mmc_cmds.c 69.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
Avi Shchislowski's avatar
Avi Shchislowski committed
15
16
17
 *
 * Modified to add field firmware update support,
 * those modifications are Copyright (c) 2016 SanDisk Corp.
18
19
20
21
22
23
24
25
26
27
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
28
29
30
#include <errno.h>
#include <stdint.h>
#include <assert.h>
31
#include <linux/fs.h> /* for BLKGETSIZE */
32
33
34

#include "mmc.h"
#include "mmc_cmds.h"
35
#include "3rdparty/hmac_sha/hmac_sha2.h"
36

37
38
39
40
#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#define WP_BLKS_PER_QUERY 32

#define USER_WP_PERM_PSWD_DIS	0x80
#define USER_WP_CD_PERM_WP_DIS	0x40
#define USER_WP_US_PERM_WP_DIS	0x10
#define USER_WP_US_PWR_WP_DIS	0x08
#define USER_WP_US_PERM_WP_EN	0x04
#define USER_WP_US_PWR_WP_EN	0x01
#define USER_WP_CLEAR (USER_WP_US_PERM_WP_DIS | USER_WP_US_PWR_WP_DIS	\
			| USER_WP_US_PERM_WP_EN | USER_WP_US_PWR_WP_EN)

#define WPTYPE_NONE 0
#define WPTYPE_TEMP 1
#define WPTYPE_PWRON 2
#define WPTYPE_PERM 3


58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
int read_extcsd(int fd, __u8 *ext_csd)
{
	int ret = 0;
	struct mmc_ioc_cmd idata;
	memset(&idata, 0, sizeof(idata));
	memset(ext_csd, 0, sizeof(__u8) * 512);
	idata.write_flag = 0;
	idata.opcode = MMC_SEND_EXT_CSD;
	idata.arg = 0;
	idata.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
	idata.blksz = 512;
	idata.blocks = 1;
	mmc_ioc_cmd_set_data(idata, ext_csd);

	ret = ioctl(fd, MMC_IOC_CMD, &idata);
	if (ret)
		perror("ioctl");

	return ret;
}

int write_extcsd_value(int fd, __u8 index, __u8 value)
{
	int ret = 0;
	struct mmc_ioc_cmd idata;

	memset(&idata, 0, sizeof(idata));
	idata.write_flag = 1;
	idata.opcode = MMC_SWITCH;
	idata.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
			(index << 16) |
			(value << 8) |
			EXT_CSD_CMD_SET_NORMAL;
	idata.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;

	ret = ioctl(fd, MMC_IOC_CMD, &idata);
	if (ret)
		perror("ioctl");

	return ret;
}

Ben Gardiner's avatar
Ben Gardiner committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
int send_status(int fd, __u32 *response)
{
	int ret = 0;
	struct mmc_ioc_cmd idata;

	memset(&idata, 0, sizeof(idata));
	idata.opcode = MMC_SEND_STATUS;
	idata.arg = (1 << 16);
	idata.flags = MMC_RSP_R1 | MMC_CMD_AC;

	ret = ioctl(fd, MMC_IOC_CMD, &idata);
	if (ret)
	perror("ioctl");

	*response = idata.response[0];

	return ret;
}

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
static __u32 get_size_in_blks(int fd)
{
	int res;
	int size;

	res = ioctl(fd, BLKGETSIZE, &size);
	if (res) {
		fprintf(stderr, "Error getting device size, errno: %d\n",
			errno);
		perror("");
		return -1;
	}
	return size;
}

static int set_write_protect(int fd, __u32 blk_addr, int on_off)
{
	int ret = 0;
	struct mmc_ioc_cmd idata;

	memset(&idata, 0, sizeof(idata));
	idata.write_flag = 1;
	if (on_off)
		idata.opcode = MMC_SET_WRITE_PROT;
	else
		idata.opcode = MMC_CLEAR_WRITE_PROT;
	idata.arg = blk_addr;
	idata.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;

	ret = ioctl(fd, MMC_IOC_CMD, &idata);
	if (ret)
		perror("ioctl");

	return ret;
}

static int send_write_protect_type(int fd, __u32 blk_addr, __u64 *group_bits)
{
	int ret = 0;
	struct mmc_ioc_cmd idata;
	__u8 buf[8];
	__u64 bits = 0;
	int x;

	memset(&idata, 0, sizeof(idata));
	idata.write_flag = 0;
	idata.opcode = MMC_SEND_WRITE_PROT_TYPE;
	idata.blksz      = 8,
	idata.blocks     = 1,
	idata.arg = blk_addr;
	idata.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
	mmc_ioc_cmd_set_data(idata, buf);

	ret = ioctl(fd, MMC_IOC_CMD, &idata);
	if (ret)
		perror("ioctl");
	for (x = 0; x < sizeof(buf); x++)
		bits |= (__u64)(buf[7 - x]) << (x * 8);
	*group_bits = bits;
	return ret;
}

static void print_writeprotect_boot_status(__u8 *ext_csd)
182
183
{
	__u8 reg;
184
	__u8 ext_csd_rev = ext_csd[EXT_CSD_REV];
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

	/* A43: reserved [174:0] */
	if (ext_csd_rev >= 5) {
		printf("Boot write protection status registers"
			" [BOOT_WP_STATUS]: 0x%02x\n", ext_csd[174]);

		reg = ext_csd[EXT_CSD_BOOT_WP];
		printf("Boot Area Write protection [BOOT_WP]: 0x%02x\n", reg);
		printf(" Power ro locking: ");
		if (reg & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
			printf("not possible\n");
		else
			printf("possible\n");

		printf(" Permanent ro locking: ");
		if (reg & EXT_CSD_BOOT_WP_B_PERM_WP_DIS)
			printf("not possible\n");
		else
			printf("possible\n");

205
206
207
208
209
		reg = ext_csd[EXT_CSD_BOOT_WP_STATUS];
		printf(" partition 0 ro lock status: ");
		if (reg & EXT_CSD_BOOT_WP_S_AREA_0_PERM)
			printf("locked permanently\n");
		else if (reg & EXT_CSD_BOOT_WP_S_AREA_0_PWR)
210
			printf("locked until next power on\n");
211
212
213
214
		else
			printf("not locked\n");
		printf(" partition 1 ro lock status: ");
		if (reg & EXT_CSD_BOOT_WP_S_AREA_1_PERM)
215
			printf("locked permanently\n");
216
217
		else if (reg & EXT_CSD_BOOT_WP_S_AREA_1_PWR)
			printf("locked until next power on\n");
218
219
220
221
222
		else
			printf("not locked\n");
	}
}

223
224
225
226
227
228
229
230
231
232
233
234
235
236
static int get_wp_group_size_in_blks(__u8 *ext_csd, __u32 *size)
{
	__u8 ext_csd_rev = ext_csd[EXT_CSD_REV];

	if ((ext_csd_rev < 5) || (ext_csd[EXT_CSD_ERASE_GROUP_DEF] == 0))
		return 1;

	*size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] *
		ext_csd[EXT_CSD_HC_WP_GRP_SIZE] * 1024;
	return 0;
}


int do_writeprotect_boot_get(int nargs, char **argv)
237
238
239
240
241
{
	__u8 ext_csd[512];
	int fd, ret;
	char *device;

242
243
244
245
	if (nargs != 2) {
		fprintf(stderr, "Usage: mmc writeprotect boot get </path/to/mmcblkX>\n");
		exit(1);
	}
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

261
	print_writeprotect_boot_status(ext_csd);
262
263
264
265

	return ret;
}

266
int do_writeprotect_boot_set(int nargs, char **argv)
267
268
269
270
{
	__u8 ext_csd[512], value;
	int fd, ret;
	char *device;
271
272
273
274
275
276
277
278
279
280
281
	char *end;
	int argi = 1;
	int permanent = 0;
	int partition = -1;

#ifdef DANGEROUS_COMMANDS_ENABLED
	if (!strcmp(argv[argi], "-p")){
		permanent = 1;
		argi++;
	}
#endif
282

283
284
285
286
287
288
	if (nargs < 1 + argi ||  nargs > 2 + argi) {
		fprintf(stderr, "Usage: mmc writeprotect boot set "
#ifdef DANGEROUS_COMMANDS_ENABLED
			"[-p] "
#endif
			"</path/to/mmcblkX> [0|1]\n");
289
290
		exit(1);
	}
291

292
	device = argv[argi++];
293
294
295
296
297
298
299

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

300
301
302
303
304
305
306
307
308
	if (nargs == 1 + argi) {
		partition = strtoul(argv[argi], &end, 0);
		if (*end != '\0' || !(partition == 0 || partition == 1)) {
			fprintf(stderr, "Invalid partition number (must be 0 or 1): %s\n",
				argv[argi]);
			exit(1);
		}
	}

309
310
311
312
313
314
	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
	value = ext_csd[EXT_CSD_BOOT_WP];
	/*
	 * If permanent protection is already on for one partition and we're
	 * trying to enable power-reset protection for the other we need to make
	 * sure the selection bit for permanent protection still points to the
	 * former or we'll accidentally permanently protect the latter.
	 */
	if ((value & EXT_CSD_BOOT_WP_B_PERM_WP_EN) && !permanent) {
		if (ext_csd[EXT_CSD_BOOT_WP_STATUS] &
		    EXT_CSD_BOOT_WP_S_AREA_1_PERM) {
			value |= EXT_CSD_BOOT_WP_B_PERM_WP_SEC_SEL;
			if (partition != 1)
				partition = 0;
		} else {
			/* PERM_WP_SEC_SEL cleared -> pointing to partition 0 */
			if (partition != 0)
				partition = 1;
		}
	}
	if (partition != -1) {
		value |= EXT_CSD_BOOT_WP_B_SEC_WP_SEL;
		if (partition == 1)
			value |= permanent ? EXT_CSD_BOOT_WP_B_PERM_WP_SEC_SEL
					   : EXT_CSD_BOOT_WP_B_PWR_WP_SEC_SEL;
	}
	value |= permanent ? EXT_CSD_BOOT_WP_B_PERM_WP_EN
			   : EXT_CSD_BOOT_WP_B_PWR_WP_EN;

343
344
345
346
347
348
349
350
351
352
353
	ret = write_extcsd_value(fd, EXT_CSD_BOOT_WP, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n",
			value, EXT_CSD_BOOT_WP, device);
		exit(1);
	}

	return ret;
}

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
static char *prot_desc[] = {
	"No",
	"Temporary",
	"Power-on",
	"Permanent"
};

static void print_wp_status(__u32 wp_sizeblks, __u32 start_group,
			__u32 end_group, int rptype)
{
	printf("Write Protect Groups %d-%d (Blocks %d-%d), ",
		start_group, end_group,
		start_group * wp_sizeblks, ((end_group + 1) * wp_sizeblks) - 1);
	printf("%s Write Protection\n", prot_desc[rptype]);
}


int do_writeprotect_user_get(int nargs, char **argv)
{
	__u8 ext_csd[512];
	int fd, ret;
	char *device;
	int x;
	int y = 0;
	__u32 wp_sizeblks;
	__u32 dev_sizeblks;
	__u32 cnt;
	__u64 bits;
	__u32 wpblk;
	__u32 last_wpblk = 0;
	__u32 prot;
	__u32 last_prot = -1;
	int remain;

388
389
390
391
	if (nargs != 2) {
		fprintf(stderr, "Usage: mmc writeprotect user get </path/to/mmcblkX>\n");
		exit(1);
	}
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}
	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	ret = get_wp_group_size_in_blks(ext_csd, &wp_sizeblks);
	if (ret)
		exit(1);
	printf("Write Protect Group size in blocks/bytes: %d/%d\n",
		wp_sizeblks, wp_sizeblks * 512);
	dev_sizeblks = get_size_in_blks(fd);
	cnt = dev_sizeblks / wp_sizeblks;
	for (x = 0; x < cnt; x += WP_BLKS_PER_QUERY) {
		ret = send_write_protect_type(fd, x * wp_sizeblks, &bits);
		if (ret)
			break;
		remain = cnt - x;
		if (remain > WP_BLKS_PER_QUERY)
			remain = WP_BLKS_PER_QUERY;
		for (y = 0; y < remain; y++) {
			prot = (bits >> (y * 2)) & 0x3;
			if (prot != last_prot) {
				/* not first time */
				if (last_prot != -1) {
					wpblk = x + y;
					print_wp_status(wp_sizeblks,
							last_wpblk,
							wpblk - 1,
							last_prot);
					last_wpblk = wpblk;
				}
				last_prot = prot;
			}
		}
	}
	if (last_wpblk != (x + y - 1))
		print_wp_status(wp_sizeblks, last_wpblk, cnt - 1, last_prot);

	return ret;
}

int do_writeprotect_user_set(int nargs, char **argv)
{
	__u8 ext_csd[512];
	int fd, ret;
	char *device;
	int blk_start;
	int blk_cnt;
	__u32 wp_blks;
	__u8 user_wp;
	int x;
	int wptype;

	if (nargs != 5)
		goto usage;
	device = argv[4];
	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}
	if (!strcmp(argv[1], "none")) {
		wptype = WPTYPE_NONE;
	} else if (!strcmp(argv[1], "temp")) {
		wptype = WPTYPE_TEMP;
	} else if (!strcmp(argv[1], "pwron")) {
		wptype = WPTYPE_PWRON;
#ifdef DANGEROUS_COMMANDS_ENABLED
	} else if (!strcmp(argv[1], "perm")) {
		wptype = WPTYPE_PERM;
#endif /* DANGEROUS_COMMANDS_ENABLED */
	} else {
		fprintf(stderr, "Error, invalid \"type\"\n");
		goto usage;
	}
	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}
	ret = get_wp_group_size_in_blks(ext_csd, &wp_blks);
	if (ret) {
		fprintf(stderr, "Operation not supported for this device\n");
		exit(1);
	}
	blk_start = strtol(argv[2], NULL, 0);
	blk_cnt = strtol(argv[3], NULL, 0);
	if ((blk_start % wp_blks) || (blk_cnt % wp_blks)) {
		fprintf(stderr, "<start block> and <blocks> must be a ");
		fprintf(stderr, "multiple of the Write Protect Group (%d)\n",
			wp_blks);
		exit(1);
	}
	if (wptype != WPTYPE_NONE) {
		user_wp = ext_csd[EXT_CSD_USER_WP];
		user_wp &= ~USER_WP_CLEAR;
		switch (wptype) {
		case WPTYPE_TEMP:
			break;
		case WPTYPE_PWRON:
			user_wp |= USER_WP_US_PWR_WP_EN;
			break;
		case WPTYPE_PERM:
			user_wp |= USER_WP_US_PERM_WP_EN;
			break;
		}
		if (user_wp != ext_csd[EXT_CSD_USER_WP]) {
			ret = write_extcsd_value(fd, EXT_CSD_USER_WP, user_wp);
			if (ret) {
				fprintf(stderr, "Error setting EXT_CSD\n");
				exit(1);
			}
		}
	}
	for (x = 0; x < blk_cnt; x += wp_blks) {
		ret = set_write_protect(fd, blk_start + x,
					wptype != WPTYPE_NONE);
		if (ret) {
			fprintf(stderr,
				"Could not set write protect for %s\n", device);
			exit(1);
		}
	}
	if (wptype != WPTYPE_NONE) {
		ret = write_extcsd_value(fd, EXT_CSD_USER_WP,
					ext_csd[EXT_CSD_USER_WP]);
		if (ret) {
			fprintf(stderr, "Error restoring EXT_CSD\n");
			exit(1);
		}
	}
	return ret;

usage:
	fprintf(stderr,
		"Usage: mmc writeprotect user set <type><start block><blocks><device>\n");
	exit(1);
}

540
541
542
543
544
545
int do_disable_512B_emulation(int nargs, char **argv)
{
	__u8 ext_csd[512], native_sector_size, data_sector_size, wr_rel_param;
	int fd, ret;
	char *device;

546
547
548
549
550
	if (nargs != 2) {
		fprintf(stderr, "Usage: mmc disable 512B emulation </path/to/mmcblkX>\n");
		exit(1);
	}

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	wr_rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
	native_sector_size = ext_csd[EXT_CSD_NATIVE_SECTOR_SIZE];
	data_sector_size = ext_csd[EXT_CSD_DATA_SECTOR_SIZE];

	if (native_sector_size && !data_sector_size &&
	   (wr_rel_param & EN_REL_WR)) {
		ret = write_extcsd_value(fd, EXT_CSD_USE_NATIVE_SECTOR, 1);

		if (ret) {
			fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
575
					1, EXT_CSD_NATIVE_SECTOR_SIZE, device);
576
577
578
579
580
581
582
583
584
585
586
587
			exit(1);
		}
		printf("MMC disable 512B emulation successful.  Now reset the device to switch to 4KB native sector mode.\n");
	} else if (native_sector_size && data_sector_size) {
		printf("MMC 512B emulation mode is already disabled; doing nothing.\n");
	} else {
		printf("MMC does not support disabling 512B emulation mode.\n");
	}

	return ret;
}

588
589
590
591
592
593
594
595
int do_write_boot_en(int nargs, char **argv)
{
	__u8 ext_csd[512];
	__u8 value = 0;
	int fd, ret;
	char *device;
	int boot_area, send_ack;

596
597
598
599
	if (nargs != 4) {
		fprintf(stderr, "Usage: mmc bootpart enable <partition_number> <send_ack> </path/to/mmcblkX>\n");
		exit(1);
	}
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

	/*
	 * If <send_ack> is 1, the device will send acknowledgment
	 * pattern "010" to the host when boot operation begins.
	 * If <send_ack> is 0, it won't.
	 */
	boot_area = strtol(argv[1], NULL, 10);
	send_ack = strtol(argv[2], NULL, 10);
	device = argv[3];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	value = ext_csd[EXT_CSD_PART_CONFIG];

	switch (boot_area) {
625
626
627
	case EXT_CSD_PART_CONFIG_ACC_NONE:
		value &= ~(7 << 3);
		break;
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
	case EXT_CSD_PART_CONFIG_ACC_BOOT0:
		value |= (1 << 3);
		value &= ~(3 << 4);
		break;
	case EXT_CSD_PART_CONFIG_ACC_BOOT1:
		value |= (1 << 4);
		value &= ~(1 << 3);
		value &= ~(1 << 5);
		break;
	case EXT_CSD_PART_CONFIG_ACC_USER_AREA:
		value |= (boot_area << 3);
		break;
	default:
		fprintf(stderr, "Cannot enable the boot area\n");
		exit(1);
	}
	if (send_ack)
		value |= EXT_CSD_PART_CONFIG_ACC_ACK;
	else
		value &= ~EXT_CSD_PART_CONFIG_ACC_ACK;

	ret = write_extcsd_value(fd, EXT_CSD_PART_CONFIG, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n",
			value, EXT_CSD_PART_CONFIG, device);
		exit(1);
	}
	return ret;
}

659
660
661
662
663
664
665
int do_boot_bus_conditions_set(int nargs, char **argv)
{
	__u8 ext_csd[512];
	__u8 value = 0;
	int fd, ret;
	char *device;

666
667
668
669
	if (nargs != 5) {
		fprintf(stderr, "Usage: mmc: bootbus set <boot_mode> <reset_boot_bus_conditions> <boot_bus_width> <device>\n");
		exit(1);
	}
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

	if (strcmp(argv[1], "single_backward") == 0)
		value |= 0;
	else if (strcmp(argv[1], "single_hs") == 0)
		value |= 0x8;
	else if (strcmp(argv[1], "dual") == 0)
		value |= 0x10;
	else {
		fprintf(stderr, "illegal <boot_mode> specified\n");
		exit(1);
	}

	if (strcmp(argv[2], "x1") == 0)
		value |= 0;
	else if (strcmp(argv[2], "retain") == 0)
		value |= 0x4;
	else {
		fprintf(stderr,
			"illegal <reset_boot_bus_conditions> specified\n");
		exit(1);
	}

	if (strcmp(argv[3], "x1") == 0)
		value |= 0;
	else if (strcmp(argv[3], "x4") == 0)
		value |= 0x1;
	else if (strcmp(argv[3], "x8") == 0)
		value |= 0x2;
	else {
		fprintf(stderr,	"illegal <boot_bus_width> specified\n");
		exit(1);
	}

	device = argv[4];
	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}
	printf("Changing ext_csd[BOOT_BUS_CONDITIONS] from 0x%02x to 0x%02x\n",
		ext_csd[EXT_CSD_BOOT_BUS_CONDITIONS], value);

	ret = write_extcsd_value(fd, EXT_CSD_BOOT_BUS_CONDITIONS, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n",
			value, EXT_CSD_BOOT_BUS_CONDITIONS, device);
		exit(1);
	}
	close(fd);
	return ret;
}

729
730
731
732
733
734
int do_hwreset(int value, int nargs, char **argv)
{
	__u8 ext_csd[512];
	int fd, ret;
	char *device;

735
736
737
738
	if (nargs != 2) {
		fprintf(stderr, "Usage: mmc hwreset enable </path/to/mmcblkX>\n");
		exit(1);
	}
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	if ((ext_csd[EXT_CSD_RST_N_FUNCTION] & EXT_CSD_RST_N_EN_MASK) ==
	    EXT_CSD_HW_RESET_EN) {
		fprintf(stderr,
			"H/W Reset is already permanently enabled on %s\n",
			device);
		exit(1);
	}
	if ((ext_csd[EXT_CSD_RST_N_FUNCTION] & EXT_CSD_RST_N_EN_MASK) ==
	    EXT_CSD_HW_RESET_DIS) {
		fprintf(stderr,
			"H/W Reset is already permanently disabled on %s\n",
			device);
		exit(1);
	}

	ret = write_extcsd_value(fd, EXT_CSD_RST_N_FUNCTION, value);
	if (ret) {
		fprintf(stderr,
			"Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, EXT_CSD_RST_N_FUNCTION, device);
		exit(1);
	}

	return ret;
}

int do_hwreset_en(int nargs, char **argv)
{
	return do_hwreset(EXT_CSD_HW_RESET_EN, nargs, argv);
}

int do_hwreset_dis(int nargs, char **argv)
{
	return do_hwreset(EXT_CSD_HW_RESET_DIS, nargs, argv);
}

790
791
792
793
794
int do_write_bkops_en(int nargs, char **argv)
{
	__u8 ext_csd[512], value = 0;
	int fd, ret;
	char *device;
795
	char *en_type;
796

797
798
799
	if (nargs != 3) {
		fprintf(stderr, "Usage: mmc bkops_en <auto|manual> </path/to/mmcblkX>\n");
		exit(1);
800
	}
801

802
803
	en_type = argv[1];
	device = argv[2];
804
805
806
807
808
809
810
811
812
813
814
815
816

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

817
818
819
820
821
822
823
824
825
826
	if (strcmp(en_type, "auto") == 0) {
		if (ext_csd[EXT_CSD_REV] < EXT_CSD_REV_V5_0) {
			fprintf(stderr, "%s doesn't support AUTO_EN in the BKOPS_EN register\n", device);
			exit(1);
		}
		ret = write_extcsd_value(fd, EXT_CSD_BKOPS_EN, BKOPS_AUTO_ENABLE);
	} else if (strcmp(en_type, "manual") == 0) {
		ret = write_extcsd_value(fd, EXT_CSD_BKOPS_EN, BKOPS_MAN_ENABLE);
	} else {
		fprintf(stderr, "%s invalid mode for BKOPS_EN requested: %s. Valid options: auto or manual\n", en_type, device);
827
828
829
830
831
832
833
834
835
836
837
838
		exit(1);
	}

	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, EXT_CSD_BKOPS_EN, device);
		exit(1);
	}

	return ret;
}

Ben Gardiner's avatar
Ben Gardiner committed
839
840
841
842
843
844
int do_status_get(int nargs, char **argv)
{
	__u32 response;
	int fd, ret;
	char *device;

845
846
847
848
	if (nargs != 2) {
		fprintf(stderr, "Usage: mmc status get </path/to/mmcblkX>\n");
		exit(1);
	}
Ben Gardiner's avatar
Ben Gardiner committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = send_status(fd, &response);
	if (ret) {
		fprintf(stderr, "Could not read response to SEND_STATUS from %s\n", device);
		exit(1);
	}

	printf("SEND_STATUS response: 0x%08x\n", response);

	return ret;
}

869
870
871
872
873
874
875
876
877
878
879
880
unsigned int get_sector_count(__u8 *ext_csd)
{
	return (ext_csd[EXT_CSD_SEC_COUNT_3] << 24) |
	(ext_csd[EXT_CSD_SEC_COUNT_2] << 16) |
	(ext_csd[EXT_CSD_SEC_COUNT_1] << 8)  |
	ext_csd[EXT_CSD_SEC_COUNT_0];
}

int is_blockaddresed(__u8 *ext_csd)
{
	unsigned int sectors = get_sector_count(ext_csd);

881
	/* over 2GiB devices are block-addressed */
882
883
884
	return (sectors > (2u * 1024 * 1024 * 1024) / 512);
}

Ben Gardiner's avatar
Ben Gardiner committed
885
886
887
888
889
890
891
892
893
894
unsigned int get_hc_wp_grp_size(__u8 *ext_csd)
{
	return ext_csd[221];
}

unsigned int get_hc_erase_grp_size(__u8 *ext_csd)
{
	return ext_csd[224];
}

895
896
897
898
899
int set_partitioning_setting_completed(int dry_run, const char * const device,
		int fd)
{
	int ret;

900
	if (dry_run == 1) {
901
902
903
904
		fprintf(stderr, "NOT setting PARTITION_SETTING_COMPLETED\n");
		fprintf(stderr, "These changes will not take effect neither "
			"now nor after a power cycle\n");
		return 1;
905
906
907
908
	} else if (dry_run == 2) {
		printf("-c given, expecting more partition settings before "
			"writing PARTITION_SETTING_COMPLETED\n");
		return 0;
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
	}

	fprintf(stderr, "setting OTP PARTITION_SETTING_COMPLETED!\n");
	ret = write_extcsd_value(fd, EXT_CSD_PARTITION_SETTING_COMPLETED, 0x1);
	if (ret) {
		fprintf(stderr, "Could not write 0x1 to "
			"EXT_CSD[%d] in %s\n",
			EXT_CSD_PARTITION_SETTING_COMPLETED, device);
		return 1;
	}

	__u32 response;
	ret = send_status(fd, &response);
	if (ret) {
		fprintf(stderr, "Could not get response to SEND_STATUS "
			"from %s\n", device);
		return 1;
	}

	if (response & R1_SWITCH_ERROR) {
		fprintf(stderr, "Setting OTP PARTITION_SETTING_COMPLETED "
			"failed on %s\n", device);
		return 1;
	}

	fprintf(stderr, "Setting OTP PARTITION_SETTING_COMPLETED on "
		"%s SUCCESS\n", device);
	fprintf(stderr, "Device power cycle needed for settings to "
		"take effect.\n"
		"Confirm that PARTITION_SETTING_COMPLETED bit is set "
		"using 'extcsd read' after power cycle\n");

	return 0;
}

944
945
946
947
948
949
int check_enhanced_area_total_limit(const char * const device, int fd)
{
	__u8 ext_csd[512];
	__u32 regl;
	unsigned long max_enh_area_sz, user_area_sz, enh_area_sz = 0;
	unsigned long gp4_part_sz, gp3_part_sz, gp2_part_sz, gp1_part_sz;
950
	unsigned long total_sz, total_gp_user_sz;
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
	unsigned int wp_sz, erase_sz;
	int ret;

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}
	wp_sz = get_hc_wp_grp_size(ext_csd);
	erase_sz = get_hc_erase_grp_size(ext_csd);

	regl = (ext_csd[EXT_CSD_GP_SIZE_MULT_4_2] << 16) |
		(ext_csd[EXT_CSD_GP_SIZE_MULT_4_1] << 8) |
		ext_csd[EXT_CSD_GP_SIZE_MULT_4_0];
	gp4_part_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_4) {
		enh_area_sz += gp4_part_sz;
		printf("Enhanced GP4 Partition Size [GP_SIZE_MULT_4]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", gp4_part_sz);
	}

	regl = (ext_csd[EXT_CSD_GP_SIZE_MULT_3_2] << 16) |
		(ext_csd[EXT_CSD_GP_SIZE_MULT_3_1] << 8) |
		ext_csd[EXT_CSD_GP_SIZE_MULT_3_0];
	gp3_part_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_3) {
		enh_area_sz += gp3_part_sz;
		printf("Enhanced GP3 Partition Size [GP_SIZE_MULT_3]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", gp3_part_sz);
	}

	regl = (ext_csd[EXT_CSD_GP_SIZE_MULT_2_2] << 16) |
		(ext_csd[EXT_CSD_GP_SIZE_MULT_2_1] << 8) |
		ext_csd[EXT_CSD_GP_SIZE_MULT_2_0];
	gp2_part_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_2) {
		enh_area_sz += gp2_part_sz;
		printf("Enhanced GP2 Partition Size [GP_SIZE_MULT_2]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", gp2_part_sz);
	}

	regl = (ext_csd[EXT_CSD_GP_SIZE_MULT_1_2] << 16) |
		(ext_csd[EXT_CSD_GP_SIZE_MULT_1_1] << 8) |
		ext_csd[EXT_CSD_GP_SIZE_MULT_1_0];
	gp1_part_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_1) {
		enh_area_sz += gp1_part_sz;
		printf("Enhanced GP1 Partition Size [GP_SIZE_MULT_1]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", gp1_part_sz);
	}

	regl = (ext_csd[EXT_CSD_ENH_SIZE_MULT_2] << 16) |
		(ext_csd[EXT_CSD_ENH_SIZE_MULT_1] << 8) |
		ext_csd[EXT_CSD_ENH_SIZE_MULT_0];
	user_area_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_USR) {
		enh_area_sz += user_area_sz;
		printf("Enhanced User Data Area Size [ENH_SIZE_MULT]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", user_area_sz);
	}

	regl = (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_2] << 16) |
		(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_1] << 8) |
		ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_0];
	max_enh_area_sz = 512l * regl * erase_sz * wp_sz;
	printf("Max Enhanced Area Size [MAX_ENH_SIZE_MULT]: 0x%06x\n", regl);
	printf(" i.e. %lu KiB\n", max_enh_area_sz);
	if (enh_area_sz > max_enh_area_sz) {
		fprintf(stderr,
			"Programmed total enhanced size %lu KiB cannot exceed max enhanced area %lu KiB %s\n",
			enh_area_sz, max_enh_area_sz, device);
		return 1;
	}
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
	total_sz = get_sector_count(ext_csd) / 2;
	total_gp_user_sz = gp4_part_sz + gp3_part_sz + gp2_part_sz +
				gp1_part_sz + user_area_sz;
	if (total_gp_user_sz > total_sz) {
		fprintf(stderr,
			"requested total partition size %lu KiB cannot exceed card capacity %lu KiB %s\n",
			total_gp_user_sz, total_sz, device);
		return 1;
	}

	return 0;
}

int do_create_gp_partition(int nargs, char **argv)
{
	__u8 value;
	__u8 ext_csd[512];
	__u8 address;
	int fd, ret;
	char *device;
	int dry_run = 1;
	int partition, enh_attr, ext_attr;
	unsigned int length_kib, gp_size_mult;
	unsigned long align;

1049
1050
1051
1052
	if (nargs != 7) {
		fprintf(stderr, "Usage: mmc gp create <-y|-n|-c> <length KiB> <partition> <enh_attr> <ext_attr> </path/to/mmcblkX>\n");
		exit(1);
	}
1053

1054
	if (!strcmp("-y", argv[1])) {
1055
		dry_run = 0;
1056
1057
1058
        } else if (!strcmp("-c", argv[1])) {
		dry_run = 2;
	}
1059
1060
1061
1062
1063
1064
1065

	length_kib = strtol(argv[2], NULL, 10);
	partition = strtol(argv[3], NULL, 10);
	enh_attr = strtol(argv[4], NULL, 10);
	ext_attr = strtol(argv[5], NULL, 10);
	device = argv[6];

1066
1067
	if (partition < 1 || partition > 4) {
		printf("Invalid gp partition number; valid range [1-4].\n");
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
		exit(1);
	}

	if (enh_attr && ext_attr) {
		printf("Not allowed to set both enhanced attribute and extended attribute\n");
		exit(1);
	}

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	/* assert not PARTITION_SETTING_COMPLETED */
	if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED]) {
		printf(" Device is already partitioned\n");
		exit(1);
	}

	align = 512l * get_hc_wp_grp_size(ext_csd) * get_hc_erase_grp_size(ext_csd);
	gp_size_mult = (length_kib + align/2l) / align;

	/* set EXT_CSD_ERASE_GROUP_DEF bit 0 */
	ret = write_extcsd_value(fd, EXT_CSD_ERASE_GROUP_DEF, 0x1);
	if (ret) {
		fprintf(stderr, "Could not write 0x1 to EXT_CSD[%d] in %s\n",
			EXT_CSD_ERASE_GROUP_DEF, device);
		exit(1);
	}

	value = (gp_size_mult >> 16) & 0xff;
	address = EXT_CSD_GP_SIZE_MULT_1_2 + (partition - 1) * 3;
	ret = write_extcsd_value(fd, address, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, address, device);
		exit(1);
	}
	value = (gp_size_mult >> 8) & 0xff;
	address = EXT_CSD_GP_SIZE_MULT_1_1 + (partition - 1) * 3;
	ret = write_extcsd_value(fd, address, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, address, device);
		exit(1);
	}
	value = gp_size_mult & 0xff;
	address = EXT_CSD_GP_SIZE_MULT_1_0 + (partition - 1) * 3;
	ret = write_extcsd_value(fd, address, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, address, device);
		exit(1);
	}

	value = ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE];
	if (enh_attr)
		value |= (1 << partition);
	else
		value &= ~(1 << partition);

	ret = write_extcsd_value(fd, EXT_CSD_PARTITIONS_ATTRIBUTE, value);
	if (ret) {
		fprintf(stderr, "Could not write EXT_CSD_ENH_%x to EXT_CSD[%d] in %s\n",
			partition, EXT_CSD_PARTITIONS_ATTRIBUTE, device);
		exit(1);
	}

	address = EXT_CSD_EXT_PARTITIONS_ATTRIBUTE_0 + (partition - 1) / 2;
	value = ext_csd[address];
	if (ext_attr)
		value |= (ext_attr << (4 * ((partition - 1) % 2)));
	else
		value &= (0xF << (4 * ((partition % 2))));

	ret = write_extcsd_value(fd, address, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%x to EXT_CSD[%d] in %s\n",
			value, address, device);
		exit(1);
	}

	ret = check_enhanced_area_total_limit(device, fd);
	if (ret)
		exit(1);

1161
	if (set_partitioning_setting_completed(dry_run, device, fd))
1162
		exit(1);
1163
1164
1165
1166

	return 0;
}

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
int do_enh_area_set(int nargs, char **argv)
{
	__u8 value;
	__u8 ext_csd[512];
	int fd, ret;
	char *device;
	int dry_run = 1;
	unsigned int start_kib, length_kib, enh_start_addr, enh_size_mult;
	unsigned long align;

1177
1178
1179
1180
	if (nargs != 5) {
		fprintf(stderr, "Usage: mmc enh_area set <-y|-n|-c> <start KiB> <length KiB> </path/to/mmcblkX>\n");
		exit(1);
	}
1181

1182
	if (!strcmp("-y", argv[1])) {
1183
		dry_run = 0;
1184
1185
1186
	} else if (!strcmp("-c", argv[1])) {
		dry_run = 2;
	}
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

	start_kib = strtol(argv[2], NULL, 10);
	length_kib = strtol(argv[3], NULL, 10);
	device = argv[4];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	/* assert ENH_ATTRIBUTE_EN */
	if (!(ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & EXT_CSD_ENH_ATTRIBUTE_EN))
	{
		printf(" Device cannot have enhanced tech.\n");
		exit(1);
	}

	/* assert not PARTITION_SETTING_COMPLETED */
	if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED])
	{
		printf(" Device is already partitioned\n");
		exit(1);
	}

	align = 512l * get_hc_wp_grp_size(ext_csd) * get_hc_erase_grp_size(ext_csd);

	enh_size_mult = (length_kib + align/2l) / align;

jason.zeng's avatar
jason.zeng committed
1222
	enh_start_addr = start_kib * (1024 / (is_blockaddresed(ext_csd) ? 512 : 1));
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
	enh_start_addr /= align;
	enh_start_addr *= align;

	/* set EXT_CSD_ERASE_GROUP_DEF bit 0 */
	ret = write_extcsd_value(fd, EXT_CSD_ERASE_GROUP_DEF, 0x1);
	if (ret) {
		fprintf(stderr, "Could not write 0x1 to "
			"EXT_CSD[%d] in %s\n",
			EXT_CSD_ERASE_GROUP_DEF, device);
		exit(1);
	}

	/* write to ENH_START_ADDR and ENH_SIZE_MULT and PARTITIONS_ATTRIBUTE's ENH_USR bit */
	value = (enh_start_addr >> 24) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_START_ADDR_3, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_START_ADDR_3, device);
		exit(1);
	}
	value = (enh_start_addr >> 16) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_START_ADDR_2, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_START_ADDR_2, device);
		exit(1);
	}
	value = (enh_start_addr >> 8) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_START_ADDR_1, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_START_ADDR_1, device);
		exit(1);
	}
	value = enh_start_addr & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_START_ADDR_0, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_START_ADDR_0, device);
		exit(1);
	}

	value = (enh_size_mult >> 16) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_SIZE_MULT_2, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_SIZE_MULT_2, device);
		exit(1);
	}
	value = (enh_size_mult >> 8) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_SIZE_MULT_1, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_SIZE_MULT_1, device);
		exit(1);
	}
	value = enh_size_mult & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_SIZE_MULT_0, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_SIZE_MULT_0, device);
		exit(1);
	}
1293
1294
	value = ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] | EXT_CSD_ENH_USR;
	ret = write_extcsd_value(fd, EXT_CSD_PARTITIONS_ATTRIBUTE, value);
1295
1296
1297
1298
1299
1300
1301
	if (ret) {
		fprintf(stderr, "Could not write EXT_CSD_ENH_USR to "
			"EXT_CSD[%d] in %s\n",
			EXT_CSD_PARTITIONS_ATTRIBUTE, device);
		exit(1);
	}

1302
1303
1304
1305
	ret = check_enhanced_area_total_limit(device, fd);
	if (ret)
		exit(1);

1306
	printf("Done setting ENH_USR area on %s\n", device);
1307

1308
	if (set_partitioning_setting_completed(dry_run, device, fd))
1309
1310
1311
1312
1313
		exit(1);

	return 0;
}

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
int do_write_reliability_set(int nargs, char **argv)
{
	__u8 value;
	__u8 ext_csd[512];
	int fd, ret;

	int dry_run = 1;
	int partition;
	char *device;

1324
1325
1326
1327
	if (nargs != 4) {
		fprintf(stderr,"Usage: mmc write_reliability set <-y|-n|-c> <partition> </path/to/mmcblkX>\n");
		exit(1);
	}
1328

1329
	if (!strcmp("-y", argv[1])) {
1330
		dry_run = 0;
1331
1332
1333
	} else if (!strcmp("-c", argv[1])) {
		dry_run = 2;
	}
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

	partition = strtol(argv[2], NULL, 10);
	device = argv[3];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	/* assert not PARTITION_SETTING_COMPLETED */
	if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED])
	{
		printf(" Device is already partitioned\n");
		exit(1);
	}

	/* assert HS_CTRL_REL */
	if (!(ext_csd[EXT_CSD_WR_REL_PARAM] & HS_CTRL_REL)) {
		printf("Cannot set write reliability parameters, WR_REL_SET is "
				"read-only\n");
		exit(1);
	}

	value = ext_csd[EXT_CSD_WR_REL_SET] | (1<<partition);
	ret = write_extcsd_value(fd, EXT_CSD_WR_REL_SET, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
				value, EXT_CSD_WR_REL_SET, device);
		exit(1);
	}

	printf("Done setting EXT_CSD_WR_REL_SET to 0x%02x on %s\n",
		value, device);

1375
	if (set_partitioning_setting_completed(dry_run, device, fd))
1376
1377
1378
1379
1380
		exit(1);

	return 0;
}

1381
1382
int do_read_extcsd(int nargs, char **argv)
{
1383
	__u8 ext_csd[512], ext_csd_rev, reg;
1384
	__u32 regl;
1385
1386
	int fd, ret;
	char *device;
1387
	const char *str;
1388

1389
1390
1391
1392
	if (nargs != 2) {
		fprintf(stderr, "Usage: mmc extcsd read </path/to/mmcblkX>\n");
		exit(1);
	}
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

1408
	ext_csd_rev = ext_csd[EXT_CSD_REV];
1409
1410

	switch (ext_csd_rev) {
Avi Shchislowski's avatar
Avi Shchislowski committed
1411
1412
1413
	case 8:
		str = "5.1";
		break;
1414
1415
1416
	case 7:
		str = "5.0";
		break;
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
	case 6:
		str = "4.5";
		break;
	case 5:
		str = "4.41";
		break;
	case 3:
		str = "4.3";
		break;
	case 2:
		str = "4.2";
		break;
	case 1:
		str = "4.1";
		break;
	case 0:
		str = "4.0";
		break;
	default:
		goto out_free;
	}
	printf("=============================================\n");
	printf("  Extended CSD rev 1.%d (MMC %s)\n", ext_csd_rev, str);
	printf("=============================================\n\n");

	if (ext_csd_rev < 3)
		goto out_free; /* No ext_csd */

	/* Parse the Extended CSD registers.
	 * Reserved bit should be read as "0" in case of spec older
	 * than A441.
	 */
	reg = ext_csd[EXT_CSD_S_CMD_SET];
	printf("Card Supported Command sets [S_CMD_SET: 0x%02x]\n", reg);
	if (!reg)
1452
		printf(" - Standard MMC command sets\n");
1453
1454
1455
1456
1457

	reg = ext_csd[EXT_CSD_HPI_FEATURE];
	printf("HPI Features [HPI_FEATURE: 0x%02x]: ", reg);
	if (reg & EXT_CSD_HPI_SUPP) {
		if (reg & EXT_CSD_HPI_IMPL)
1458
			printf("implementation based on CMD12\n");
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
		else
			printf("implementation based on CMD13\n");
	}

	printf("Background operations support [BKOPS_SUPPORT: 0x%02x]\n",
		ext_csd[502]);

	if (ext_csd_rev >= 6) {
		printf("Max Packet Read Cmd [MAX_PACKED_READS: 0x%02x]\n",
			ext_csd[501]);
		printf("Max Packet Write Cmd [MAX_PACKED_WRITES: 0x%02x]\n",
			ext_csd[500]);
		printf("Data TAG support [DATA_TAG_SUPPORT: 0x%02x]\n",
			ext_csd[499]);

		printf("Data TAG Unit Size [TAG_UNIT_SIZE: 0x%02x]\n",
			ext_csd[498]);
		printf("Tag Resources Size [TAG_RES_SIZE: 0x%02x]\n",
			ext_csd[497]);
		printf("Context Management Capabilities"
			" [CONTEXT_CAPABILITIES: 0x%02x]\n", ext_csd[496]);
		printf("Large Unit Size [LARGE_UNIT_SIZE_M1: 0x%02x]\n",
			ext_csd[495]);
		printf("Extended partition attribute support"
			" [EXT_SUPPORT: 0x%02x]\n", ext_csd[494]);
		printf("Generic CMD6 Timer [GENERIC_CMD6_TIME: 0x%02x]\n",
			ext_csd[248]);
		printf("Power off notification [POWER_OFF_LONG_TIME: 0x%02x]\n",
			ext_csd[247]);
		printf("Cache Size [CACHE_SIZE] is %d KiB\n",
1489
1490
			(ext_csd[249] << 0 | (ext_csd[250] << 8) |
			(ext_csd[251] << 16) | (ext_csd[252] << 24)) / 8);
1491
1492
1493
1494
1495
1496
	}

	/* A441: Reserved [501:247]
	    A43: reserved [246:229] */
	if (ext_csd_rev >= 5) {
		printf("Background operations status"
1497
			" [BKOPS_STATUS: 0x%02x]\n", ext_csd[246]);
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517

		/* CORRECTLY_PRG_SECTORS_NUM [245:242] TODO */

		printf("1st Initialisation Time after programmed sector"
			" [INI_TIMEOUT_AP: 0x%02x]\n", ext_csd[241]);

		/* A441: reserved [240] */
		printf("Power class for 52MHz, DDR at 3.6V"
			" [PWR_CL_DDR_52_360: 0x%02x]\n", ext_csd[239]);
		printf("Power class for 52MHz, DDR at 1.95V"
			" [PWR_CL_DDR_52_195: 0x%02x]\n", ext_csd[238]);

		/* A441: reserved [237-236] */

		if (ext_csd_rev >= 6) {
			printf("Power class for 200MHz at 3.6V"
				" [PWR_CL_200_360: 0x%02x]\n", ext_csd[237]);
			printf("Power class for 200MHz, at 1.95V"
				" [PWR_CL_200_195: 0x%02x]\n", ext_csd[236]);
		}
1518
		printf("Minimum Performance for 8bit at 52MHz in DDR mode:\n");
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
		printf(" [MIN_PERF_DDR_W_8_52: 0x%02x]\n", ext_csd[235]);
		printf(" [MIN_PERF_DDR_R_8_52: 0x%02x]\n", ext_csd[234]);
		/* A441: reserved [233] */
		printf("TRIM Multiplier [TRIM_MULT: 0x%02x]\n", ext_csd[232]);
		printf("Secure Feature support [SEC_FEATURE_SUPPORT: 0x%02x]\n",
			ext_csd[231]);
	}
	if (ext_csd_rev == 5) { /* Obsolete in 4.5 */
		printf("Secure Erase Multiplier [SEC_ERASE_MULT: 0x%02x]\n",
			ext_csd[230]);
		printf("Secure TRIM Multiplier [SEC_TRIM_MULT: 0x%02x]\n",
			ext_csd[229]);
	}
	reg = ext_csd[EXT_CSD_BOOT_INFO];
	printf("Boot Information [BOOT_INFO: 0x%02x]\n", reg);
	if (reg & EXT_CSD_BOOT_INFO_ALT)
		printf(" Device supports alternative boot method\n");
	if (reg & EXT_CSD_BOOT_INFO_DDR_DDR)
		printf(" Device supports dual data rate during boot\n");
	if (reg & EXT_CSD_BOOT_INFO_HS_MODE)
		printf(" Device supports high speed timing during boot\n");

	/* A441/A43: reserved [227] */
	printf("Boot partition size [BOOT_SIZE_MULTI: 0x%02x]\n", ext_csd[226]);
	printf("Access size [ACC_SIZE: 0x%02x]\n", ext_csd[225]);
Ben Gardiner's avatar
Ben Gardiner committed
1544
1545

	reg = get_hc_erase_grp_size(ext_csd);
1546
	printf("High-capacity erase unit size [HC_ERASE_GRP_SIZE: 0x%02x]\n",
Ben Gardiner's avatar
Ben Gardiner committed
1547
1548
1549
		reg);
	printf(" i.e. %u KiB\n", 512 * reg);

1550
1551
1552
1553
	printf("High-capacity erase timeout [ERASE_TIMEOUT_MULT: 0x%02x]\n",
		ext_csd[223]);
	printf("Reliable write sector count [REL_WR_SEC_C: 0x%02x]\n",
		ext_csd[222]);
Ben Gardiner's avatar
Ben Gardiner committed
1554
1555

	reg = get_hc_wp_grp_size(ext_csd);
1556
	printf("High-capacity W protect group size [HC_WP_GRP_SIZE: 0x%02x]\n",
Ben Gardiner's avatar
Ben Gardiner committed
1557
1558
1559
		reg);
	printf(" i.e. %lu KiB\n", 512l * get_hc_erase_grp_size(ext_csd) * reg);

1560
1561
1562
1563
1564
	printf("Sleep current (VCC) [S_C_VCC: 0x%02x]\n", ext_csd[220]);
	printf("Sleep current (VCCQ) [S_C_VCCQ: 0x%02x]\n", ext_csd[219]);
	/* A441/A43: reserved [218] */
	printf("Sleep/awake timeout [S_A_TIMEOUT: 0x%02x]\n", ext_csd[217]);
	/* A441/A43: reserved [216] */
1565
1566
1567
1568
1569
1570
1571
1572

	unsigned int sectors =	get_sector_count(ext_csd);
	printf("Sector Count [SEC_COUNT: 0x%08x]\n", sectors);
	if (is_blockaddresed(ext_csd))
		printf(" Device is block-addressed\n");
	else
		printf(" Device is NOT block-addressed\n");

1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
	/* A441/A43: reserved [211] */
	printf("Minimum Write Performance for 8bit:\n");
	printf(" [MIN_PERF_W_8_52: 0x%02x]\n", ext_csd[210]);
	printf(" [MIN_PERF_R_8_52: 0x%02x]\n", ext_csd[209]);
	printf(" [MIN_PERF_W_8_26_4_52: 0x%02x]\n", ext_csd[208]);
	printf(" [MIN_PERF_R_8_26_4_52: 0x%02x]\n", ext_csd[207]);
	printf("Minimum Write Performance for 4bit:\n");
	printf(" [MIN_PERF_W_4_26: 0x%02x]\n", ext_csd[206]);
	printf(" [MIN_PERF_R_4_26: 0x%02x]\n", ext_csd[205]);
	/* A441/A43: reserved [204] */
	printf("Power classes registers:\n");
	printf(" [PWR_CL_26_360: 0x%02x]\n", ext_csd[203]);
	printf(" [PWR_CL_52_360: 0x%02x]\n", ext_csd[202]);
	printf(" [PWR_CL_26_195: 0x%02x]\n", ext_csd[201]);
	printf(" [PWR_CL_52_195: 0x%02x]\n", ext_csd[200]);

	/* A43: reserved [199:198] */
	if (ext_csd_rev >= 5) {
		printf("Partition switching timing "
			"[PARTITION_SWITCH_TIME: 0x%02x]\n", ext_csd[199]);
		printf("Out-of-interrupt busy timing"
			" [OUT_OF_INTERRUPT_TIME: 0x%02x]\n", ext_csd[198]);
	}

	/* A441/A43: reserved	[197] [195] [193] [190] [188]
	 * [186] [184] [182] [180] [176] */

	if (ext_csd_rev >= 6)
		printf("I/O Driver Strength [DRIVER_STRENGTH: 0x%02x]\n",
			ext_csd[197]);

1604
1605
1606
1607
1608
1609
1610
1611
1612
	/* DEVICE_TYPE in A45, CARD_TYPE in A441 */
	reg = ext_csd[196];
	printf("Card Type [CARD_TYPE: 0x%02x]\n", reg);
	if (reg & 0x20) printf(" HS200 Single Data Rate eMMC @200MHz 1.2VI/O\n");
	if (reg & 0x10) printf(" HS200 Single Data Rate eMMC @200MHz 1.8VI/O\n");
	if (reg & 0x08) printf(" HS Dual Data Rate eMMC @52MHz 1.2VI/O\n");
	if (reg & 0x04)	printf(" HS Dual Data Rate eMMC @52MHz 1.8V or 3VI/O\n");
	if (reg & 0x02)	printf(" HS eMMC @52MHz - at rated device voltage(s)\n");
	if (reg & 0x01) printf(" HS eMMC @26MHz - at rated device voltage(s)\n");
1613
1614

	printf("CSD structure version [CSD_STRUCTURE: 0x%02x]\n", ext_csd[194]);
1615
	/* ext_csd_rev = ext_csd[EXT_CSD_REV] (already done!!!) */
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
	printf("Command set [CMD_SET: 0x%02x]\n", ext_csd[191]);
	printf("Command set revision [CMD_SET_REV: 0x%02x]\n", ext_csd[189]);
	printf("Power class [POWER_CLASS: 0x%02x]\n", ext_csd[187]);
	printf("High-speed interface timing [HS_TIMING: 0x%02x]\n",
		ext_csd[185]);
	/* bus_width: ext_csd[183] not readable */
	printf("Erased memory content [ERASED_MEM_CONT: 0x%02x]\n",
		ext_csd[181]);
	reg = ext_csd[EXT_CSD_BOOT_CFG];
	printf("Boot configuration bytes [PARTITION_CONFIG: 0x%02x]\n", reg);
1626
	switch ((reg & EXT_CSD_BOOT_CFG_EN)>>3) {
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
	case 0x0:
		printf(" Not boot enable\n");
		break;
	case 0x1:
		printf(" Boot Partition 1 enabled\n");
		break;
	case 0x2:
		printf(" Boot Partition 2 enabled\n");
		break;
	case 0x7:
		printf(" User Area Enabled for boot\n");
		break;
	}
	switch (reg & EXT_CSD_BOOT_CFG_ACC) {
	case 0x0:
		printf(" No access to boot partition\n");
		break;
	case 0x1:
		printf(" R/W Boot Partition 1\n");
		break;
	case 0x2:
		printf(" R/W Boot Partition 2\n");
		break;
1650
1651
1652
	case 0x3:
		printf(" R/W Replay Protected Memory Block (RPMB)\n");
		break;
1653
	default:
1654
		printf(" Access to General Purpose partition %d\n",
1655
1656
1657
1658
1659
1660
1661
1662
1663
			(reg & EXT_CSD_BOOT_CFG_ACC) - 3);
		break;
	}

	printf("Boot config protection [BOOT_CONFIG_PROT: 0x%02x]\n",
		ext_csd[178]);
	printf("Boot bus Conditions [BOOT_BUS_CONDITIONS: 0x%02x]\n",
		ext_csd[177]);
	printf("High-density erase group definition"
1664
		" [ERASE_GROUP_DEF: 0x%02x]\n", ext_csd[EXT_CSD_ERASE_GROUP_DEF]);
1665

1666
	print_writeprotect_boot_status(ext_csd);
1667

1668
	if (ext_csd_rev >= 5) {
1669
1670
1671
1672
1673
1674
		/* A441]: reserved [172] */
		printf("User area write protection register"
			" [USER_WP]: 0x%02x\n", ext_csd[171]);
		/* A441]: reserved [170] */
		printf("FW configuration [FW_CONFIG]: 0x%02x\n", ext_csd[169]);
		printf("RPMB Size [RPMB_SIZE_MULT]: 0x%02x\n", ext_csd[168]);
1675
1676
1677
1678
1679
1680
1681

		reg = ext_csd[EXT_CSD_WR_REL_SET];
		const char * const fast = "existing data is at risk if a power "
				"failure occurs during a write operation";
		const char * const reliable = "the device protects existing "
				"data if a power failure occurs during a write "
				"operation";
1682
		printf("Write reliability setting register"
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
			" [WR_REL_SET]: 0x%02x\n", reg);

		printf(" user area: %s\n", reg & (1<<0) ? reliable : fast);
		int i;
		for (i = 1; i <= 4; i++) {
			printf(" partition %d: %s\n", i,
				reg & (1<<i) ? reliable : fast);
		}

		reg = ext_csd[EXT_CSD_WR_REL_PARAM];
1693
		printf("Write reliability parameter register"
1694
1695
1696
1697
1698
1699
1700
			" [WR_REL_PARAM]: 0x%02x\n", reg);
		if (reg & 0x01)
			printf(" Device supports writing EXT_CSD_WR_REL_SET\n");
		if (reg & 0x04)
			printf(" Device supports the enhanced def. of reliable "
				"write\n");

1701
1702
1703
1704
1705
1706
1707
		/* sanitize_start ext_csd[165]]: not readable
		 * bkops_start ext_csd[164]]: only writable */
		printf("Enable background operations handshake"
			" [BKOPS_EN]: 0x%02x\n", ext_csd[163]);
		printf("H/W reset function"
			" [RST_N_FUNCTION]: 0x%02x\n", ext_csd[162]);
		printf("HPI management [HPI_MGMT]: 0x%02x\n", ext_csd[161]);
1708
		reg = ext_csd[EXT_CSD_PARTITIONING_SUPPORT];
1709
1710
		printf("Partitioning Support [PARTITIONING_SUPPORT]: 0x%02x\n",
			reg);
1711
		if (reg & EXT_CSD_PARTITIONING_EN)
1712
1713
1714
			printf(" Device support partitioning feature\n");
		else
			printf(" Device NOT support partitioning feature\n");
1715
		if (reg & EXT_CSD_ENH_ATTRIBUTE_EN)
1716
1717
1718
1719
			printf(" Device can have enhanced tech.\n");
		else
			printf(" Device cannot have enhanced tech.\n");

1720
		regl = (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_2] << 16) |
1721
1722
1723
			(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_1] << 8) |
			ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_0];

1724
		printf("Max Enhanced Area Size [MAX_ENH_SIZE_MULT]: 0x%06x\n",
1725
			   regl);
Ben Gardiner's avatar
Ben Gardiner committed
1726
1727
		unsigned int wp_sz = get_hc_wp_grp_size(ext_csd);
		unsigned int erase_sz = get_hc_erase_grp_size(ext_csd);
1728
		printf(" i.e. %lu KiB\n", 512l * regl * wp_sz * erase_sz);
Ben Gardiner's avatar
Ben Gardiner committed
1729

1730
		printf("Partitions attribute [PARTITIONS_ATTRIBUTE]: 0x%02x\n",
1731
			ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE]);
1732
		reg = ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED];
1733
1734
		printf("Partitioning Setting"
			" [PARTITION_SETTING_COMPLETED]: 0x%02x\n",
1735
1736
1737
1738
1739
1740
			reg);
		if (reg)
			printf(" Device partition setting complete\n");
		else
			printf(" Device partition setting NOT complete\n");

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
		printf("General Purpose Partition Size\n"
			" [GP_SIZE_MULT_4]: 0x%06x\n", (ext_csd[154] << 16) |
			(ext_csd[153] << 8) | ext_csd[152]);
		printf(" [GP_SIZE_MULT_3]: 0x%06x\n", (ext_csd[151] << 16) |
			   (ext_csd[150] << 8) | ext_csd[149]);
		printf(" [GP_SIZE_MULT_2]: 0x%06x\n", (ext_csd[148] << 16) |
			   (ext_csd[147] << 8) | ext_csd[146]);
		printf(" [GP_SIZE_MULT_1]: 0x%06x\n", (ext_csd[145] << 16) |
			   (ext_csd[144] << 8) | ext_csd[143]);

1751
		regl =	(ext_csd[EXT_CSD_ENH_SIZE_MULT_2] << 16) |
Ben Gardiner's avatar
Ben Gardiner committed
1752
1753
			(ext_csd[EXT_CSD_ENH_SIZE_MULT_1] << 8) |
			ext_csd[EXT_CSD_ENH_SIZE_MULT_0];
1754
		printf("Enhanced User Data Area Size"
1755
1756
			" [ENH_SIZE_MULT]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", 512l * regl *
Ben Gardiner's avatar
Ben Gardiner committed
1757
1758
		       get_hc_erase_grp_size(ext_csd) *
		       get_hc_wp_grp_size(ext_csd));
Ben Gardiner's avatar
Ben Gardiner committed
1759

1760
		regl =	(ext_csd[EXT_CSD_ENH_START_ADDR_3] << 24) |
Ben Gardiner's avatar
Ben Gardiner committed
1761
1762
1763
			(ext_csd[EXT_CSD_ENH_START_ADDR_2] << 16) |
			(ext_csd[EXT_CSD_ENH_START_ADDR_1] << 8) |
			ext_csd[EXT_CSD_ENH_START_ADDR_0];
1764
		printf("Enhanced User Data Start Address"
jason.zeng's avatar
jason.zeng committed
1765
1766
1767
			" [ENH_START_ADDR]: 0x%08x\n", regl);
		printf(" i.e. %llu bytes offset\n", (is_blockaddresed(ext_csd) ?
				512ll : 1ll) * regl);
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820

		/* A441]: reserved [135] */
		printf("Bad Block Management mode"
			" [SEC_BAD_BLK_MGMNT]: 0x%02x\n", ext_csd[134]);
		/* A441: reserved [133:0] */
	}
	/* B45 */
	if (ext_csd_rev >= 6) {
		int j;
		/* tcase_support ext_csd[132] not readable */
		printf("Periodic Wake-up [PERIODIC_WAKEUP]: 0x%02x\n",
			ext_csd[131]);
		printf("Program CID/CSD in DDR mode support"
			" [PROGRAM_CID_CSD_DDR_SUPPORT]: 0x%02x\n",
			   ext_csd[130]);

		for (j = 127; j >= 64; j--)
			printf("Vendor Specific Fields"
				" [VENDOR_SPECIFIC_FIELD[%d]]: 0x%02x\n",
				j, ext_csd[j]);

		printf("Native sector size [NATIVE_SECTOR_SIZE]: 0x%02x\n",
			ext_csd[63]);
		printf("Sector size emulation [USE_NATIVE_SECTOR]: 0x%02x\n",
			ext_csd[62]);
		printf("Sector size [DATA_SECTOR_SIZE]: 0x%02x\n", ext_csd[61]);
		printf("1st initialization after disabling sector"
			" size emulation [INI_TIMEOUT_EMU]: 0x%02x\n",
			ext_csd[60]);
		printf("Class 6 commands control [CLASS_6_CTRL]: 0x%02x\n",
			ext_csd[59]);
		printf("Number of addressed group to be Released"
			"[DYNCAP_NEEDED]: 0x%02x\n", ext_csd[58]);
		printf("Exception events control"
			" [EXCEPTION_EVENTS_CTRL]: 0x%04x\n",
			(ext_csd[57] << 8) | ext_csd[56]);
		printf("Exception events status"
			"[EXCEPTION_EVENTS_STATUS]: 0x%04x\n",
			(ext_csd[55] << 8) | ext_csd[54]);
		printf("Extended Partitions Attribute"
			" [EXT_PARTITIONS_ATTRIBUTE]: 0x%04x\n",
			(ext_csd[53] << 8) | ext_csd[52]);

		for (j = 51; j >= 37; j--)
			printf("Context configuration"
				" [CONTEXT_CONF[%d]]: 0x%02x\n", j, ext_csd[j]);

		printf("Packed command status"
			" [PACKED_COMMAND_STATUS]: 0x%02x\n", ext_csd[36]);
		printf("Packed command failure index"
			" [PACKED_FAILURE_INDEX]: 0x%02x\n", ext_csd[35]);
		printf("Power Off Notification"
			" [POWER_OFF_NOTIFICATION]: 0x%02x\n", ext_csd[34]);
1821
1822
		printf("Control to turn the Cache ON/OFF"
			" [CACHE_CTRL]: 0x%02x\n", ext_csd[33]);
1823
1824
1825
1826
		/* flush_cache ext_csd[32] not readable */
		/*Reserved [31:0] */
	}

Avi Shchislowski's avatar
Avi Shchislowski committed
1827
1828
1829
	if (ext_csd_rev >= 7) {
		printf("eMMC Firmware Version: %s\n",
			(char*)&ext_csd[EXT_CSD_FIRMWARE_VERSION]);
1830
1831
1832
1833
		printf("eMMC Life Time Estimation A [EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]: 0x%02x\n",
			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]);
		printf("eMMC Life Time Estimation B [EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]: 0x%02x\n",
			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]);
1834
1835
		printf("eMMC Pre EOL information [EXT_CSD_PRE_EOL_INFO]: 0x%02x\n",
			ext_csd[EXT_CSD_PRE_EOL_INFO]);
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
		reg = ext_csd[EXT_CSD_SECURE_REMOVAL_TYPE];
		printf("Secure Removal Type [SECURE_REMOVAL_TYPE]: 0x%02x\n", reg);
		printf(" information is configured to be removed ");
		/* Bit [5:4]: Configure Secure Removal Type */
		switch ((reg & EXT_CSD_CONFIG_SECRM_TYPE) >> 4) {
			case 0x0:
				printf("by an erase of the physical memory\n");
				break;
			case 0x1:
				printf("by an overwriting the addressed locations"
				       " with a character followed by an erase\n");
				break;
			case 0x2:
				printf("by an overwriting the addressed locations"
				       " with a character, its complement, then a random character\n");
				break;
			case 0x3:
				printf("using a vendor defined\n");
				break;
		}
		/* Bit [3:0]: Supported Secure Removal Type */
		printf(" Supported Secure Removal Type:\n");
		if (reg & 0x01)
			printf("  information removed by an erase of the physical memory\n");
		if (reg & 0x02)
			printf("  information removed by an overwriting the addressed locations"
			       " with a character followed by an erase\n");
		if (reg & 0x04)
			printf("  information removed by an overwriting the addressed locations"
			       " with a character, its complement, then a random character\n");
		if (reg & 0x08)
			printf("  information removed using a vendor defined\n");
1868
1869
	}

1870
1871
1872
1873
1874
1875
1876
1877
	if (ext_csd_rev >= 8) {
		printf("Command Queue Support [CMDQ_SUPPORT]: 0x%02x\n",
		       ext_csd[EXT_CSD_CMDQ_SUPPORT]);
		printf("Command Queue Depth [CMDQ_DEPTH]: %u\n",
		       (ext_csd[EXT_CSD_CMDQ_DEPTH] & 0x1f) + 1);
		printf("Command Enabled [CMDQ_MODE_EN]: 0x%02x\n",
		       ext_csd[EXT_CSD_CMDQ_MODE_EN]);
	}
1878
out_free:
1879
1880
	return ret;
}
1881
1882
1883
1884
1885
1886

int do_sanitize(int nargs, char **argv)
{
	int fd, ret;
	char *device;

1887
1888
1889
1890
	if (nargs != 2) {
		fprintf(stderr, "Usage: mmc sanitize </path/to/mmcblkX>\n");
		exit(1);
	}
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = write_extcsd_value(fd, EXT_CSD_SANITIZE_START, 1);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			1, EXT_CSD_SANITIZE_START, device);
		exit(1);
	}

	return ret;

}

1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
#define DO_IO(func, fd, buf, nbyte)					\
	({												\
		ssize_t ret = 0, r;							\
		do {										\
			r = func(fd, buf + ret, nbyte - ret);	\
			if (r < 0 && errno != EINTR) {			\
				ret = -1;							\
				break;								\
			}										\
			else if (r > 0)							\
				ret += r;							\
		} while (r != 0 && (size_t)ret != nbyte);	\
													\
		ret;										\
	})

1927
1928
#define RPMB_MULTI_CMD_MAX_CMDS 3

1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
enum rpmb_op_type {
	MMC_RPMB_WRITE_KEY = 0x01,
	MMC_RPMB_READ_CNT  = 0x02,
	MMC_RPMB_WRITE     = 0x03,
	MMC_RPMB_READ      = 0x04,

	/* For internal usage only, do not use it directly */
	MMC_RPMB_READ_RESP = 0x05
};

struct rpmb_frame {
	u_int8_t  stuff[196];
	u_int8_t  key_mac[32];
	u_int8_t  data[256];
	u_int8_t  nonce[16];
	u_int32_t write_counter;
	u_int16_t addr;
	u_int16_t block_count;
	u_int16_t result;
	u_int16_t req_resp;
};

1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
static inline void set_single_cmd(struct mmc_ioc_cmd *ioc, __u32 opcode,
				  int write_flag, unsigned int blocks)
{
	ioc->opcode = opcode;
	ioc->write_flag = write_flag;
	ioc->arg = 0x0;
	ioc->blksz = 512;
	ioc->blocks = blocks;
	ioc->flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
}

1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
/* Performs RPMB operation.
 *
 * @fd: RPMB device on which we should perform ioctl command
 * @frame_in: input RPMB frame, should be properly inited
 * @frame_out: output (result) RPMB frame. Caller is responsible for checking
 *             result and req_resp for output frame.
 * @out_cnt: count of outer frames. Used only for multiple blocks reading,
 *           in the other cases -EINVAL will be returned.
 */
static int do_rpmb_op(int fd,
					  const struct rpmb_frame *frame_in,
					  struct rpmb_frame *frame_out,
					  unsigned int out_cnt)
{
1976
1977
1978
1979
1980
#ifndef MMC_IOC_MULTI_CMD
	fprintf(stderr, "mmc-utils has been compiled without MMC_IOC_MULTI_CMD"
		" support, needed by RPMB operation.\n");
	exit(1);
#else
1981
1982
	int err;
	u_int16_t rpmb_type;
1983
1984
	struct mmc_ioc_multi_cmd *mioc;
	struct mmc_ioc_cmd *ioc;
1985
1986
1987
	struct rpmb_frame frame_status;

	memset(&frame_status, 0, sizeof(frame_status));
1988
1989
1990
1991

	if (!frame_in || !frame_out || !out_cnt)
		return -EINVAL;

1992
1993
	/* prepare arguments for MMC_IOC_MULTI_CMD ioctl */
	mioc = (struct mmc_ioc_multi_cmd *)
1994
		calloc(1, sizeof (struct mmc_ioc_multi_cmd) +
1995
1996
1997
1998
1999
		       RPMB_MULTI_CMD_MAX_CMDS * sizeof (struct mmc_ioc_cmd));
	if (!mioc) {
		return -ENOMEM;
	}

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
	rpmb_type = be16toh(frame_in->req_resp);

	switch(rpmb_type) {
	case MMC_RPMB_WRITE:
	case MMC_RPMB_WRITE_KEY:
		if (out_cnt != 1) {
			err = -EINVAL;
			goto out;
		}

2010
2011
		mioc->num_of_cmds = 3;

2012
		/* Write request */
2013
2014
2015
		ioc = &mioc->cmds[0];
		set_single_cmd(ioc, MMC_WRITE_MULTIPLE_BLOCK, (1 << 31) | 1, 1);
		mmc_ioc_cmd_set_data((*ioc), frame_in);
2016
2017

		/* Result request */
2018
2019
2020
2021
		ioc = &mioc->cmds[1];
		frame_status.req_resp = htobe16(MMC_RPMB_READ_RESP);
		set_single_cmd(ioc, MMC_WRITE_MULTIPLE_BLOCK, 1, 1);
		mmc_ioc_cmd_set_data((*ioc), &frame_status);
2022
2023

		/* Get response */
2024
2025
2026
		ioc = &mioc->cmds[2];
		set_single_cmd(ioc, MMC_READ_MULTIPLE_BLOCK, 0, 1);
		mmc_ioc_cmd_set_data((*ioc), frame_out);
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036

		break;
	case MMC_RPMB_READ_CNT:
		if (out_cnt != 1) {
			err = -EINVAL;
			goto out;
		}
		/* fall through */

	case MMC_RPMB_READ:
2037
2038
2039
2040
2041
2042
		mioc->num_of_cmds = 2;

		/* Read request */
		ioc = &mioc->cmds[0];
		set_single_cmd(ioc, MMC_WRITE_MULTIPLE_BLOCK, 1, 1);
		mmc_ioc_cmd_set_data((*ioc), frame_in);
2043
2044

		/* Get response */
2045
2046
2047
		ioc = &mioc->cmds[1];
		set_single_cmd(ioc, MMC_READ_MULTIPLE_BLOCK, 0, out_cnt);
		mmc_ioc_cmd_set_data((*ioc), frame_out);
2048
2049
2050
2051
2052
2053
2054

		break;
	default:
		err = -EINVAL;
		goto out;
	}

2055
2056
	err = ioctl(fd, MMC_IOC_MULTI_CMD, mioc);

2057
out:
2058
	free(mioc);
2059
	return err;
2060
#endif /* !MMC_IOC_MULTI_CMD */
2061
2062
2063
2064
2065
2066
2067
2068
2069
}

int do_rpmb_write_key(int nargs, char **argv)
{
	int ret, dev_fd, key_fd;
	struct rpmb_frame frame_in = {
		.req_resp = htobe16(MMC_RPMB_WRITE_KEY)
	}, frame_out;

2070
2071
2072
2073
	if (nargs != 3) {
		fprintf(stderr, "Usage: mmc rpmb write-key </path/to/mmcblkXrpmb> </path/to/key>\n");
		exit(1);
	}
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151

	dev_fd = open(argv[1], O_RDWR);
	if (dev_fd < 0) {
		perror("device open");
		exit(1);
	}

	if (0 == strcmp(argv[2], "-"))
		key_fd = STDIN_FILENO;
	else {
		key_fd = open(argv[2], O_RDONLY);
		if (key_fd < 0) {
			perror("can't open key file");
			exit(1);
		}
	}

	/* Read the auth key */
	ret = DO_IO(read, key_fd, frame_in.key_mac, sizeof(frame_in.key_mac));
	if (ret < 0) {
		perror("read the key");
		exit(1);
	} else if (ret != sizeof(frame_in.key_mac)) {
		printf("Auth key must be %lu bytes length, but we read only %d, exit\n",
			   (unsigned long)sizeof(frame_in.key_mac),
			   ret);
		exit(1);
	}

	/* Execute RPMB op */
	ret = do_rpmb_op(dev_fd, &frame_in, &frame_out, 1);
	if (ret != 0) {
		perror("RPMB ioctl failed");
		exit(1);
	}

	/* Check RPMB response */
	if (frame_out.result != 0) {
		printf("RPMB operation failed, retcode 0x%04x\n",
			   be16toh(frame_out.result));
		exit(1);
	}

	close(dev_fd);
	if (key_fd != STDIN_FILENO)
		close(key_fd);

	return ret;
}

int rpmb_read_counter(int dev_fd, unsigned int *cnt)
{
	int ret;
	struct rpmb_frame frame_in = {
		.req_resp = htobe16(MMC_RPMB_READ_CNT)
	}, frame_out;

	/* Execute RPMB op */
	ret = do_rpmb_op(dev_fd, &frame_in, &frame_out, 1);
	if (ret != 0) {
		perror("RPMB ioctl failed");
		exit(1);
	}

	/* Check RPMB response */
	if (frame_out.result != 0)
		return be16toh(frame_out.result);

	*cnt = be32toh(frame_out.write_counter);

	return 0;
}

int do_rpmb_read_counter(int nargs, char **argv)
{
	int ret, dev_fd;
	unsigned int cnt;

2152
2153
2154
2155
	if (nargs != 2) {
		fprintf(stderr, "Usage: mmc rpmb read-counter </path/to/mmcblkXrpmb>\n");
		exit(1);
	}
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180

	dev_fd = open(argv[1], O_RDWR);
	if (dev_fd < 0) {
		perror("device open");
		exit(1);
	}

	ret = rpmb_read_counter(dev_fd, &cnt);

	/* Check RPMB response */
	if (ret != 0) {
		printf("RPMB operation failed, retcode 0x%04x\n", ret);
		exit(1);
	}

	close(dev_fd);

	printf("Counter value: 0x%08x\n", cnt);

	return ret;
}

int do_rpmb_read_block(int nargs, char **argv)
{
	int i, ret, dev_fd, data_fd, key_fd = -1;
2181
2182
2183
2184
2185
2186
	uint16_t addr;
	/*
	 * for reading RPMB, number of blocks is set by CMD23 only, the packet
	 * frame field for that is set to 0. So, the type is not u16 but uint!
	 */
	unsigned int blocks_cnt;
2187
2188
2189
2190
2191
	unsigned char key[32];
	struct rpmb_frame frame_in = {
		.req_resp    = htobe16(MMC_RPMB_READ),
	}, *frame_out_p;

2192
2193
2194
2195
	if (nargs != 5 && nargs != 6) {
		fprintf(stderr, "Usage: mmc rpmb read-block </path/to/mmcblkXrpmb> <address> <blocks count> </path/to/output_file> [/path/to/key]\n");
		exit(1);
	}
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342

	dev_fd = open(argv[1], O_RDWR);
	if (dev_fd < 0) {
		perror("device open");
		exit(1);
	}

	/* Get block address */
	errno = 0;
	addr = strtol(argv[2], NULL, 0);
	if (errno) {
		perror("incorrect address");
		exit(1);
	}
	frame_in.addr = htobe16(addr);

	/* Get blocks count */
	errno = 0;
	blocks_cnt = strtol(argv[3], NULL, 0);
	if (errno) {
		perror("incorrect blocks count");
		exit(1);
	}

	if (!blocks_cnt) {
		printf("please, specify valid blocks count number\n");
		exit(1);
	}

	frame_out_p = calloc(sizeof(*frame_out_p), blocks_cnt);
	if (!frame_out_p) {
		printf("can't allocate memory for RPMB outer frames\n");
		exit(1);
	}

	/* Write 256b data */
	if (0 == strcmp(argv[4], "-"))
		data_fd = STDOUT_FILENO;
	else {
		data_fd = open(argv[4], O_WRONLY | O_CREAT | O_APPEND,
					   S_IRUSR | S_IWUSR);
		if (data_fd < 0) {
			perror("can't open output file");
			exit(1);
		}
	}

	/* Key is specified */
	if (nargs == 6) {
		if (0 == strcmp(argv[5], "-"))
			key_fd = STDIN_FILENO;
		else {
			key_fd = open(argv[5], O_RDONLY);
			if (key_fd < 0) {
				perror("can't open input key file");
				exit(1);
			}
		}

		ret = DO_IO(read, key_fd, key, sizeof(key));
		if (ret < 0) {
			perror("read the key data");
			exit(1);
		} else if (ret != sizeof(key)) {
			printf("Data must be %lu bytes length, but we read only %d, exit\n",
				   (unsigned long)sizeof(key),
				   ret);
			exit(1);
		}
	}

	/* Execute RPMB op */
	ret = do_rpmb_op(dev_fd, &frame_in, frame_out_p, blocks_cnt);
	if (ret != 0) {
		perror("RPMB ioctl failed");
		exit(1);
	}

	/* Check RPMB response */
	if (frame_out_p[blocks_cnt - 1].result != 0) {
		printf("RPMB operation failed, retcode 0x%04x\n",
			   be16toh(frame_out_p[blocks_cnt - 1].result));
		exit(1);
	}

	/* Do we have to verify data against key? */
	if (nargs == 6) {
		unsigned char mac[32];
		hmac_sha256_ctx ctx;
		struct rpmb_frame *frame_out = NULL;

		hmac_sha256_init(&ctx, key, sizeof(key));
		for (i = 0; i < blocks_cnt; i++) {
			frame_out = &frame_out_p[i];
			hmac_sha256_update(&ctx, frame_out->data,
							   sizeof(*frame_out) -
								   offsetof(struct rpmb_frame, data));
		}

		hmac_sha256_final(&ctx, mac, sizeof(mac));

		/* Impossible */
		assert(frame_out);

		/* Compare calculated MAC and MAC from last frame */
		if (memcmp(mac, frame_out->key_mac, sizeof(mac))) {
			printf("RPMB MAC missmatch\n");
			exit(1);
		}
	}

	/* Write data */
	for (i = 0; i < blocks_cnt; i++) {
		struct rpmb_frame *frame_out = &frame_out_p[i];
		ret = DO_IO(write, data_fd, frame_out->data, sizeof(frame_out->data));
		if (ret < 0) {
			perror("write the data");
			exit(1);
		} else if (ret != sizeof(frame_out->data)) {
			printf("Data must be %lu bytes length, but we wrote only %d, exit\n",
				   (unsigned long)sizeof(frame_out->data),
				   ret);
			exit(1);
		}
	}

	free(frame_out_p);
	close(dev_fd);
	if (data_fd != STDOUT_FILENO)
		close(data_fd);
	if (key_fd != -1 && key_fd != STDIN_FILENO)
		close(key_fd);

	return ret;
}

int do_rpmb_write_block(int nargs, char **argv)
{
	int ret, dev_fd, key_fd, data_fd;
	unsigned char key[32];
	uint16_t addr;
	unsigned int cnt;
	struct rpmb_frame frame_in = {
		.req_resp    = htobe16(MMC_RPMB_WRITE),
		.block_count = htobe16(1)
	}, frame_out;

2343
2344
2345
2346
	if (nargs != 5) {
		fprintf(stderr, "Usage: mmc rpmb write-block </path/to/mmcblkXrpmb> <address> </path/to/input_file> </path/to/key>\n");
		exit(1);
	}
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442

	dev_fd = open(argv[1], O_RDWR);
	if (dev_fd < 0) {
		perror("device open");
		exit(1);
	}

	ret = rpmb_read_counter(dev_fd, &cnt);
	/* Check RPMB response */
	if (ret != 0) {
		printf("RPMB read counter operation failed, retcode 0x%04x\n", ret);
		exit(1);
	}
	frame_in.write_counter = htobe32(cnt);

	/* Get block address */
	errno = 0;
	addr = strtol(argv[2], NULL, 0);
	if (errno) {
		perror("incorrect address");
		exit(1);
	}
	frame_in.addr = htobe16(addr);

	/* Read 256b data */
	if (0 == strcmp(argv[3], "-"))
		data_fd = STDIN_FILENO;
	else {
		data_fd = open(argv[3], O_RDONLY);
		if (data_fd < 0) {
			perror("can't open input file");
			exit(1);
		}
	}

	ret = DO_IO(read, data_fd, frame_in.data, sizeof(frame_in.data));
	if (ret < 0) {
		perror("read the data");
		exit(1);
	} else if (ret != sizeof(frame_in.data)) {
		printf("Data must be %lu bytes length, but we read only %d, exit\n",
			   (unsigned long)sizeof(frame_in.data),
			   ret);
		exit(1);
	}

	/* Read the auth key */
	if (0 == strcmp(argv[4], "-"))
		key_fd = STDIN_FILENO;
	else {
		key_fd = open(argv[4], O_RDONLY);
		if (key_fd < 0) {
			perror("can't open key file");
			exit(1);
		}
	}

	ret = DO_IO(read, key_fd, key, sizeof(key));
	if (ret < 0) {
		perror("read the key");
		exit(1);
	} else if (ret != sizeof(key)) {
		printf("Auth key must be %lu bytes length, but we read only %d, exit\n",
			   (unsigned long)sizeof(key),
			   ret);
		exit(1);
	}

	/* Calculate HMAC SHA256 */
	hmac_sha256(
		key, sizeof(key),
		frame_in.data, sizeof(frame_in) - offsetof(struct rpmb_frame, data),
		frame_in.key_mac, sizeof(frame_in.key_mac));

	/* Execute RPMB op */
	ret = do_rpmb_op(dev_fd, &frame_in, &frame_out, 1);
	if (ret != 0) {
		perror("RPMB ioctl failed");
		exit(1);
	}

	/* Check RPMB response */
	if (frame_out.result != 0) {
		printf("RPMB operation failed, retcode 0x%04x\n",
			   be16toh(frame_out.result));
		exit(1);
	}

	close(dev_fd);
	if (data_fd != STDIN_FILENO)
		close(data_fd);
	if (key_fd != STDIN_FILENO)
		close(key_fd);

	return ret;
}
2443
2444
2445
2446
2447
2448
2449

int do_cache_ctrl(int value, int nargs, char **argv)
{
	__u8 ext_csd[512];
	int fd, ret;
	char *device;

2450
2451
2452
2453
	if (nargs != 2) {
	       fprintf(stderr, "Usage: mmc cache enable </path/to/mmcblkX>\n");
	       exit(1);
	}
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	if (ext_csd[EXT_CSD_REV] < EXT_CSD_REV_V4_5) {
		fprintf(stderr,
			"The CACHE option is only availabe on devices >= "
			"MMC 4.5 %s\n", device);
		exit(1);
	}

	/* If the cache size is zero, this device does not have a cache */
	if (!(ext_csd[EXT_CSD_CACHE_SIZE_3] ||
			ext_csd[EXT_CSD_CACHE_SIZE_2] ||
			ext_csd[EXT_CSD_CACHE_SIZE_1] ||
			ext_csd[EXT_CSD_CACHE_SIZE_0])) {
		fprintf(stderr,
			"The CACHE option is not available on %s\n",
			device);
		exit(1);
	}
	ret = write_extcsd_value(fd, EXT_CSD_CACHE_CTRL, value);
	if (ret) {
		fprintf(stderr,
			"Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, EXT_CSD_CACHE_CTRL, device);
		exit(1);
	}

	return ret;
}

int do_cache_en(int nargs, char **argv)
{
	return do_cache_ctrl(1, nargs, argv);
}

int do_cache_dis(int nargs, char **argv)
{
	return do_cache_ctrl(0, nargs, argv);
}
Avi Shchislowski's avatar
Avi Shchislowski committed
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517

int do_ffu(int nargs, char **argv)
{
#ifndef MMC_IOC_MULTI_CMD
	fprintf(stderr, "mmc-utils has been compiled without MMC_IOC_MULTI_CMD"
			" support, needed by FFU.\n");
	exit(1);
#else
	int dev_fd, img_fd;
	int sect_done = 0, retry = 3, ret = -EINVAL;
	unsigned int sect_size;
	__u8 ext_csd[512];
2518
	__u8 *buf = NULL;
Avi Shchislowski's avatar
Avi Shchislowski committed
2519
2520
2521
2522
	__u32 arg;
	off_t fw_size;
	ssize_t chunk_size;
	char *device;
2523
2524
	struct mmc_ioc_multi_cmd *multi_cmd = NULL;
	__u32 blocks = 1;
Avi Shchislowski's avatar
Avi Shchislowski committed
2525

2526
2527
2528
2529
	if (nargs != 3) {
		fprintf(stderr, "Usage: ffu <image name> </path/to/mmcblkX> \n");
		exit(1);
	}
Avi Shchislowski's avatar
Avi Shchislowski committed
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567

	device = argv[2];
	dev_fd = open(device, O_RDWR);
	if (dev_fd < 0) {
		perror("device open failed");
		exit(1);
	}
	img_fd = open(argv[1], O_RDONLY);
	if (img_fd < 0) {
		perror("image open failed");
		close(dev_fd);
		exit(1);
	}

	ret = read_extcsd(dev_fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		goto out;
	}

	if (ext_csd[EXT_CSD_REV] < EXT_CSD_REV_V5_0) {
		fprintf(stderr,
			"The FFU feature is only available on devices >= "
			"MMC 5.0, not supported in %s\n", device);
		goto out;
	}

	if (!(ext_csd[EXT_CSD_SUPPORTED_MODES] & EXT_CSD_FFU)) {
		fprintf(stderr, "FFU is not supported in %s\n", device);
		goto out;
	}

	if (ext_csd[EXT_CSD_FW_CONFIG] & EXT_CSD_UPDATE_DISABLE) {
		fprintf(stderr, "Firmware update was disabled in %s\n", device);
		goto out;
	}

	fw_size = lseek(img_fd, 0, SEEK_END);
2568
2569
2570
2571
	if (fw_size > MMC_IOC_MAX_BYTES || fw_size == 0) {
		fprintf(stderr, "Wrong firmware size");
		goto out;
	}
Avi Shchislowski's avatar
Avi Shchislowski committed
2572

2573
2574
2575
2576
2577
2578
	/* allocate maximum required */
	buf = malloc(fw_size);
	multi_cmd = calloc(1, sizeof(struct mmc_ioc_multi_cmd) +
				4 * sizeof(struct mmc_ioc_cmd));
	if (!buf || !multi_cmd) {
		perror("failed to allocate memory");
Avi Shchislowski's avatar
Avi Shchislowski committed
2579
2580
2581
2582
2583
2584
2585
2586
2587
		goto out;
	}

	sect_size = (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 0) ? 512 : 4096;
	if (fw_size % sect_size) {
		fprintf(stderr, "Firmware data size (%jd) is not aligned!\n", (intmax_t)fw_size);
		goto out;
	}

2588
2589
2590
	/* calculate required fw blocks for CMD25 */
	blocks = fw_size / sect_size;

Avi Shchislowski's avatar
Avi Shchislowski committed
2591
2592
2593
2594
2595
2596
	/* set CMD ARG */
	arg = ext_csd[EXT_CSD_FFU_ARG_0] |
		ext_csd[EXT_CSD_FFU_ARG_1] << 8 |
		ext_csd[EXT_CSD_FFU_ARG_2] << 16 |
		ext_csd[EXT_CSD_FFU_ARG_3] << 24;

2597
2598
	/* prepare multi_cmd for FFU based on cmd to be used */

Avi Shchislowski's avatar
Avi Shchislowski committed
2599
	/* prepare multi_cmd to be sent */
2600
	multi_cmd->num_of_cmds = 4;
Avi Shchislowski's avatar
Avi Shchislowski committed
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610

	/* put device into ffu mode */
	multi_cmd->cmds[0].opcode = MMC_SWITCH;
	multi_cmd->cmds[0].arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
			(EXT_CSD_MODE_CONFIG << 16) |
			(EXT_CSD_FFU_MODE << 8) |
			EXT_CSD_CMD_SET_NORMAL;
	multi_cmd->cmds[0].flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
	multi_cmd->cmds[0].write_flag = 1;

2611
2612
2613
2614
2615
	/* send block count */
	multi_cmd->cmds[1].opcode = MMC_SET_BLOCK_COUNT;
	multi_cmd->cmds[1].arg = blocks;
	multi_cmd->cmds[1].flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;

Avi Shchislowski's avatar
Avi Shchislowski committed
2616
	/* send image chunk */
2617
2618
2619
2620
2621
2622
2623
	multi_cmd->cmds[2].opcode = MMC_WRITE_MULTIPLE_BLOCK;
	multi_cmd->cmds[2].blksz = sect_size;
	multi_cmd->cmds[2].blocks = blocks;
	multi_cmd->cmds[2].arg = arg;
	multi_cmd->cmds[2].flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
	multi_cmd->cmds[2].write_flag = 1;
	mmc_ioc_cmd_set_data(multi_cmd->cmds[2], buf);
Avi Shchislowski's avatar
Avi Shchislowski committed
2624
2625

	/* return device into normal mode */
2626
2627
	multi_cmd->cmds[3].opcode = MMC_SWITCH;
	multi_cmd->cmds[3].arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
Avi Shchislowski's avatar
Avi Shchislowski committed
2628
2629
2630
			(EXT_CSD_MODE_CONFIG << 16) |
			(EXT_CSD_NORMAL_MODE << 8) |
			EXT_CSD_CMD_SET_NORMAL;
2631
2632
	multi_cmd->cmds[3].flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
	multi_cmd->cmds[3].write_flag = 1;
Avi Shchislowski's avatar
Avi Shchislowski committed
2633
2634
2635
2636

do_retry:
	/* read firmware chunk */
	lseek(img_fd, 0, SEEK_SET);
2637
	chunk_size = read(img_fd, buf, fw_size);
Avi Shchislowski's avatar
Avi Shchislowski committed
2638

2639
	if (chunk_size > 0) {
Avi Shchislowski's avatar
Avi Shchislowski committed
2640
2641
2642
2643
2644
2645
		/* send ioctl with multi-cmd */
		ret = ioctl(dev_fd, MMC_IOC_MULTI_CMD, multi_cmd);

		if (ret) {
			perror("Multi-cmd ioctl");
			/* In case multi-cmd ioctl failed before exiting from ffu mode */
2646
			ioctl(dev_fd, MMC_IOC_CMD, &multi_cmd->cmds[3]);
Avi Shchislowski's avatar
Avi Shchislowski committed
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
			goto out;
		}

		ret = read_extcsd(dev_fd, ext_csd);
		if (ret) {
			fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
			goto out;
		}

		/* Test if we need to restart the download */
		sect_done = ext_csd[EXT_CSD_NUM_OF_FW_SEC_PROG_0] |
				ext_csd[EXT_CSD_NUM_OF_FW_SEC_PROG_1] << 8 |
				ext_csd[EXT_CSD_NUM_OF_FW_SEC_PROG_2] << 16 |
				ext_csd[EXT_CSD_NUM_OF_FW_SEC_PROG_3] << 24;
		/* By spec, host should re-start download from the first sector if sect_done is 0 */
		if (sect_done == 0) {
			if (retry > 0) {
				retry--;
				fprintf(stderr, "Programming failed. Retrying... (%d)\n", retry);
				goto do_retry;
			}
			fprintf(stderr, "Programming failed! Aborting...\n");
			goto out;
		} else {
			fprintf(stderr, "Programmed %d/%jd bytes\r", sect_done * sect_size, (intmax_t)fw_size);
		}
	}

	if ((sect_done * sect_size) == fw_size) {
		fprintf(stderr, "Programmed %jd/%jd bytes\n", (intmax_t)fw_size, (intmax_t)fw_size);
		fprintf(stderr, "Programming finished with status %d \n", ret);
	}
	else {
		fprintf(stderr, "FW size and number of sectors written mismatch. Status return %d\n", ret);
		goto out;
	}

	/* check mode operation for ffu install*/
	if (!ext_csd[EXT_CSD_FFU_FEATURES]) {
		fprintf(stderr, "Please reboot to complete firmware installation on %s\n", device);
	} else {
		fprintf(stderr, "Installing firmware on %s...\n", device);
		/* Re-enter ffu mode and install the firmware */
		multi_cmd->num_of_cmds = 2;

		/* set ext_csd to install mode */
		multi_cmd->cmds[1].opcode = MMC_SWITCH;
		multi_cmd->cmds[1].blksz = 0;
		multi_cmd->cmds[1].blocks = 0;
		multi_cmd->cmds[1].arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
				(EXT_CSD_MODE_OPERATION_CODES << 16) |
				(EXT_CSD_FFU_INSTALL << 8) |
				EXT_CSD_CMD_SET_NORMAL;
		multi_cmd->cmds[1].flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
		multi_cmd->cmds[1].write_flag = 1;

		/* send ioctl with multi-cmd */
		ret = ioctl(dev_fd, MMC_IOC_MULTI_CMD, multi_cmd);

		if (ret) {
			perror("Multi-cmd ioctl failed setting install mode");
			/* In case multi-cmd ioctl failed before exiting from ffu mode */
2709
			ioctl(dev_fd, MMC_IOC_CMD, &multi_cmd->cmds[3]);
Avi Shchislowski's avatar
Avi Shchislowski committed
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
			goto out;
		}

		ret = read_extcsd(dev_fd, ext_csd);
		if (ret) {
			fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
			goto out;
		}

		/* return status */
		ret = ext_csd[EXT_CSD_FFU_STATUS];
		if (ret) {
			fprintf(stderr, "%s: error %d during FFU install:\n", device, ret);
			goto out;
		} else {
			fprintf(stderr, "FFU finished successfully\n");
		}
	}

out:
	free(buf);
	free(multi_cmd);
	close(img_fd);
	close(dev_fd);
	return ret;
#endif
}