness
randomness = make([]byte, 1<<20)
if _, err := crand.Read(randomness); err != nil {
panic(err)
}
}
type Options struct {
tr smux.Transport
connNum int
streamNum int
msgNum int
msgMin int
msgMax int
}
func randBuf(size int) []byte {
n := len(randomness) - size
if size < 1 {
panic(fmt.Errorf("requested too large buffer (%d). max is %d", size, len(randomness)))
}
start := mrand.Intn(n)
return randomness[start : start+size]
}
func checkErr(t *testing.T, err error) {
if err != nil {
debug.PrintStack()
t.Fatal(err)
}
}
func log(s string, v ...interface{}) {
if testing.Verbose() {
fmt.Fprintf(os.Stderr, "> "+s+"\n", v...)
}
}
func echoStream(s smux.Stream) {
defer s.Close()
log("accepted stream")
io.Copy(&LogWriter{s}, s) // echo everything
log("closing stream")
}
type LogWriter struct {
W io.Writer
}
func (lw *LogWriter) Write(buf []byte) (int, error) {
if testing.Verbose() {
log("logwriter: writing %d bytes", len(buf))
}
return lw.W.Write(buf)
}
func GoServe(t *testing.T, tr smux.Transport, l net.Listener) (done func()) {
closed := make(chan struct{}, 1)
go func() {
for {
c1, err := l.Accept()
if err != nil {
select {
case <-closed:
return // closed naturally.
default:
checkErr(t, err)
}
}
log("accepted connection")
sc1, err := tr.NewConn(c1, true)
checkErr(t, err)
go sc1.Serve(echoStream)
}
}()
return func() {
closed <- struct{}{}
}
}
func SubtestSimpleWrite(t *testing.T, tr smux.Transport) {
l, err := net.Listen("tcp", "localhost:0")
checkErr(t, err)
log("listening at %s", l.Addr().String())
done := GoServe(t, tr, l)
defer done()
log("dialing to %s", l.Addr().String())
nc1, err := net.Dial("tcp", l.Addr().String())
checkErr(t, err)
defer nc1.Close()
log("wrapping conn")
c1, err := tr.NewConn(nc1, false)
checkErr(t, err)
defer c1.Close()
// serve the outgoing conn, because some muxers assume
// that we _always_ call serve. (this is an error?)
go c1.Serve(smux.NoOpHandler)
log("creating stream")
s1, err := c1.OpenStream()
checkErr(t, err)
defer s1.Close()
buf1 := randBuf(4096)
log("writing %d bytes to stream", len(buf1))
_, err = s1.Write(buf1)
checkErr(t, err)
buf2 := make([]byte, len(buf1))
log("reading %d bytes from stream (echoed)", len(buf2))
_, err = s1.Read(buf2)
checkErr(t, err)
if string(buf2) != string(buf1) {
t.Error("buf1 and buf2 not equal: %s != %s", string(buf1), string(buf2))
}
log("done")
}
func SubtestStress(t *testing.T, opt Options) {
msgsize := 1 << 11
errs := make(chan error, 0) // dont block anything.
rateLimitN := 5000 // max of 5k funcs, because -race has 8k max.
rateLimitChan := make(chan struct{}, rateLimitN)
for i := 0; i < rateLimitN; i++ {
rateLimitChan <- struct{}{}
}
rateLimit := func(f func()) {
<-rateLimitChan
f()
rateLimitChan <- struct{}{}
}
writeStream := func(s smux.Stream, bufs chan<- []byte) {
log("writeStream %p, %d msgNum", s, opt.msgNum)
for i := 0; i < opt.msgNum; i++ {
buf := randBuf(msgsize)
bufs <- buf
log("%p writing %d bytes (message %d/%d #%x)", s, len(buf), i, opt.msgNum, buf[:3])
if _, err := s.Write(buf); err != nil {
errs <- fmt.Errorf("s.Write(buf): %s", err)
continue
}
}
}
readStream := func(s smux.Stream, bufs <-chan []byte) {
log("readStream %p, %d msgNum", s, opt.msgNum)
buf2 := make([]byte, msgsize)
i := 0
for buf1 := range bufs {
i++
log("%p reading %d bytes (message %d/%d #%x)", s, len(buf1), i-1, opt.msgNum, buf1[:3])
if _, err := io.ReadFull(s, buf2); err != nil {
errs <- fmt.Errorf("io.ReadFull(s, buf2): %s", err)
log("%p failed to read %d bytes (message %d/%d #%x)", s, len(buf1), i-1, opt.msgNum, buf1[:3])
continue
}
if !bytes.Equal(buf1, buf2) {
errs <- fmt.Errorf("buffers not equal (%x != %x)", buf1[:3], buf2[:3])
}
}
}
openStreamAndRW := func(c smux.Conn) {
log("openStreamAndRW %p, %d opt.msgNum", c, opt.msgNum)
s, err := c.OpenStream()
if err != nil {
errs <- fmt.Errorf("Failed to create NewStream: %s", err)
return
}
bufs := make(chan []byte, opt.msgNum)
go func() {
writeStream(s, bufs)
close(bufs)
}()
readStream(s, bufs)
s.Close()
}
openConnAndRW := func() {
log("openConnAndRW")
l, err := net.Listen("tcp", "localhost:0")
checkErr(t, err)
done := GoServe(t, opt.tr, l)
defer done()
nla := l.Addr()
nc, err := net.Dial(nla.Network(), nla.String())
checkErr(t, err)
if err != nil {
t.Fatal(fmt.Errorf("net.Dial(%s, %s): %s", nla.Network(), nla.String(), err))
return
}
c, err := opt.tr.NewConn(nc, false)
if err != nil {
t.Fatal(fmt.Errorf("a.AddConn(%s <--> %s): %s", nc.LocalAddr(), nc.RemoteAddr(), err))
return
}
// serve the outgoing conn, because some muxers assume
// that we _always_ call serve. (this is an error?)
go c.Serve(func(s smux.Stream) {
log("serving connection")
echoStream(s)
s.Close()
})
var wg sync.WaitGroup
for i := 0; i < opt.streamNum; i++ {
wg.Add(1)
go rateLimit(func() {
defer wg.Done()
openStreamAndRW(c)
})
}
wg.Wait()
c.Close()
}
openConnsAndRW := func() {
log("openConnsAndRW, %d conns", opt.connNum)
var wg sync.WaitGroup
for i := 0; i < opt.connNum; i++ {
wg.Add(1)
go rateLimit(func() {
defer wg.Done()
openConnAndRW()
})
}
wg.Wait()
}
go func() {
openConnsAndRW()
close(errs) // done
}()
for err := range errs {
t.Error(err)
}
}
func SubtestStress1Conn1Stream1Msg(t *testing.T, tr smux.Transport) {
SubtestStress(t, Options{
tr: tr,
connNum: 1,
streamNum: 1,
msgNum: 1,
msgMax: 100,
msgMin: 100,
})
}
func SubtestStress1Conn1Stream100Msg(t *testing.T, tr smux.Transport) {
SubtestStress(t, Options{
tr: tr,
connNum: 1,
streamNum: 1,
msgNum: 100,
msgMax: 100,
msgMin: 100,
})
}
func SubtestStress1Conn100Stream100Msg(t *testing.T, tr smux.Transport) {
SubtestStress(t, Options{
tr: tr,
connNum: 1,
streamNum: 100,
msgNum: 100,
msgMax: 100,
msgMin: 100,
})
}
func SubtestStress50Conn10Stream50Msg(t *testing.T, tr smux.Transport) {
SubtestStress(t, Options{
tr: tr,
connNum: 50,
streamNum: 10,
msgNum: 50,
msgMax: 100,
msgMin: 100,
})
}
func SubtestStress1Conn1000Stream10Msg(t *testing.T, tr smux.Transport) {
SubtestStress(t, Options{
tr: tr,
connNum: 1,
streamNum: 1000,
msgNum: 10,
msgMax: 100,
msgMin: 100,
})
}
func SubtestStress1Conn100Stream100Msg10MB(t *testing.T, tr smux.Transport) {
SubtestStress(t, Options{
tr: tr,
connNum: 1,
streamNum: 100,
msgNum: 100,
msgMax: 10000,
msgMin: 1000,
})
}
func SubtestAll(t *testing.T, tr smux.Transport) {
tests := []TransportTest{
SubtestSimpleWrite,
SubtestStress1Conn1Stream1Msg,
SubtestStress1Conn1Stream100Msg,
SubtestStress1Conn100Stream100Msg,
SubtestStress50Conn10Stream50Msg,
SubtestStress1Conn1000Stream10Msg,
SubtestStress1Conn100Stream100Msg10MB,
}
for _, f := range tests {
if testing.Verbose() {
fmt.Fprintf(os.Stderr, "==== RUN %s\n", GetFunctionName(f))
}
f(t, tr)
}
}
type TransportTest func(t *testing.T, tr smux.Transport)
func TestNoOp(t *testing.T) {}
func GetFunctionName(i interface{}) string {
return runtime.FuncForPC(reflect.ValueOf(i).Pointer()).Name()
}
package sm_yamux
import (
"io/ioutil"
"net"
"time"
smux "QmPxuHs2NQjz16gnvndgkzHkm5PjtqbB5rwoSpLusBkQ7Q/go-stream-muxer"
yamux "QmT98GixWnJUj3vHfoURNQa5uk8FxxmZVF5nv3AicXp2R1/yamux"
)
// stream implements smux.Stream using a ss.Stream
type stream yamux.Stream
func (s *stream) yamuxStream() *yamux.Stream {
return (*yamux.Stream)(s)
}
func (s *stream) Read(buf []byte) (int, error) {
return s.yamuxStream().Read(buf)
}
func (s *stream) Write(buf []byte) (int, error) {
return s.yamuxStream().Write(buf)
}
func (s *stream) Close() error {
return s.yamuxStream().Close()
}
// Conn is a connection to a remote peer.
type conn yamux.Session
func (c *conn) yamuxSession() *yamux.Session {
return (*yamux.Session)(c)
}
func (c *conn) Close() error {
return c.yamuxSession().Close()
}
func (c *conn) IsClosed() bool {
return c.yamuxSession().IsClosed()
}
// OpenStream creates a new stream.
func (c *conn) OpenStream() (smux.Stream, error) {
s, err := c.yamuxSession().OpenStream()
if err != nil {
return nil, err
}
return (*stream)(s), nil
}
// AcceptStream accepts a stream opened by the other side.
func (c *conn) AcceptStream() (smux.Stream, error) {
s, err := c.yamuxSession().AcceptStream()
return (*stream)(s), err
}
// Serve starts listening for incoming requests and handles them
// using given StreamHandler
func (c *conn) Serve(handler smux.StreamHandler) {
for { // accept loop
s, err := c.AcceptStream()
if err != nil {
return // err always means closed.
}
go handler(s)
}
}
// Transport is a go-peerstream transport that constructs
// yamux-backed connections.
type Transport yamux.Config
// DefaultTransport has default settings for yamux
var DefaultTransport = (*Transport)(&yamux.Config{
AcceptBacklog: 256, // from yamux.DefaultConfig
EnableKeepAlive: true, // from yamux.DefaultConfig
KeepAliveInterval: 30 * time.Second, // from yamux.DefaultConfig
MaxStreamWindowSize: uint32(256 * 1024), // from yamux.DefaultConfig
LogOutput: ioutil.Discard,
})
func (t *Transport) NewConn(nc net.Conn, isServer bool) (smux.Conn, error) {
var s *yamux.Session
var err error
if isServer {
s, err = yamux.Server(nc, t.Config())
} else {
s, err = yamux.Client(nc, t.Config())
}
return (*conn)(s), err
}
func (t *Transport) Config() *yamux.Config {
return (*yamux.Config)(t)
}
package sm_yamux
import (
"testing"
test "QmPxuHs2NQjz16gnvndgkzHkm5PjtqbB5rwoSpLusBkQ7Q/go-stream-muxer/test"
)
func TestYamuxTransport(t *testing.T) {
test.SubtestAll(t, DefaultTransport)
}
Mozilla Public License, version 2.0
1. Definitions
1.1. "Contributor"
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. "Incompatible With Secondary Licenses"
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the terms of
a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in a
separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible, whether
at the time of the initial grant or subsequently, any and all of the
rights conveyed by this License.
1.10. "Modifications"
means any of the following:
a. any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the License,
by the making, using, selling, offering for sale, having made, import,
or transfer of either its Contributions or its Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, "control" means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights to
grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter the
recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty, or
limitations of liability) contained within the Source Code Form of the
Covered Software, except that You may alter any license notices to the
extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute,
judicial order, or regulation then You must: (a) comply with the terms of
this License to the maximum extent possible; and (b) describe the
limitations and the code they affect. Such description must be placed in a
text file included with all distributions of the Covered Software under
this License. Except to the extent prohibited by statute or regulation,
such description must be sufficiently detailed for a recipient of ordinary
skill to be able to understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing
basis, if such Contributor fails to notify You of the non-compliance by
some reasonable means prior to 60 days after You have come back into
compliance. Moreover, Your grants from a particular Contributor are
reinstated on an ongoing basis if such Contributor notifies You of the
non-compliance by some reasonable means, this is the first time You have
received notice of non-compliance with this License from such
Contributor, and You become compliant prior to 30 days after Your receipt
of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an "as is" basis,
without warranty of any kind, either expressed, implied, or statutory,
including, without limitation, warranties that the Covered Software is free
of defects, merchantable, fit for a particular purpose or non-infringing.
The entire risk as to the quality and performance of the Covered Software
is with You. Should any Covered Software prove defective in any respect,
You (not any Contributor) assume the cost of any necessary servicing,
repair, or correction. This disclaimer of warranty constitutes an essential
part of this License. No use of any Covered Software is authorized under
this License except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from
such party's negligence to the extent applicable law prohibits such
limitation. Some jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and limitation may
not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts
of a jurisdiction where the defendant maintains its principal place of
business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions. Nothing
in this Section shall prevent a party's ability to bring cross-claims or
counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides that
the language of a contract shall be construed against the drafter shall not
be used to construe this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses If You choose to distribute Source Code Form that is
Incompatible With Secondary Licenses under the terms of this version of
the License, the notice described in Exhibit B of this License must be
attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file,
then You may include the notice in a location (such as a LICENSE file in a
relevant directory) where a recipient would be likely to look for such a
notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
This Source Code Form is "Incompatible
With Secondary Licenses", as defined by
the Mozilla Public License, v. 2.0.
\ No newline at end of file
# Yamux
Yamux (Yet another Multiplexer) is a multiplexing library for Golang.
It relies on an underlying connection to provide reliability
and ordering, such as TCP or Unix domain sockets, and provides
stream-oriented multiplexing. It is inspired by SPDY but is not
interoperable with it.
Yamux features include:
* Bi-directional streams
* Streams can be opened by either client or server
* Useful for NAT traversal
* Server-side push support
* Flow control
* Avoid starvation
* Back-pressure to prevent overwhelming a receiver
* Keep Alives
* Enables persistent connections over a load balancer
* Efficient
* Enables thousands of logical streams with low overhead
## Documentation
For complete documentation, see the associated [Godoc](http://godoc.org/github.com/hashicorp/yamux).
## Specification
The full specification for Yamux is provided in the `spec.md` file.
It can be used as a guide to implementors of interoperable libraries.
## Usage
Using Yamux is remarkably simple:
```go
func client() {
// Get a TCP connection
conn, err := net.Dial(...)
if err != nil {
panic(err)
}
// Setup client side of yamux
session, err := yamux.Client(conn, nil)
if err != nil {
panic(err)
}
// Open a new stream
stream, err := session.Open()
if err != nil {
panic(err)
}
// Stream implements net.Conn
stream.Write([]byte("ping"))
}
func server() {
// Accept a TCP connection
conn, err := listener.Accept()
if err != nil {
panic(err)
}
// Setup server side of yamux
session, err := yamux.Server(conn, nil)
if err != nil {
panic(err)
}
// Accept a stream
stream, err := session.Accept()
if err != nil {
panic(err)
}
// Listen for a message
buf := make([]byte, 4)
stream.Read(buf)
}
```
package yamux
import (
"fmt"
"net"
)
// hasAddr is used to get the address from the underlying connection
type hasAddr interface {
LocalAddr() net.Addr
RemoteAddr() net.Addr
}
// yamuxAddr is used when we cannot get the underlying address
type yamuxAddr struct {
Addr string
}
func (*yamuxAddr) Network() string {
return "yamux"
}
func (y *yamuxAddr) String() string {
return fmt.Sprintf("yamux:%s", y.Addr)
}
// Addr is used to get the address of the listener.
func (s *Session) Addr() net.Addr {
return s.LocalAddr()
}
// LocalAddr is used to get the local address of the
// underlying connection.
func (s *Session) LocalAddr() net.Addr {
addr, ok := s.conn.(hasAddr)
if !ok {
return &yamuxAddr{"local"}
}
return addr.LocalAddr()
}
// RemoteAddr is used to get the address of remote end
// of the underlying connection
func (s *Session) RemoteAddr() net.Addr {
addr, ok := s.conn.(hasAddr)
if !ok {
return &yamuxAddr{"remote"}
}
return addr.RemoteAddr()
}
// LocalAddr returns the local address
func (s *Stream) LocalAddr() net.Addr {
return s.session.LocalAddr()
}
// LocalAddr returns the remote address
func (s *Stream) RemoteAddr() net.Addr {
return s.session.RemoteAddr()
}
package yamux
import (
"testing"
)
func BenchmarkPing(b *testing.B) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
for i := 0; i < b.N; i++ {
rtt, err := client.Ping()
if err != nil {
b.Fatalf("err: %v", err)
}
if rtt == 0 {
b.Fatalf("bad: %v", rtt)
}
}
}
func BenchmarkAccept(b *testing.B) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
go func() {
for i := 0; i < b.N; i++ {
stream, err := server.AcceptStream()
if err != nil {
return
}
stream.Close()
}
}()
for i := 0; i < b.N; i++ {
stream, err := client.Open()
if err != nil {
b.Fatalf("err: %v", err)
}
stream.Close()
}
}
func BenchmarkSendRecv(b *testing.B) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
sendBuf := make([]byte, 512)
recvBuf := make([]byte, 512)
doneCh := make(chan struct{})
go func() {
stream, err := server.AcceptStream()
if err != nil {
return
}
defer stream.Close()
for i := 0; i < b.N; i++ {
if _, err := stream.Read(recvBuf); err != nil {
b.Fatalf("err: %v", err)
}
}
close(doneCh)
}()
stream, err := client.Open()
if err != nil {
b.Fatalf("err: %v", err)
}
defer stream.Close()
for i := 0; i < b.N; i++ {
if _, err := stream.Write(sendBuf); err != nil {
b.Fatalf("err: %v", err)
}
}
<-doneCh
}
package yamux
import (
"encoding/binary"
"fmt"
)
var (
// ErrInvalidVersion means we received a frame with an
// invalid version
ErrInvalidVersion = fmt.Errorf("invalid protocol version")
// ErrInvalidMsgType means we received a frame with an
// invalid message type
ErrInvalidMsgType = fmt.Errorf("invalid msg type")
// ErrSessionShutdown is used if there is a shutdown during
// an operation
ErrSessionShutdown = fmt.Errorf("session shutdown")
// ErrStreamsExhausted is returned if we have no more
// stream ids to issue
ErrStreamsExhausted = fmt.Errorf("streams exhausted")
// ErrDuplicateStream is used if a duplicate stream is
// opened inbound
ErrDuplicateStream = fmt.Errorf("duplicate stream initiated")
// ErrReceiveWindowExceeded indicates the window was exceeded
ErrRecvWindowExceeded = fmt.Errorf("recv window exceeded")
// ErrTimeout is used when we reach an IO deadline
ErrTimeout = fmt.Errorf("i/o deadline reached")
// ErrStreamClosed is returned when using a closed stream
ErrStreamClosed = fmt.Errorf("stream closed")
// ErrUnexpectedFlag is set when we get an unexpected flag
ErrUnexpectedFlag = fmt.Errorf("unexpected flag")
// ErrRemoteGoAway is used when we get a go away from the other side
ErrRemoteGoAway = fmt.Errorf("remote end is not accepting connections")
// ErrConnectionReset is sent if a stream is reset. This can happen
// if the backlog is exceeded, or if there was a remote GoAway.
ErrConnectionReset = fmt.Errorf("connection reset")
)
const (
// protoVersion is the only version we support
protoVersion uint8 = 0
)
const (
// Data is used for data frames. They are followed
// by length bytes worth of payload.
typeData uint8 = iota
// WindowUpdate is used to change the window of
// a given stream. The length indicates the delta
// update to the window.
typeWindowUpdate
// Ping is sent as a keep-alive or to measure
// the RTT. The StreamID and Length value are echoed
// back in the response.
typePing
// GoAway is sent to terminate a session. The StreamID
// should be 0 and the length is an error code.
typeGoAway
)
const (
// SYN is sent to signal a new stream. May
// be sent with a data payload
flagSYN uint16 = 1 << iota
// ACK is sent to acknowledge a new stream. May
// be sent with a data payload
flagACK
// FIN is sent to half-close the given stream.
// May be sent with a data payload.
flagFIN
// RST is used to hard close a given stream.
flagRST
)
const (
// initialStreamWindow is the initial stream window size
initialStreamWindow uint32 = 256 * 1024
)
const (
// goAwayNormal is sent on a normal termination
goAwayNormal uint32 = iota
// goAwayProtoErr sent on a protocol error
goAwayProtoErr
// goAwayInternalErr sent on an internal error
goAwayInternalErr
)
const (
sizeOfVersion = 1
sizeOfType = 1
sizeOfFlags = 2
sizeOfStreamID = 4
sizeOfLength = 4
headerSize = sizeOfVersion + sizeOfType + sizeOfFlags +
sizeOfStreamID + sizeOfLength
)
type header []byte
func (h header) Version() uint8 {
return h[0]
}
func (h header) MsgType() uint8 {
return h[1]
}
func (h header) Flags() uint16 {
return binary.BigEndian.Uint16(h[2:4])
}
func (h header) StreamID() uint32 {
return binary.BigEndian.Uint32(h[4:8])
}
func (h header) Length() uint32 {
return binary.BigEndian.Uint32(h[8:12])
}
func (h header) String() string {
return fmt.Sprintf("Vsn:%d Type:%d Flags:%d StreamID:%d Length:%d",
h.Version(), h.MsgType(), h.Flags(), h.StreamID(), h.Length())
}
func (h header) encode(msgType uint8, flags uint16, streamID uint32, length uint32) {
h[0] = protoVersion
h[1] = msgType
binary.BigEndian.PutUint16(h[2:4], flags)
binary.BigEndian.PutUint32(h[4:8], streamID)
binary.BigEndian.PutUint32(h[8:12], length)
}
package yamux
import (
"testing"
)
func TestConst(t *testing.T) {
if protoVersion != 0 {
t.Fatalf("bad: %v", protoVersion)
}
if typeData != 0 {
t.Fatalf("bad: %v", typeData)
}
if typeWindowUpdate != 1 {
t.Fatalf("bad: %v", typeWindowUpdate)
}
if typePing != 2 {
t.Fatalf("bad: %v", typePing)
}
if typeGoAway != 3 {
t.Fatalf("bad: %v", typeGoAway)
}
if flagSYN != 1 {
t.Fatalf("bad: %v", flagSYN)
}
if flagACK != 2 {
t.Fatalf("bad: %v", flagACK)
}
if flagFIN != 4 {
t.Fatalf("bad: %v", flagFIN)
}
if flagRST != 8 {
t.Fatalf("bad: %v", flagRST)
}
if goAwayNormal != 0 {
t.Fatalf("bad: %v", goAwayNormal)
}
if goAwayProtoErr != 1 {
t.Fatalf("bad: %v", goAwayProtoErr)
}
if goAwayInternalErr != 2 {
t.Fatalf("bad: %v", goAwayInternalErr)
}
if headerSize != 12 {
t.Fatalf("bad header size")
}
}
func TestEncodeDecode(t *testing.T) {
hdr := header(make([]byte, headerSize))
hdr.encode(typeWindowUpdate, flagACK|flagRST, 1234, 4321)
if hdr.Version() != protoVersion {
t.Fatalf("bad: %v", hdr)
}
if hdr.MsgType() != typeWindowUpdate {
t.Fatalf("bad: %v", hdr)
}
if hdr.Flags() != flagACK|flagRST {
t.Fatalf("bad: %v", hdr)
}
if hdr.StreamID() != 1234 {
t.Fatalf("bad: %v", hdr)
}
if hdr.Length() != 4321 {
t.Fatalf("bad: %v", hdr)
}
}
package yamux
import (
"fmt"
"io"
"os"
"time"
)
// Config is used to tune the Yamux session
type Config struct {
// AcceptBacklog is used to limit how many streams may be
// waiting an accept.
AcceptBacklog int
// EnableKeepalive is used to do a period keep alive
// messages using a ping.
EnableKeepAlive bool
// KeepAliveInterval is how often to perform the keep alive
KeepAliveInterval time.Duration
// MaxStreamWindowSize is used to control the maximum
// window size that we allow for a stream.
MaxStreamWindowSize uint32
// LogOutput is used to control the log destination
LogOutput io.Writer
}
// DefaultConfig is used to return a default configuration
func DefaultConfig() *Config {
return &Config{
AcceptBacklog: 256,
EnableKeepAlive: true,
KeepAliveInterval: 30 * time.Second,
MaxStreamWindowSize: initialStreamWindow,
LogOutput: os.Stderr,
}
}
// VerifyConfig is used to verify the sanity of configuration
func VerifyConfig(config *Config) error {
if config.AcceptBacklog <= 0 {
return fmt.Errorf("backlog must be positive")
}
if config.KeepAliveInterval == 0 {
return fmt.Errorf("keep-alive interval must be positive")
}
if config.MaxStreamWindowSize < initialStreamWindow {
return fmt.Errorf("MaxStreamWindowSize must be larger than %d", initialStreamWindow)
}
return nil
}
// Server is used to initialize a new server-side connection.
// There must be at most one server-side connection. If a nil config is
// provided, the DefaultConfiguration will be used.
func Server(conn io.ReadWriteCloser, config *Config) (*Session, error) {
if config == nil {
config = DefaultConfig()
}
if err := VerifyConfig(config); err != nil {
return nil, err
}
return newSession(config, conn, false), nil
}
// Client is used to initialize a new client-side connection.
// There must be at most one client-side connection.
func Client(conn io.ReadWriteCloser, config *Config) (*Session, error) {
if config == nil {
config = DefaultConfig()
}
if err := VerifyConfig(config); err != nil {
return nil, err
}
return newSession(config, conn, true), nil
}
{
"name": "yamux",
"author": "whyrusleeping",
"version": "1.0.0",
"language": "go",
"gx": {
"dvcsimport": "github.com/hashicorp/yamux"
}
}
\ No newline at end of file
package yamux
import (
"bufio"
"fmt"
"io"
"io/ioutil"
"log"
"math"
"net"
"strings"
"sync"
"sync/atomic"
"time"
)
// Session is used to wrap a reliable ordered connection and to
// multiplex it into multiple streams.
type Session struct {
// remoteGoAway indicates the remote side does
// not want futher connections. Must be first for alignment.
remoteGoAway int32
// localGoAway indicates that we should stop
// accepting futher connections. Must be first for alignment.
localGoAway int32
// nextStreamID is the next stream we should
// send. This depends if we are a client/server.
nextStreamID uint32
// config holds our configuration
config *Config
// logger is used for our logs
logger *log.Logger
// conn is the underlying connection
conn io.ReadWriteCloser
// bufRead is a buffered reader
bufRead *bufio.Reader
// pings is used to track inflight pings
pings map[uint32]chan struct{}
pingID uint32
pingLock sync.Mutex
// streams maps a stream id to a stream
streams map[uint32]*Stream
streamLock sync.Mutex
// synCh acts like a semaphore. It is sized to the AcceptBacklog which
// is assumed to be symmetric between the client and server. This allows
// the client to avoid exceeding the backlog and instead blocks the open.
synCh chan struct{}
// acceptCh is used to pass ready streams to the client
acceptCh chan *Stream
// sendCh is used to mark a stream as ready to send,
// or to send a header out directly.
sendCh chan sendReady
// recvDoneCh is closed when recv() exits to avoid a race
// between stream registration and stream shutdown
recvDoneCh chan struct{}
// shutdown is used to safely close a session
shutdown bool
shutdownErr error
shutdownCh chan struct{}
shutdownLock sync.Mutex
}
// sendReady is used to either mark a stream as ready
// or to directly send a header
type sendReady struct {
Hdr []byte
Body io.Reader
Err chan error
}
// newSession is used to construct a new session
func newSession(config *Config, conn io.ReadWriteCloser, client bool) *Session {
s := &Session{
config: config,
logger: log.New(config.LogOutput, "", log.LstdFlags),
conn: conn,
bufRead: bufio.NewReader(conn),
pings: make(map[uint32]chan struct{}),
streams: make(map[uint32]*Stream),
synCh: make(chan struct{}, config.AcceptBacklog),
acceptCh: make(chan *Stream, config.AcceptBacklog),
sendCh: make(chan sendReady, 64),
recvDoneCh: make(chan struct{}),
shutdownCh: make(chan struct{}),
}
if client {
s.nextStreamID = 1
} else {
s.nextStreamID = 2
}
go s.recv()
go s.send()
if config.EnableKeepAlive {
go s.keepalive()
}
return s
}
// IsClosed does a safe check to see if we have shutdown
func (s *Session) IsClosed() bool {
select {
case <-s.shutdownCh:
return true
default:
return false
}
}
// NumStreams returns the number of currently open streams
func (s *Session) NumStreams() int {
s.streamLock.Lock()
num := len(s.streams)
s.streamLock.Unlock()
return num
}
// Open is used to create a new stream as a net.Conn
func (s *Session) Open() (net.Conn, error) {
return s.OpenStream()
}
// OpenStream is used to create a new stream
func (s *Session) OpenStream() (*Stream, error) {
if s.IsClosed() {
return nil, ErrSessionShutdown
}
if atomic.LoadInt32(&s.remoteGoAway) == 1 {
return nil, ErrRemoteGoAway
}
// Block if we have too many inflight SYNs
select {
case s.synCh <- struct{}{}:
case <-s.shutdownCh:
return nil, ErrSessionShutdown
}
GET_ID:
// Get and ID, and check for stream exhaustion
id := atomic.LoadUint32(&s.nextStreamID)
if id >= math.MaxUint32-1 {
return nil, ErrStreamsExhausted
}
if !atomic.CompareAndSwapUint32(&s.nextStreamID, id, id+2) {
goto GET_ID
}
// Register the stream
stream := newStream(s, id, streamInit)
s.streamLock.Lock()
s.streams[id] = stream
s.streamLock.Unlock()
// Send the window update to create
if err := stream.sendWindowUpdate(); err != nil {
return nil, err
}
return stream, nil
}
// Accept is used to block until the next available stream
// is ready to be accepted.
func (s *Session) Accept() (net.Conn, error) {
return s.AcceptStream()
}
// AcceptStream is used to block until the next available stream
// is ready to be accepted.
func (s *Session) AcceptStream() (*Stream, error) {
select {
case stream := <-s.acceptCh:
if err := stream.sendWindowUpdate(); err != nil {
return nil, err
}
return stream, nil
case <-s.shutdownCh:
return nil, s.shutdownErr
}
}
// Close is used to close the session and all streams.
// Attempts to send a GoAway before closing the connection.
func (s *Session) Close() error {
s.shutdownLock.Lock()
defer s.shutdownLock.Unlock()
if s.shutdown {
return nil
}
s.shutdown = true
if s.shutdownErr == nil {
s.shutdownErr = ErrSessionShutdown
}
close(s.shutdownCh)
s.conn.Close()
<-s.recvDoneCh
s.streamLock.Lock()
defer s.streamLock.Unlock()
for _, stream := range s.streams {
stream.forceClose()
}
return nil
}
// exitErr is used to handle an error that is causing the
// session to terminate.
func (s *Session) exitErr(err error) {
s.shutdownLock.Lock()
if s.shutdownErr == nil {
s.shutdownErr = err
}
s.shutdownLock.Unlock()
s.Close()
}
// GoAway can be used to prevent accepting further
// connections. It does not close the underlying conn.
func (s *Session) GoAway() error {
return s.waitForSend(s.goAway(goAwayNormal), nil)
}
// goAway is used to send a goAway message
func (s *Session) goAway(reason uint32) header {
atomic.SwapInt32(&s.localGoAway, 1)
hdr := header(make([]byte, headerSize))
hdr.encode(typeGoAway, 0, 0, reason)
return hdr
}
// Ping is used to measure the RTT response time
func (s *Session) Ping() (time.Duration, error) {
// Get a channel for the ping
ch := make(chan struct{})
// Get a new ping id, mark as pending
s.pingLock.Lock()
id := s.pingID
s.pingID++
s.pings[id] = ch
s.pingLock.Unlock()
// Send the ping request
hdr := header(make([]byte, headerSize))
hdr.encode(typePing, flagSYN, 0, id)
if err := s.waitForSend(hdr, nil); err != nil {
return 0, err
}
// Wait for a response
start := time.Now()
select {
case <-ch:
case <-s.shutdownCh:
return 0, ErrSessionShutdown
}
// Compute the RTT
return time.Now().Sub(start), nil
}
// keepalive is a long running goroutine that periodically does
// a ping to keep the connection alive.
func (s *Session) keepalive() {
for {
select {
case <-time.After(s.config.KeepAliveInterval):
s.Ping()
case <-s.shutdownCh:
return
}
}
}
// waitForSendErr waits to send a header, checking for a potential shutdown
func (s *Session) waitForSend(hdr header, body io.Reader) error {
errCh := make(chan error, 1)
return s.waitForSendErr(hdr, body, errCh)
}
// waitForSendErr waits to send a header, checking for a potential shutdown
func (s *Session) waitForSendErr(hdr header, body io.Reader, errCh chan error) error {
ready := sendReady{Hdr: hdr, Body: body, Err: errCh}
select {
case s.sendCh <- ready:
case <-s.shutdownCh:
return ErrSessionShutdown
}
select {
case err := <-errCh:
return err
case <-s.shutdownCh:
return ErrSessionShutdown
}
}
// sendNoWait does a send without waiting
func (s *Session) sendNoWait(hdr header) error {
select {
case s.sendCh <- sendReady{Hdr: hdr}:
return nil
case <-s.shutdownCh:
return ErrSessionShutdown
}
}
// send is a long running goroutine that sends data
func (s *Session) send() {
for {
select {
case ready := <-s.sendCh:
// Send a header if ready
if ready.Hdr != nil {
sent := 0
for sent < len(ready.Hdr) {
n, err := s.conn.Write(ready.Hdr[sent:])
if err != nil {
s.logger.Printf("[ERR] yamux: Failed to write header: %v", err)
asyncSendErr(ready.Err, err)
s.exitErr(err)
return
}
sent += n
}
}
// Send data from a body if given
if ready.Body != nil {
_, err := io.Copy(s.conn, ready.Body)
if err != nil {
s.logger.Printf("[ERR] yamux: Failed to write body: %v", err)
asyncSendErr(ready.Err, err)
s.exitErr(err)
return
}
}
// No error, successful send
asyncSendErr(ready.Err, nil)
case <-s.shutdownCh:
return
}
}
}
// recv is a long running goroutine that accepts new data
func (s *Session) recv() {
if err := s.recvLoop(); err != nil {
s.exitErr(err)
}
}
// recvLoop continues to receive data until a fatal error is encountered
func (s *Session) recvLoop() error {
defer close(s.recvDoneCh)
hdr := header(make([]byte, headerSize))
var handler func(header) error
for {
// Read the header
if _, err := io.ReadFull(s.bufRead, hdr); err != nil {
if err != io.EOF && !strings.Contains(err.Error(), "closed") && !strings.Contains(err.Error(), "reset by peer") {
s.logger.Printf("[ERR] yamux: Failed to read header: %v", err)
}
return err
}
// Verify the version
if hdr.Version() != protoVersion {
s.logger.Printf("[ERR] yamux: Invalid protocol version: %d", hdr.Version())
return ErrInvalidVersion
}
// Switch on the type
switch hdr.MsgType() {
case typeData:
handler = s.handleStreamMessage
case typeWindowUpdate:
handler = s.handleStreamMessage
case typeGoAway:
handler = s.handleGoAway
case typePing:
handler = s.handlePing
default:
return ErrInvalidMsgType
}
// Invoke the handler
if err := handler(hdr); err != nil {
return err
}
}
}
// handleStreamMessage handles either a data or window update frame
func (s *Session) handleStreamMessage(hdr header) error {
// Check for a new stream creation
id := hdr.StreamID()
flags := hdr.Flags()
if flags&flagSYN == flagSYN {
if err := s.incomingStream(id); err != nil {
return err
}
}
// Get the stream
s.streamLock.Lock()
stream := s.streams[id]
s.streamLock.Unlock()
// If we do not have a stream, likely we sent a RST
if stream == nil {
// Drain any data on the wire
if hdr.MsgType() == typeData && hdr.Length() > 0 {
s.logger.Printf("[WARN] yamux: Discarding data for stream: %d", id)
if _, err := io.CopyN(ioutil.Discard, s.bufRead, int64(hdr.Length())); err != nil {
s.logger.Printf("[ERR] yamux: Failed to discard data: %v", err)
return nil
}
} else {
s.logger.Printf("[WARN] yamux: frame for missing stream: %v", hdr)
}
return nil
}
// Check if this is a window update
if hdr.MsgType() == typeWindowUpdate {
if err := stream.incrSendWindow(hdr, flags); err != nil {
s.sendNoWait(s.goAway(goAwayProtoErr))
return err
}
return nil
}
// Read the new data
if err := stream.readData(hdr, flags, s.bufRead); err != nil {
s.sendNoWait(s.goAway(goAwayProtoErr))
return err
}
return nil
}
// handlePing is invokde for a typePing frame
func (s *Session) handlePing(hdr header) error {
flags := hdr.Flags()
pingID := hdr.Length()
// Check if this is a query, respond back
if flags&flagSYN == flagSYN {
hdr := header(make([]byte, headerSize))
hdr.encode(typePing, flagACK, 0, pingID)
s.sendNoWait(hdr)
return nil
}
// Handle a response
s.pingLock.Lock()
ch := s.pings[pingID]
if ch != nil {
delete(s.pings, pingID)
close(ch)
}
s.pingLock.Unlock()
return nil
}
// handleGoAway is invokde for a typeGoAway frame
func (s *Session) handleGoAway(hdr header) error {
code := hdr.Length()
switch code {
case goAwayNormal:
atomic.SwapInt32(&s.remoteGoAway, 1)
case goAwayProtoErr:
s.logger.Printf("[ERR] yamux: received protocol error go away")
return fmt.Errorf("yamux protocol error")
case goAwayInternalErr:
s.logger.Printf("[ERR] yamux: received internal error go away")
return fmt.Errorf("remote yamux internal error")
default:
s.logger.Printf("[ERR] yamux: received unexpected go away")
return fmt.Errorf("unexpected go away received")
}
return nil
}
// incomingStream is used to create a new incoming stream
func (s *Session) incomingStream(id uint32) error {
// Reject immediately if we are doing a go away
if atomic.LoadInt32(&s.localGoAway) == 1 {
hdr := header(make([]byte, headerSize))
hdr.encode(typeWindowUpdate, flagRST, id, 0)
return s.sendNoWait(hdr)
}
// Allocate a new stream
stream := newStream(s, id, streamSYNReceived)
s.streamLock.Lock()
defer s.streamLock.Unlock()
// Check if stream already exists
if _, ok := s.streams[id]; ok {
s.logger.Printf("[ERR] yamux: duplicate stream declared")
s.sendNoWait(s.goAway(goAwayProtoErr))
return ErrDuplicateStream
}
// Register the stream
s.streams[id] = stream
// Check if we've exceeded the backlog
select {
case s.acceptCh <- stream:
return nil
default:
// Backlog exceeded! RST the stream
s.logger.Printf("[WARN] yamux: backlog exceeded, forcing connection reset")
delete(s.streams, id)
stream.sendHdr.encode(typeWindowUpdate, flagRST, id, 0)
return s.sendNoWait(stream.sendHdr)
}
}
// closeStream is used to close a stream once both sides have
// issued a close.
func (s *Session) closeStream(id uint32) {
s.streamLock.Lock()
delete(s.streams, id)
s.streamLock.Unlock()
}
// establishStream is used to mark a stream that was in the
// SYN Sent state as established.
func (s *Session) establishStream() {
select {
case <-s.synCh:
default:
panic("established stream without inflight syn")
}
}
package yamux
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"runtime"
"sync"
"testing"
"time"
)
type pipeConn struct {
reader *io.PipeReader
writer *io.PipeWriter
}
func (p *pipeConn) Read(b []byte) (int, error) {
return p.reader.Read(b)
}
func (p *pipeConn) Write(b []byte) (int, error) {
return p.writer.Write(b)
}
func (p *pipeConn) Close() error {
p.reader.Close()
return p.writer.Close()
}
func testConn() (io.ReadWriteCloser, io.ReadWriteCloser) {
read1, write1 := io.Pipe()
read2, write2 := io.Pipe()
return &pipeConn{read1, write2}, &pipeConn{read2, write1}
}
func testClientServer() (*Session, *Session) {
conf := DefaultConfig()
conf.AcceptBacklog = 64
conf.KeepAliveInterval = 100 * time.Millisecond
return testClientServerConfig(conf)
}
func testClientServerConfig(conf *Config) (*Session, *Session) {
conn1, conn2 := testConn()
client, _ := Client(conn1, conf)
server, _ := Server(conn2, conf)
return client, server
}
func TestPing(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
rtt, err := client.Ping()
if err != nil {
t.Fatalf("err: %v", err)
}
if rtt == 0 {
t.Fatalf("bad: %v", rtt)
}
rtt, err = server.Ping()
if err != nil {
t.Fatalf("err: %v", err)
}
if rtt == 0 {
t.Fatalf("bad: %v", rtt)
}
}
func TestAccept(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
if client.NumStreams() != 0 {
t.Fatalf("bad")
}
if server.NumStreams() != 0 {
t.Fatalf("bad")
}
wg := &sync.WaitGroup{}
wg.Add(4)
go func() {
defer wg.Done()
stream, err := server.AcceptStream()
if err != nil {
t.Fatalf("err: %v", err)
}
if id := stream.StreamID(); id != 1 {
t.Fatalf("bad: %v", id)
}
if err := stream.Close(); err != nil {
t.Fatalf("err: %v", err)
}
}()
go func() {
defer wg.Done()
stream, err := client.AcceptStream()
if err != nil {
t.Fatalf("err: %v", err)
}
if id := stream.StreamID(); id != 2 {
t.Fatalf("bad: %v", id)
}
if err := stream.Close(); err != nil {
t.Fatalf("err: %v", err)
}
}()
go func() {
defer wg.Done()
stream, err := server.OpenStream()
if err != nil {
t.Fatalf("err: %v", err)
}
if id := stream.StreamID(); id != 2 {
t.Fatalf("bad: %v", id)
}
if err := stream.Close(); err != nil {
t.Fatalf("err: %v", err)
}
}()
go func() {
defer wg.Done()
stream, err := client.OpenStream()
if err != nil {
t.Fatalf("err: %v", err)
}
if id := stream.StreamID(); id != 1 {
t.Fatalf("bad: %v", id)
}
if err := stream.Close(); err != nil {
t.Fatalf("err: %v", err)
}
}()
doneCh := make(chan struct{})
go func() {
wg.Wait()
close(doneCh)
}()
select {
case <-doneCh:
case <-time.After(time.Second):
panic("timeout")
}
}
func TestSendData_Small(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
wg := &sync.WaitGroup{}
wg.Add(2)
go func() {
defer wg.Done()
stream, err := server.AcceptStream()
if err != nil {
t.Fatalf("err: %v", err)
}
if server.NumStreams() != 1 {
t.Fatalf("bad")
}
buf := make([]byte, 4)
for i := 0; i < 1000; i++ {
n, err := stream.Read(buf)
if err != nil {
t.Fatalf("err: %v", err)
}
if n != 4 {
t.Fatalf("short read: %d", n)
}
if string(buf) != "test" {
t.Fatalf("bad: %s", buf)
}
}
if err := stream.Close(); err != nil {
t.Fatalf("err: %v", err)
}
}()
go func() {
defer wg.Done()
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
if client.NumStreams() != 1 {
t.Fatalf("bad")
}
for i := 0; i < 1000; i++ {
n, err := stream.Write([]byte("test"))
if err != nil {
t.Fatalf("err: %v", err)
}
if n != 4 {
t.Fatalf("short write %d", n)
}
}
if err := stream.Close(); err != nil {
t.Fatalf("err: %v", err)
}
}()
doneCh := make(chan struct{})
go func() {
wg.Wait()
close(doneCh)
}()
select {
case <-doneCh:
case <-time.After(time.Second):
panic("timeout")
}
if client.NumStreams() != 0 {
t.Fatalf("bad")
}
if server.NumStreams() != 0 {
t.Fatalf("bad")
}
}
func TestSendData_Large(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
data := make([]byte, 512*1024)
for idx := range data {
data[idx] = byte(idx % 256)
}
wg := &sync.WaitGroup{}
wg.Add(2)
go func() {
defer wg.Done()
stream, err := server.AcceptStream()
if err != nil {
t.Fatalf("err: %v", err)
}
buf := make([]byte, 4*1024)
for i := 0; i < 128; i++ {
n, err := stream.Read(buf)
if err != nil {
t.Fatalf("err: %v", err)
}
if n != 4*1024 {
t.Fatalf("short read: %d", n)
}
for idx := range buf {
if buf[idx] != byte(idx%256) {
t.Fatalf("bad: %v %v %v", i, idx, buf[idx])
}
}
}
if err := stream.Close(); err != nil {
t.Fatalf("err: %v", err)
}
}()
go func() {
defer wg.Done()
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
n, err := stream.Write(data)
if err != nil {
t.Fatalf("err: %v", err)
}
if n != len(data) {
t.Fatalf("short write %d", n)
}
if err := stream.Close(); err != nil {
t.Fatalf("err: %v", err)
}
}()
doneCh := make(chan struct{})
go func() {
wg.Wait()
close(doneCh)
}()
select {
case <-doneCh:
case <-time.After(time.Second):
panic("timeout")
}
}
func TestGoAway(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
if err := server.GoAway(); err != nil {
t.Fatalf("err: %v", err)
}
_, err := client.Open()
if err != ErrRemoteGoAway {
t.Fatalf("err: %v", err)
}
}
func TestManyStreams(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
wg := &sync.WaitGroup{}
acceptor := func(i int) {
defer wg.Done()
stream, err := server.AcceptStream()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
buf := make([]byte, 512)
for {
n, err := stream.Read(buf)
if err == io.EOF {
return
}
if err != nil {
t.Fatalf("err: %v", err)
}
if n == 0 {
t.Fatalf("err: %v", err)
}
}
}
sender := func(i int) {
defer wg.Done()
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
msg := fmt.Sprintf("%08d", i)
for i := 0; i < 1000; i++ {
n, err := stream.Write([]byte(msg))
if err != nil {
t.Fatalf("err: %v", err)
}
if n != len(msg) {
t.Fatalf("short write %d", n)
}
}
}
for i := 0; i < 50; i++ {
wg.Add(2)
go acceptor(i)
go sender(i)
}
wg.Wait()
}
func TestManyStreams_PingPong(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
wg := &sync.WaitGroup{}
ping := []byte("ping")
pong := []byte("pong")
acceptor := func(i int) {
defer wg.Done()
stream, err := server.AcceptStream()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
buf := make([]byte, 4)
for {
n, err := stream.Read(buf)
if err == io.EOF {
return
}
if err != nil {
t.Fatalf("err: %v", err)
}
if n != 4 {
t.Fatalf("err: %v", err)
}
if !bytes.Equal(buf, ping) {
t.Fatalf("bad: %s", buf)
}
n, err = stream.Write(pong)
if err != nil {
t.Fatalf("err: %v", err)
}
if n != 4 {
t.Fatalf("err: %v", err)
}
}
}
sender := func(i int) {
defer wg.Done()
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
buf := make([]byte, 4)
for i := 0; i < 1000; i++ {
n, err := stream.Write(ping)
if err != nil {
t.Fatalf("err: %v", err)
}
if n != 4 {
t.Fatalf("short write %d", n)
}
n, err = stream.Read(buf)
if err != nil {
t.Fatalf("err: %v", err)
}
if n != 4 {
t.Fatalf("err: %v", err)
}
if !bytes.Equal(buf, pong) {
t.Fatalf("bad: %s", buf)
}
}
}
for i := 0; i < 50; i++ {
wg.Add(2)
go acceptor(i)
go sender(i)
}
wg.Wait()
}
func TestHalfClose(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
if _, err := stream.Write([]byte("a")); err != nil {
t.Fatalf("err: %v", err)
}
stream2, err := server.Accept()
if err != nil {
t.Fatalf("err: %v", err)
}
stream2.Close() // Half close
buf := make([]byte, 4)
n, err := stream2.Read(buf)
if err != nil {
t.Fatalf("err: %v", err)
}
if n != 1 {
t.Fatalf("bad: %v", n)
}
// Send more
if _, err := stream.Write([]byte("bcd")); err != nil {
t.Fatalf("err: %v", err)
}
stream.Close()
// Read after close
n, err = stream2.Read(buf)
if err != nil {
t.Fatalf("err: %v", err)
}
if n != 3 {
t.Fatalf("bad: %v", n)
}
// EOF after close
n, err = stream2.Read(buf)
if err != io.EOF {
t.Fatalf("err: %v", err)
}
if n != 0 {
t.Fatalf("bad: %v", n)
}
}
func TestReadDeadline(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
stream2, err := server.Accept()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream2.Close()
if err := stream.SetReadDeadline(time.Now().Add(5 * time.Millisecond)); err != nil {
t.Fatalf("err: %v", err)
}
buf := make([]byte, 4)
if _, err := stream.Read(buf); err != ErrTimeout {
t.Fatalf("err: %v", err)
}
}
func TestWriteDeadline(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
stream2, err := server.Accept()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream2.Close()
if err := stream.SetWriteDeadline(time.Now().Add(50 * time.Millisecond)); err != nil {
t.Fatalf("err: %v", err)
}
buf := make([]byte, 512)
for i := 0; i < int(initialStreamWindow); i++ {
_, err := stream.Write(buf)
if err != nil && err == ErrTimeout {
return
} else if err != nil {
t.Fatalf("err: %v", err)
}
}
t.Fatalf("Expected timeout")
}
func TestBacklogExceeded(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
// Fill the backlog
max := client.config.AcceptBacklog
for i := 0; i < max; i++ {
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
if _, err := stream.Write([]byte("foo")); err != nil {
t.Fatalf("err: %v", err)
}
}
// Attempt to open a new stream
errCh := make(chan error, 1)
go func() {
_, err := client.Open()
errCh <- err
}()
// Shutdown the server
go func() {
time.Sleep(10 * time.Millisecond)
server.Close()
}()
select {
case err := <-errCh:
if err == nil {
t.Fatalf("open should fail")
}
case <-time.After(time.Second):
t.Fatalf("timeout")
}
}
func TestKeepAlive(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
time.Sleep(200 * time.Millisecond)
// Ping value should increase
client.pingLock.Lock()
defer client.pingLock.Unlock()
if client.pingID == 0 {
t.Fatalf("should ping")
}
server.pingLock.Lock()
defer server.pingLock.Unlock()
if server.pingID == 0 {
t.Fatalf("should ping")
}
}
func TestLargeWindow(t *testing.T) {
conf := DefaultConfig()
conf.MaxStreamWindowSize *= 2
client, server := testClientServerConfig(conf)
defer client.Close()
defer server.Close()
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
stream2, err := server.Accept()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream2.Close()
stream.SetWriteDeadline(time.Now().Add(10 * time.Millisecond))
buf := make([]byte, conf.MaxStreamWindowSize)
n, err := stream.Write(buf)
if err != nil {
t.Fatalf("err: %v", err)
}
if n != len(buf) {
t.Fatalf("short write: %d", n)
}
}
type UnlimitedReader struct{}
func (u *UnlimitedReader) Read(p []byte) (int, error) {
runtime.Gosched()
return len(p), nil
}
func TestSendData_VeryLarge(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
var n int64 = 1 * 1024 * 1024 * 1024
var workers int = 16
wg := &sync.WaitGroup{}
wg.Add(workers * 2)
for i := 0; i < workers; i++ {
go func() {
defer wg.Done()
stream, err := server.AcceptStream()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
buf := make([]byte, 4)
_, err = stream.Read(buf)
if err != nil {
t.Fatalf("err: %v", err)
}
if !bytes.Equal(buf, []byte{0, 1, 2, 3}) {
t.Fatalf("bad header")
}
recv, err := io.Copy(ioutil.Discard, stream)
if err != nil {
t.Fatalf("err: %v", err)
}
if recv != n {
t.Fatalf("bad: %v", recv)
}
}()
}
for i := 0; i < workers; i++ {
go func() {
defer wg.Done()
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
_, err = stream.Write([]byte{0, 1, 2, 3})
if err != nil {
t.Fatalf("err: %v", err)
}
unlimited := &UnlimitedReader{}
sent, err := io.Copy(stream, io.LimitReader(unlimited, n))
if err != nil {
t.Fatalf("err: %v", err)
}
if sent != n {
t.Fatalf("bad: %v", sent)
}
}()
}
doneCh := make(chan struct{})
go func() {
wg.Wait()
close(doneCh)
}()
select {
case <-doneCh:
case <-time.After(20 * time.Second):
panic("timeout")
}
}
func TestBacklogExceeded_Accept(t *testing.T) {
client, server := testClientServer()
defer client.Close()
defer server.Close()
max := 5 * client.config.AcceptBacklog
go func() {
for i := 0; i < max; i++ {
stream, err := server.Accept()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
}
}()
// Fill the backlog
for i := 0; i < max; i++ {
stream, err := client.Open()
if err != nil {
t.Fatalf("err: %v", err)
}
defer stream.Close()
if _, err := stream.Write([]byte("foo")); err != nil {
t.Fatalf("err: %v", err)
}
}
}
# Specification
We use this document to detail the internal specification of Yamux.
This is used both as a guide for implementing Yamux, but also for
alternative interoperable libraries to be built.
# Framing
Yamux uses a streaming connection underneath, but imposes a message
framing so that it can be shared between many logical streams. Each
frame contains a header like:
* Version (8 bits)
* Type (8 bits)
* Flags (16 bits)
* StreamID (32 bits)
* Length (32 bits)
This means that each header has a 12 byte overhead.
All fields are encoded in network order (big endian).
Each field is described below:
## Version Field
The version field is used for future backwards compatibily. At the
current time, the field is always set to 0, to indicate the initial
version.
## Type Field
The type field is used to switch the frame message type. The following
message types are supported:
* 0x0 Data - Used to transmit data. May transmit zero length payloads
depending on the flags.
* 0x1 Window Update - Used to updated the senders receive window size.
This is used to implement per-session flow control.
* 0x2 Ping - Used to measure RTT. It can also be used to heart-beat
and do keep-alives over TCP.
* 0x3 Go Away - Used to close a session.
## Flag Field
The flags field is used to provide additional information related
to the message type. The following flags are supported:
* 0x1 SYN - Signals the start of a new stream. May be sent with a data or
window update message. Also sent with a ping to indicate outbound.
* 0x2 ACK - Acknowledges the start of a new stream. May be sent with a data
or window update message. Also sent with a ping to indicate response.
* 0x4 FIN - Performs a half-close of a stream. May be sent with a data
message or window update.
* 0x8 RST - Reset a stream immediately. May be sent with a data or
window update message.
## StreamID Field
The StreamID field is used to identify the logical stream the frame
is addressing. The client side should use odd ID's, and the server even.
This prevents any collisions. Additionally, the 0 ID is reserved to represent
the session.
Both Ping and Go Away messages should always use the 0 StreamID.
## Length Field
The meaning of the length field depends on the message type:
* Data - provides the length of bytes following the header
* Window update - provides a delta update to the window size
* Ping - Contains an opaque value, echoed back
* Go Away - Contains an error code
# Message Flow
There is no explicit connection setup, as Yamux relies on an underlying
transport to be provided. However, there is a distinction between client
and server side of the connection.
## Opening a stream
To open a stream, an initial data or window update frame is sent
with a new StreamID. The SYN flag should be set to signal a new stream.
The receiver must then reply with either a data or window update frame
with the StreamID along with the ACK flag to accept the stream or with
the RST flag to reject the stream.
Because we are relying on the reliable stream underneath, a connection
can begin sending data once the SYN flag is sent. The corresponding
ACK does not need to be received. This is particularly well suited
for an RPC system where a client wants to open a stream and immediately
fire a request without wiating for the RTT of the ACK.
This does introduce the possibility of a connection being rejected
after data has been sent already. This is a slight semantic difference
from TCP, where the conection cannot be refused after it is opened.
Clients should be prepared to handle this by checking for an error
that indicates a RST was received.
## Closing a stream
To close a stream, either side sends a data or window update frame
along with the FIN flag. This does a half-close indicating the sender
will send no further data.
Once both sides have closed the connection, the stream is closed.
Alternatively, if an error occurs, the RST flag can be used to
hard close a stream immediately.
## Flow Control
When Yamux is initially starts each stream with a 256KB window size.
There is no window size for the session.
To prevent the streams from stalling, window update frames should be
sent regularly. Yamux can be configured to provide a larger limit for
windows sizes. Both sides assume the initial 256KB window, but can
immediately send a window update as part of the SYN/ACK indicating a
larger window.
Both sides should track the number of bytes sent in Data frames
only, as only they are tracked as part of the window size.
## Session termination
When a session is being terminated, the Go Away message should
be sent. The Length should be set to one of the following to
provide an error code:
* 0x0 Normal termination
* 0x1 Protocol error
* 0x2 Internal error
package yamux
import (
"bytes"
"io"
"sync"
"sync/atomic"
"time"
)
type streamState int
const (
streamInit streamState = iota
streamSYNSent
streamSYNReceived
streamEstablished
streamLocalClose
streamRemoteClose
streamClosed
streamReset
)
// Stream is used to represent a logical stream
// within a session.
type Stream struct {
recvWindow uint32
sendWindow uint32
id uint32
session *Session
state streamState
stateLock sync.Mutex
recvBuf bytes.Buffer
recvLock sync.Mutex
controlHdr header
controlErr chan error
controlHdrLock sync.Mutex
sendHdr header
sendErr chan error
sendLock sync.Mutex
recvNotifyCh chan struct{}
sendNotifyCh chan struct{}
readDeadline time.Time
writeDeadline time.Time
}
// newStream is used to construct a new stream within
// a given session for an ID
func newStream(session *Session, id uint32, state streamState) *Stream {
s := &Stream{
id: id,
session: session,
state: state,
controlHdr: header(make([]byte, headerSize)),
controlErr: make(chan error, 1),
sendHdr: header(make([]byte, headerSize)),
sendErr: make(chan error, 1),
recvWindow: initialStreamWindow,
sendWindow: initialStreamWindow,
recvNotifyCh: make(chan struct{}, 1),
sendNotifyCh: make(chan struct{}, 1),
}
return s
}
// Session returns the associated stream session
func (s *Stream) Session() *Session {
return s.session
}
// StreamID returns the ID of this stream
func (s *Stream) StreamID() uint32 {
return s.id
}
// Read is used to read from the stream
func (s *Stream) Read(b []byte) (n int, err error) {
defer asyncNotify(s.recvNotifyCh)
START:
s.stateLock.Lock()
switch s.state {
case streamLocalClose:
fallthrough
case streamRemoteClose:
fallthrough
case streamClosed:
if s.recvBuf.Len() == 0 {
s.stateLock.Unlock()
return 0, io.EOF
}
case streamReset:
s.stateLock.Unlock()
return 0, ErrConnectionReset
}
s.stateLock.Unlock()
// If there is no data available, block
s.recvLock.Lock()
if s.recvBuf.Len() == 0 {
s.recvLock.Unlock()
goto WAIT
}
// Read any bytes
n, _ = s.recvBuf.Read(b)
s.recvLock.Unlock()
// Send a window update potentially
err = s.sendWindowUpdate()
return n, err
WAIT:
var timeout <-chan time.Time
if !s.readDeadline.IsZero() {
delay := s.readDeadline.Sub(time.Now())
timeout = time.After(delay)
}
select {
case <-s.recvNotifyCh:
goto START
case <-timeout:
return 0, ErrTimeout
}
}
// Write is used to write to the stream
func (s *Stream) Write(b []byte) (n int, err error) {
s.sendLock.Lock()
defer s.sendLock.Unlock()
total := 0
for total < len(b) {
n, err := s.write(b[total:])
total += n
if err != nil {
return total, err
}
}
return total, nil
}
// write is used to write to the stream, may return on
// a short write.
func (s *Stream) write(b []byte) (n int, err error) {
var flags uint16
var max uint32
var body io.Reader
START:
s.stateLock.Lock()
switch s.state {
case streamLocalClose:
fallthrough
case streamClosed:
s.stateLock.Unlock()
return 0, ErrStreamClosed
case streamReset:
s.stateLock.Unlock()
return 0, ErrConnectionReset
}
s.stateLock.Unlock()
// If there is no data available, block
window := atomic.LoadUint32(&s.sendWindow)
if window == 0 {
goto WAIT
}
// Determine the flags if any
flags = s.sendFlags()
// Send up to our send window
max = min(window, uint32(len(b)))
body = bytes.NewReader(b[:max])
// Send the header
s.sendHdr.encode(typeData, flags, s.id, max)
if err := s.session.waitForSendErr(s.sendHdr, body, s.sendErr); err != nil {
return 0, err
}
// Reduce our send window
atomic.AddUint32(&s.sendWindow, ^uint32(max-1))
// Unlock
return int(max), err
WAIT:
var timeout <-chan time.Time
if !s.writeDeadline.IsZero() {
delay := s.writeDeadline.Sub(time.Now())
timeout = time.After(delay)
}
select {
case <-s.sendNotifyCh:
goto START
case <-timeout:
return 0, ErrTimeout
}
return 0, nil
}
// sendFlags determines any flags that are appropriate
// based on the current stream state
func (s *Stream) sendFlags() uint16 {
s.stateLock.Lock()
defer s.stateLock.Unlock()
var flags uint16
switch s.state {
case streamInit:
flags |= flagSYN
s.state = streamSYNSent
case streamSYNReceived:
flags |= flagACK
s.state = streamEstablished
}
return flags
}
// sendWindowUpdate potentially sends a window update enabling
// further writes to take place. Must be invoked with the lock.
func (s *Stream) sendWindowUpdate() error {
s.controlHdrLock.Lock()
defer s.controlHdrLock.Unlock()
// Determine the delta update
max := s.session.config.MaxStreamWindowSize
delta := max - atomic.LoadUint32(&s.recvWindow)
// Determine the flags if any
flags := s.sendFlags()
// Check if we can omit the update
if delta < (max/2) && flags == 0 {
return nil
}
// Update our window
atomic.AddUint32(&s.recvWindow, delta)
// Send the header
s.controlHdr.encode(typeWindowUpdate, flags, s.id, delta)
if err := s.session.waitForSendErr(s.controlHdr, nil, s.controlErr); err != nil {
return err
}
return nil
}
// sendClose is used to send a FIN
func (s *Stream) sendClose() error {
s.controlHdrLock.Lock()
defer s.controlHdrLock.Unlock()
flags := s.sendFlags()
flags |= flagFIN
s.controlHdr.encode(typeWindowUpdate, flags, s.id, 0)
if err := s.session.waitForSendErr(s.controlHdr, nil, s.controlErr); err != nil {
return err
}
return nil
}
// Close is used to close the stream
func (s *Stream) Close() error {
closeStream := false
s.stateLock.Lock()
switch s.state {
// Opened means we need to signal a close
case streamSYNSent:
fallthrough
case streamSYNReceived:
fallthrough
case streamEstablished:
s.state = streamLocalClose
goto SEND_CLOSE
case streamLocalClose:
case streamRemoteClose:
s.state = streamClosed
closeStream = true
goto SEND_CLOSE
case streamClosed:
case streamReset:
default:
panic("unhandled state")
}
s.stateLock.Unlock()
return nil
SEND_CLOSE:
s.stateLock.Unlock()
s.sendClose()
s.notifyWaiting()
if closeStream {
s.session.closeStream(s.id)
}
return nil
}
// forceClose is used for when the session is exiting
func (s *Stream) forceClose() {
s.stateLock.Lock()
s.state = streamClosed
s.stateLock.Unlock()
s.notifyWaiting()
}
// processFlags is used to update the state of the stream
// based on set flags, if any. Lock must be held
func (s *Stream) processFlags(flags uint16) error {
// Close the stream without holding the state lock
closeStream := false
defer func() {
if closeStream {
s.session.closeStream(s.id)
}
}()
s.stateLock.Lock()
defer s.stateLock.Unlock()
if flags&flagACK == flagACK {
if s.state == streamSYNSent {
s.state = streamEstablished
}
s.session.establishStream()
}
if flags&flagFIN == flagFIN {
switch s.state {
case streamSYNSent:
fallthrough
case streamSYNReceived:
fallthrough
case streamEstablished:
s.state = streamRemoteClose
s.notifyWaiting()
case streamLocalClose:
s.state = streamClosed
closeStream = true
s.notifyWaiting()
default:
s.session.logger.Printf("[ERR] yamux: unexpected FIN flag in state %d", s.state)
return ErrUnexpectedFlag
}
}
if flags&flagRST == flagRST {
if s.state == streamSYNSent {
s.session.establishStream()
}
s.state = streamReset
closeStream = true
s.notifyWaiting()
}
return nil
}
// notifyWaiting notifies all the waiting channels
func (s *Stream) notifyWaiting() {
asyncNotify(s.recvNotifyCh)
asyncNotify(s.sendNotifyCh)
}
// incrSendWindow updates the size of our send window
func (s *Stream) incrSendWindow(hdr header, flags uint16) error {
if err := s.processFlags(flags); err != nil {
return err
}
// Increase window, unblock a sender
atomic.AddUint32(&s.sendWindow, hdr.Length())
asyncNotify(s.sendNotifyCh)
return nil
}
// readData is used to handle a data frame
func (s *Stream) readData(hdr header, flags uint16, conn io.Reader) error {
if err := s.processFlags(flags); err != nil {
return err
}
// Check that our recv window is not exceeded
length := hdr.Length()
if length == 0 {
return nil
}
if remain := atomic.LoadUint32(&s.recvWindow); length > remain {
s.session.logger.Printf("[ERR] yamux: receive window exceeded (stream: %d, remain: %d, recv: %d)", s.id, remain, length)
return ErrRecvWindowExceeded
}
// Wrap in a limited reader
conn = &io.LimitedReader{R: conn, N: int64(length)}
// Copy into buffer
s.recvLock.Lock()
if _, err := io.Copy(&s.recvBuf, conn); err != nil {
s.session.logger.Printf("[ERR] yamux: Failed to read stream data: %v", err)
s.recvLock.Unlock()
return err
}
// Decrement the receive window
atomic.AddUint32(&s.recvWindow, ^uint32(length-1))
s.recvLock.Unlock()
// Unblock any readers
asyncNotify(s.recvNotifyCh)
return nil
}
// SetDeadline sets the read and write deadlines
func (s *Stream) SetDeadline(t time.Time) error {
if err := s.SetReadDeadline(t); err != nil {
return err
}
if err := s.SetWriteDeadline(t); err != nil {
return err
}
return nil
}
// SetReadDeadline sets the deadline for future Read calls.
func (s *Stream) SetReadDeadline(t time.Time) error {
s.readDeadline = t
return nil
}
// SetWriteDeadline sets the deadline for future Write calls
func (s *Stream) SetWriteDeadline(t time.Time) error {
s.writeDeadline = t
return nil
}
package yamux
// asyncSendErr is used to try an async send of an error
func asyncSendErr(ch chan error, err error) {
if ch == nil {
return
}
select {
case ch <- err:
default:
}
}
// asyncNotify is used to signal a waiting goroutine
func asyncNotify(ch chan struct{}) {
select {
case ch <- struct{}{}:
default:
}
}
// min computes the minimum of two values
func min(a, b uint32) uint32 {
if a < b {
return a
}
return b
}
package yamux
import (
"testing"
)
func TestAsyncSendErr(t *testing.T) {
ch := make(chan error)
asyncSendErr(ch, ErrTimeout)
select {
case <-ch:
t.Fatalf("should not get")
default:
}
ch = make(chan error, 1)
asyncSendErr(ch, ErrTimeout)
select {
case <-ch:
default:
t.Fatalf("should get")
}
}
func TestAsyncNotify(t *testing.T) {
ch := make(chan struct{})
asyncNotify(ch)
select {
case <-ch:
t.Fatalf("should not get")
default:
}
ch = make(chan struct{}, 1)
asyncNotify(ch)
select {
case <-ch:
default:
t.Fatalf("should get")
}
}
func TestMin(t *testing.T) {
if min(1, 2) != 1 {
t.Fatalf("bad")
}
if min(2, 1) != 1 {
t.Fatalf("bad")
}
}
language: go
go:
- 1.3
- 1.4
- release
- tip
script:
- go test -v ./...
# - go test -race -cpu=5 ./...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment