mmc_cmds.c 50.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <libgen.h>
#include <limits.h>
#include <ctype.h>
29
30
31
#include <errno.h>
#include <stdint.h>
#include <assert.h>
32
33
34

#include "mmc.h"
#include "mmc_cmds.h"
35
#include "3rdparty/hmac_sha/hmac_sha2.h"
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

int read_extcsd(int fd, __u8 *ext_csd)
{
	int ret = 0;
	struct mmc_ioc_cmd idata;
	memset(&idata, 0, sizeof(idata));
	memset(ext_csd, 0, sizeof(__u8) * 512);
	idata.write_flag = 0;
	idata.opcode = MMC_SEND_EXT_CSD;
	idata.arg = 0;
	idata.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
	idata.blksz = 512;
	idata.blocks = 1;
	mmc_ioc_cmd_set_data(idata, ext_csd);

	ret = ioctl(fd, MMC_IOC_CMD, &idata);
	if (ret)
		perror("ioctl");

	return ret;
}

int write_extcsd_value(int fd, __u8 index, __u8 value)
{
	int ret = 0;
	struct mmc_ioc_cmd idata;

	memset(&idata, 0, sizeof(idata));
	idata.write_flag = 1;
	idata.opcode = MMC_SWITCH;
	idata.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
			(index << 16) |
			(value << 8) |
			EXT_CSD_CMD_SET_NORMAL;
	idata.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;

	ret = ioctl(fd, MMC_IOC_CMD, &idata);
	if (ret)
		perror("ioctl");

	return ret;
}

Ben Gardiner's avatar
Ben Gardiner committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
int send_status(int fd, __u32 *response)
{
	int ret = 0;
	struct mmc_ioc_cmd idata;

	memset(&idata, 0, sizeof(idata));
	idata.opcode = MMC_SEND_STATUS;
	idata.arg = (1 << 16);
	idata.flags = MMC_RSP_R1 | MMC_CMD_AC;

	ret = ioctl(fd, MMC_IOC_CMD, &idata);
	if (ret)
	perror("ioctl");

	*response = idata.response[0];

	return ret;
}

98
99
100
void print_writeprotect_status(__u8 *ext_csd)
{
	__u8 reg;
101
	__u8 ext_csd_rev = ext_csd[EXT_CSD_REV];
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

	/* A43: reserved [174:0] */
	if (ext_csd_rev >= 5) {
		printf("Boot write protection status registers"
			" [BOOT_WP_STATUS]: 0x%02x\n", ext_csd[174]);

		reg = ext_csd[EXT_CSD_BOOT_WP];
		printf("Boot Area Write protection [BOOT_WP]: 0x%02x\n", reg);
		printf(" Power ro locking: ");
		if (reg & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
			printf("not possible\n");
		else
			printf("possible\n");

		printf(" Permanent ro locking: ");
		if (reg & EXT_CSD_BOOT_WP_B_PERM_WP_DIS)
			printf("not possible\n");
		else
			printf("possible\n");

		printf(" ro lock status: ");
		if (reg & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
			printf("locked until next power on\n");
		else if (reg & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
			printf("locked permanently\n");
		else
			printf("not locked\n");
	}
}

int do_writeprotect_get(int nargs, char **argv)
{
	__u8 ext_csd[512];
	int fd, ret;
	char *device;

138
139
	CHECK(nargs != 2, "Usage: mmc writeprotect get </path/to/mmcblkX>\n",
			  exit(1));
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	print_writeprotect_status(ext_csd);

	return ret;
}

int do_writeprotect_set(int nargs, char **argv)
{
	__u8 ext_csd[512], value;
	int fd, ret;
	char *device;

166
167
	CHECK(nargs != 2, "Usage: mmc writeprotect set </path/to/mmcblkX>\n",
			  exit(1));
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	value = ext_csd[EXT_CSD_BOOT_WP] |
		EXT_CSD_BOOT_WP_B_PWR_WP_EN;
	ret = write_extcsd_value(fd, EXT_CSD_BOOT_WP, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n",
			value, EXT_CSD_BOOT_WP, device);
		exit(1);
	}

	return ret;
}

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
int do_disable_512B_emulation(int nargs, char **argv)
{
	__u8 ext_csd[512], native_sector_size, data_sector_size, wr_rel_param;
	int fd, ret;
	char *device;

	CHECK(nargs != 2, "Usage: mmc disable 512B emulation </path/to/mmcblkX>\n", exit(1));
	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	wr_rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
	native_sector_size = ext_csd[EXT_CSD_NATIVE_SECTOR_SIZE];
	data_sector_size = ext_csd[EXT_CSD_DATA_SECTOR_SIZE];

	if (native_sector_size && !data_sector_size &&
	   (wr_rel_param & EN_REL_WR)) {
		ret = write_extcsd_value(fd, EXT_CSD_USE_NATIVE_SECTOR, 1);

		if (ret) {
			fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
					1, EXT_CSD_BOOT_WP, device);
			exit(1);
		}
		printf("MMC disable 512B emulation successful.  Now reset the device to switch to 4KB native sector mode.\n");
	} else if (native_sector_size && data_sector_size) {
		printf("MMC 512B emulation mode is already disabled; doing nothing.\n");
	} else {
		printf("MMC does not support disabling 512B emulation mode.\n");
	}

	return ret;
}

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
int do_write_boot_en(int nargs, char **argv)
{
	__u8 ext_csd[512];
	__u8 value = 0;
	int fd, ret;
	char *device;
	int boot_area, send_ack;

	CHECK(nargs != 4, "Usage: mmc bootpart enable <partition_number> "
			  "<send_ack> </path/to/mmcblkX>\n", exit(1));

	/*
	 * If <send_ack> is 1, the device will send acknowledgment
	 * pattern "010" to the host when boot operation begins.
	 * If <send_ack> is 0, it won't.
	 */
	boot_area = strtol(argv[1], NULL, 10);
	send_ack = strtol(argv[2], NULL, 10);
	device = argv[3];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	value = ext_csd[EXT_CSD_PART_CONFIG];

	switch (boot_area) {
	case EXT_CSD_PART_CONFIG_ACC_BOOT0:
		value |= (1 << 3);
		value &= ~(3 << 4);
		break;
	case EXT_CSD_PART_CONFIG_ACC_BOOT1:
		value |= (1 << 4);
		value &= ~(1 << 3);
		value &= ~(1 << 5);
		break;
	case EXT_CSD_PART_CONFIG_ACC_USER_AREA:
		value |= (boot_area << 3);
		break;
	default:
		fprintf(stderr, "Cannot enable the boot area\n");
		exit(1);
	}
	if (send_ack)
		value |= EXT_CSD_PART_CONFIG_ACC_ACK;
	else
		value &= ~EXT_CSD_PART_CONFIG_ACC_ACK;

	ret = write_extcsd_value(fd, EXT_CSD_PART_CONFIG, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n",
			value, EXT_CSD_PART_CONFIG, device);
		exit(1);
	}
	return ret;
}

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
int do_boot_bus_conditions_set(int nargs, char **argv)
{
	__u8 ext_csd[512];
	__u8 value = 0;
	int fd, ret;
	char *device;

	CHECK(nargs != 5, "Usage: mmc: bootbus set <boot_mode> "
	      "<reset_boot_bus_conditions> <boot_bus_width> <device>\n",
		exit(1));

	if (strcmp(argv[1], "single_backward") == 0)
		value |= 0;
	else if (strcmp(argv[1], "single_hs") == 0)
		value |= 0x8;
	else if (strcmp(argv[1], "dual") == 0)
		value |= 0x10;
	else {
		fprintf(stderr, "illegal <boot_mode> specified\n");
		exit(1);
	}

	if (strcmp(argv[2], "x1") == 0)
		value |= 0;
	else if (strcmp(argv[2], "retain") == 0)
		value |= 0x4;
	else {
		fprintf(stderr,
			"illegal <reset_boot_bus_conditions> specified\n");
		exit(1);
	}

	if (strcmp(argv[3], "x1") == 0)
		value |= 0;
	else if (strcmp(argv[3], "x4") == 0)
		value |= 0x1;
	else if (strcmp(argv[3], "x8") == 0)
		value |= 0x2;
	else {
		fprintf(stderr,	"illegal <boot_bus_width> specified\n");
		exit(1);
	}

	device = argv[4];
	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}
	printf("Changing ext_csd[BOOT_BUS_CONDITIONS] from 0x%02x to 0x%02x\n",
		ext_csd[EXT_CSD_BOOT_BUS_CONDITIONS], value);

	ret = write_extcsd_value(fd, EXT_CSD_BOOT_BUS_CONDITIONS, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n",
			value, EXT_CSD_BOOT_BUS_CONDITIONS, device);
		exit(1);
	}
	close(fd);
	return ret;
}

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
int do_hwreset(int value, int nargs, char **argv)
{
	__u8 ext_csd[512];
	int fd, ret;
	char *device;

	CHECK(nargs != 2, "Usage: mmc hwreset enable </path/to/mmcblkX>\n",
			  exit(1));

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	if ((ext_csd[EXT_CSD_RST_N_FUNCTION] & EXT_CSD_RST_N_EN_MASK) ==
	    EXT_CSD_HW_RESET_EN) {
		fprintf(stderr,
			"H/W Reset is already permanently enabled on %s\n",
			device);
		exit(1);
	}
	if ((ext_csd[EXT_CSD_RST_N_FUNCTION] & EXT_CSD_RST_N_EN_MASK) ==
	    EXT_CSD_HW_RESET_DIS) {
		fprintf(stderr,
			"H/W Reset is already permanently disabled on %s\n",
			device);
		exit(1);
	}

	ret = write_extcsd_value(fd, EXT_CSD_RST_N_FUNCTION, value);
	if (ret) {
		fprintf(stderr,
			"Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, EXT_CSD_RST_N_FUNCTION, device);
		exit(1);
	}

	return ret;
}

int do_hwreset_en(int nargs, char **argv)
{
	return do_hwreset(EXT_CSD_HW_RESET_EN, nargs, argv);
}

int do_hwreset_dis(int nargs, char **argv)
{
	return do_hwreset(EXT_CSD_HW_RESET_DIS, nargs, argv);
}

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
int do_write_bkops_en(int nargs, char **argv)
{
	__u8 ext_csd[512], value = 0;
	int fd, ret;
	char *device;

	CHECK(nargs != 2, "Usage: mmc bkops enable </path/to/mmcblkX>\n",
			exit(1));

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	if (!(ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1)) {
		fprintf(stderr, "%s doesn't support BKOPS\n", device);
		exit(1);
	}

	ret = write_extcsd_value(fd, EXT_CSD_BKOPS_EN, BKOPS_ENABLE);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, EXT_CSD_BKOPS_EN, device);
		exit(1);
	}

	return ret;
}

Ben Gardiner's avatar
Ben Gardiner committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
int do_status_get(int nargs, char **argv)
{
	__u32 response;
	int fd, ret;
	char *device;

	CHECK(nargs != 2, "Usage: mmc status get </path/to/mmcblkX>\n",
		exit(1));

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = send_status(fd, &response);
	if (ret) {
		fprintf(stderr, "Could not read response to SEND_STATUS from %s\n", device);
		exit(1);
	}

	printf("SEND_STATUS response: 0x%08x\n", response);

	return ret;
}

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
unsigned int get_sector_count(__u8 *ext_csd)
{
	return (ext_csd[EXT_CSD_SEC_COUNT_3] << 24) |
	(ext_csd[EXT_CSD_SEC_COUNT_2] << 16) |
	(ext_csd[EXT_CSD_SEC_COUNT_1] << 8)  |
	ext_csd[EXT_CSD_SEC_COUNT_0];
}

int is_blockaddresed(__u8 *ext_csd)
{
	unsigned int sectors = get_sector_count(ext_csd);

	return (sectors > (2u * 1024 * 1024 * 1024) / 512);
}

Ben Gardiner's avatar
Ben Gardiner committed
515
516
517
518
519
520
521
522
523
524
unsigned int get_hc_wp_grp_size(__u8 *ext_csd)
{
	return ext_csd[221];
}

unsigned int get_hc_erase_grp_size(__u8 *ext_csd)
{
	return ext_csd[224];
}

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
int set_partitioning_setting_completed(int dry_run, const char * const device,
		int fd)
{
	int ret;

	if (dry_run) {
		fprintf(stderr, "NOT setting PARTITION_SETTING_COMPLETED\n");
		fprintf(stderr, "These changes will not take effect neither "
			"now nor after a power cycle\n");
		return 1;
	}

	fprintf(stderr, "setting OTP PARTITION_SETTING_COMPLETED!\n");
	ret = write_extcsd_value(fd, EXT_CSD_PARTITION_SETTING_COMPLETED, 0x1);
	if (ret) {
		fprintf(stderr, "Could not write 0x1 to "
			"EXT_CSD[%d] in %s\n",
			EXT_CSD_PARTITION_SETTING_COMPLETED, device);
		return 1;
	}

	__u32 response;
	ret = send_status(fd, &response);
	if (ret) {
		fprintf(stderr, "Could not get response to SEND_STATUS "
			"from %s\n", device);
		return 1;
	}

	if (response & R1_SWITCH_ERROR) {
		fprintf(stderr, "Setting OTP PARTITION_SETTING_COMPLETED "
			"failed on %s\n", device);
		return 1;
	}

	fprintf(stderr, "Setting OTP PARTITION_SETTING_COMPLETED on "
		"%s SUCCESS\n", device);
	fprintf(stderr, "Device power cycle needed for settings to "
		"take effect.\n"
		"Confirm that PARTITION_SETTING_COMPLETED bit is set "
		"using 'extcsd read' after power cycle\n");

	return 0;
}

570
571
572
573
574
575
int check_enhanced_area_total_limit(const char * const device, int fd)
{
	__u8 ext_csd[512];
	__u32 regl;
	unsigned long max_enh_area_sz, user_area_sz, enh_area_sz = 0;
	unsigned long gp4_part_sz, gp3_part_sz, gp2_part_sz, gp1_part_sz;
576
	unsigned long total_sz, total_gp_user_sz;
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
	unsigned int wp_sz, erase_sz;
	int ret;

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}
	wp_sz = get_hc_wp_grp_size(ext_csd);
	erase_sz = get_hc_erase_grp_size(ext_csd);

	regl = (ext_csd[EXT_CSD_GP_SIZE_MULT_4_2] << 16) |
		(ext_csd[EXT_CSD_GP_SIZE_MULT_4_1] << 8) |
		ext_csd[EXT_CSD_GP_SIZE_MULT_4_0];
	gp4_part_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_4) {
		enh_area_sz += gp4_part_sz;
		printf("Enhanced GP4 Partition Size [GP_SIZE_MULT_4]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", gp4_part_sz);
	}

	regl = (ext_csd[EXT_CSD_GP_SIZE_MULT_3_2] << 16) |
		(ext_csd[EXT_CSD_GP_SIZE_MULT_3_1] << 8) |
		ext_csd[EXT_CSD_GP_SIZE_MULT_3_0];
	gp3_part_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_3) {
		enh_area_sz += gp3_part_sz;
		printf("Enhanced GP3 Partition Size [GP_SIZE_MULT_3]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", gp3_part_sz);
	}

	regl = (ext_csd[EXT_CSD_GP_SIZE_MULT_2_2] << 16) |
		(ext_csd[EXT_CSD_GP_SIZE_MULT_2_1] << 8) |
		ext_csd[EXT_CSD_GP_SIZE_MULT_2_0];
	gp2_part_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_2) {
		enh_area_sz += gp2_part_sz;
		printf("Enhanced GP2 Partition Size [GP_SIZE_MULT_2]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", gp2_part_sz);
	}

	regl = (ext_csd[EXT_CSD_GP_SIZE_MULT_1_2] << 16) |
		(ext_csd[EXT_CSD_GP_SIZE_MULT_1_1] << 8) |
		ext_csd[EXT_CSD_GP_SIZE_MULT_1_0];
	gp1_part_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_1) {
		enh_area_sz += gp1_part_sz;
		printf("Enhanced GP1 Partition Size [GP_SIZE_MULT_1]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", gp1_part_sz);
	}

	regl = (ext_csd[EXT_CSD_ENH_SIZE_MULT_2] << 16) |
		(ext_csd[EXT_CSD_ENH_SIZE_MULT_1] << 8) |
		ext_csd[EXT_CSD_ENH_SIZE_MULT_0];
	user_area_sz = 512l * regl * erase_sz * wp_sz;
	if (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & EXT_CSD_ENH_USR) {
		enh_area_sz += user_area_sz;
		printf("Enhanced User Data Area Size [ENH_SIZE_MULT]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", user_area_sz);
	}

	regl = (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_2] << 16) |
		(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_1] << 8) |
		ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_0];
	max_enh_area_sz = 512l * regl * erase_sz * wp_sz;
	printf("Max Enhanced Area Size [MAX_ENH_SIZE_MULT]: 0x%06x\n", regl);
	printf(" i.e. %lu KiB\n", max_enh_area_sz);
	if (enh_area_sz > max_enh_area_sz) {
		fprintf(stderr,
			"Programmed total enhanced size %lu KiB cannot exceed max enhanced area %lu KiB %s\n",
			enh_area_sz, max_enh_area_sz, device);
		return 1;
	}
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
	total_sz = get_sector_count(ext_csd) / 2;
	total_gp_user_sz = gp4_part_sz + gp3_part_sz + gp2_part_sz +
				gp1_part_sz + user_area_sz;
	if (total_gp_user_sz > total_sz) {
		fprintf(stderr,
			"requested total partition size %lu KiB cannot exceed card capacity %lu KiB %s\n",
			total_gp_user_sz, total_sz, device);
		return 1;
	}

	return 0;
}

int do_create_gp_partition(int nargs, char **argv)
{
	__u8 value;
	__u8 ext_csd[512];
	__u8 address;
	int fd, ret;
	char *device;
	int dry_run = 1;
	int partition, enh_attr, ext_attr;
	unsigned int length_kib, gp_size_mult;
	unsigned long align;

	CHECK(nargs != 7, "Usage: mmc gp create <-y|-n> <length KiB> "
		"<partition> <enh_attr> <ext_attr> </path/to/mmcblkX>\n", exit(1));

	if (!strcmp("-y", argv[1]))
		dry_run = 0;

	length_kib = strtol(argv[2], NULL, 10);
	partition = strtol(argv[3], NULL, 10);
	enh_attr = strtol(argv[4], NULL, 10);
	ext_attr = strtol(argv[5], NULL, 10);
	device = argv[6];

687
688
	if (partition < 1 || partition > 4) {
		printf("Invalid gp partition number; valid range [1-4].\n");
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
		exit(1);
	}

	if (enh_attr && ext_attr) {
		printf("Not allowed to set both enhanced attribute and extended attribute\n");
		exit(1);
	}

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	/* assert not PARTITION_SETTING_COMPLETED */
	if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED]) {
		printf(" Device is already partitioned\n");
		exit(1);
	}

	align = 512l * get_hc_wp_grp_size(ext_csd) * get_hc_erase_grp_size(ext_csd);
	gp_size_mult = (length_kib + align/2l) / align;

	/* set EXT_CSD_ERASE_GROUP_DEF bit 0 */
	ret = write_extcsd_value(fd, EXT_CSD_ERASE_GROUP_DEF, 0x1);
	if (ret) {
		fprintf(stderr, "Could not write 0x1 to EXT_CSD[%d] in %s\n",
			EXT_CSD_ERASE_GROUP_DEF, device);
		exit(1);
	}

	value = (gp_size_mult >> 16) & 0xff;
	address = EXT_CSD_GP_SIZE_MULT_1_2 + (partition - 1) * 3;
	ret = write_extcsd_value(fd, address, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, address, device);
		exit(1);
	}
	value = (gp_size_mult >> 8) & 0xff;
	address = EXT_CSD_GP_SIZE_MULT_1_1 + (partition - 1) * 3;
	ret = write_extcsd_value(fd, address, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, address, device);
		exit(1);
	}
	value = gp_size_mult & 0xff;
	address = EXT_CSD_GP_SIZE_MULT_1_0 + (partition - 1) * 3;
	ret = write_extcsd_value(fd, address, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, address, device);
		exit(1);
	}

	value = ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE];
	if (enh_attr)
		value |= (1 << partition);
	else
		value &= ~(1 << partition);

	ret = write_extcsd_value(fd, EXT_CSD_PARTITIONS_ATTRIBUTE, value);
	if (ret) {
		fprintf(stderr, "Could not write EXT_CSD_ENH_%x to EXT_CSD[%d] in %s\n",
			partition, EXT_CSD_PARTITIONS_ATTRIBUTE, device);
		exit(1);
	}

	address = EXT_CSD_EXT_PARTITIONS_ATTRIBUTE_0 + (partition - 1) / 2;
	value = ext_csd[address];
	if (ext_attr)
		value |= (ext_attr << (4 * ((partition - 1) % 2)));
	else
		value &= (0xF << (4 * ((partition % 2))));

	ret = write_extcsd_value(fd, address, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%x to EXT_CSD[%d] in %s\n",
			value, address, device);
		exit(1);
	}

	ret = check_enhanced_area_total_limit(device, fd);
	if (ret)
		exit(1);

	if (!set_partitioning_setting_completed(dry_run, device, fd))
		exit(1);
784
785
786
787

	return 0;
}

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
int do_enh_area_set(int nargs, char **argv)
{
	__u8 value;
	__u8 ext_csd[512];
	int fd, ret;
	char *device;
	int dry_run = 1;
	unsigned int start_kib, length_kib, enh_start_addr, enh_size_mult;
	unsigned long align;

	CHECK(nargs != 5, "Usage: mmc enh_area set <-y|-n> <start KiB> <length KiB> "
			  "</path/to/mmcblkX>\n", exit(1));

	if (!strcmp("-y", argv[1]))
		dry_run = 0;

	start_kib = strtol(argv[2], NULL, 10);
	length_kib = strtol(argv[3], NULL, 10);
	device = argv[4];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	/* assert ENH_ATTRIBUTE_EN */
	if (!(ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & EXT_CSD_ENH_ATTRIBUTE_EN))
	{
		printf(" Device cannot have enhanced tech.\n");
		exit(1);
	}

	/* assert not PARTITION_SETTING_COMPLETED */
	if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED])
	{
		printf(" Device is already partitioned\n");
		exit(1);
	}

	align = 512l * get_hc_wp_grp_size(ext_csd) * get_hc_erase_grp_size(ext_csd);

	enh_size_mult = (length_kib + align/2l) / align;

	enh_start_addr = start_kib * 1024 / (is_blockaddresed(ext_csd) ? 512 : 1);
	enh_start_addr /= align;
	enh_start_addr *= align;

	/* set EXT_CSD_ERASE_GROUP_DEF bit 0 */
	ret = write_extcsd_value(fd, EXT_CSD_ERASE_GROUP_DEF, 0x1);
	if (ret) {
		fprintf(stderr, "Could not write 0x1 to "
			"EXT_CSD[%d] in %s\n",
			EXT_CSD_ERASE_GROUP_DEF, device);
		exit(1);
	}

	/* write to ENH_START_ADDR and ENH_SIZE_MULT and PARTITIONS_ATTRIBUTE's ENH_USR bit */
	value = (enh_start_addr >> 24) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_START_ADDR_3, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_START_ADDR_3, device);
		exit(1);
	}
	value = (enh_start_addr >> 16) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_START_ADDR_2, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_START_ADDR_2, device);
		exit(1);
	}
	value = (enh_start_addr >> 8) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_START_ADDR_1, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_START_ADDR_1, device);
		exit(1);
	}
	value = enh_start_addr & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_START_ADDR_0, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_START_ADDR_0, device);
		exit(1);
	}

	value = (enh_size_mult >> 16) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_SIZE_MULT_2, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_SIZE_MULT_2, device);
		exit(1);
	}
	value = (enh_size_mult >> 8) & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_SIZE_MULT_1, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_SIZE_MULT_1, device);
		exit(1);
	}
	value = enh_size_mult & 0xff;
	ret = write_extcsd_value(fd, EXT_CSD_ENH_SIZE_MULT_0, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to "
			"EXT_CSD[%d] in %s\n", value,
			EXT_CSD_ENH_SIZE_MULT_0, device);
		exit(1);
	}
909
910
	value = ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] | EXT_CSD_ENH_USR;
	ret = write_extcsd_value(fd, EXT_CSD_PARTITIONS_ATTRIBUTE, value);
911
912
913
914
915
916
917
	if (ret) {
		fprintf(stderr, "Could not write EXT_CSD_ENH_USR to "
			"EXT_CSD[%d] in %s\n",
			EXT_CSD_PARTITIONS_ATTRIBUTE, device);
		exit(1);
	}

918
919
920
921
	ret = check_enhanced_area_total_limit(device, fd);
	if (ret)
		exit(1);

922
	printf("Done setting ENH_USR area on %s\n", device);
923

924
	if (!set_partitioning_setting_completed(dry_run, device, fd))
925
926
927
928
929
		exit(1);

	return 0;
}

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
int do_write_reliability_set(int nargs, char **argv)
{
	__u8 value;
	__u8 ext_csd[512];
	int fd, ret;

	int dry_run = 1;
	int partition;
	char *device;

	CHECK(nargs != 4, "Usage: mmc write_reliability set <-y|-n> "
			"<partition> </path/to/mmcblkX>\n", exit(1));

	if (!strcmp("-y", argv[1]))
		dry_run = 0;

	partition = strtol(argv[2], NULL, 10);
	device = argv[3];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	/* assert not PARTITION_SETTING_COMPLETED */
	if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED])
	{
		printf(" Device is already partitioned\n");
		exit(1);
	}

	/* assert HS_CTRL_REL */
	if (!(ext_csd[EXT_CSD_WR_REL_PARAM] & HS_CTRL_REL)) {
		printf("Cannot set write reliability parameters, WR_REL_SET is "
				"read-only\n");
		exit(1);
	}

	value = ext_csd[EXT_CSD_WR_REL_SET] | (1<<partition);
	ret = write_extcsd_value(fd, EXT_CSD_WR_REL_SET, value);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
				value, EXT_CSD_WR_REL_SET, device);
		exit(1);
	}

	printf("Done setting EXT_CSD_WR_REL_SET to 0x%02x on %s\n",
		value, device);

	if (!set_partitioning_setting_completed(dry_run, device, fd))
		exit(1);

	return 0;
}

992
993
int do_read_extcsd(int nargs, char **argv)
{
994
	__u8 ext_csd[512], ext_csd_rev, reg;
995
	__u32 regl;
996
997
	int fd, ret;
	char *device;
998
	const char *str;
999

1000
1001
	CHECK(nargs != 2, "Usage: mmc extcsd read </path/to/mmcblkX>\n",
			  exit(1));
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

1017
	ext_csd_rev = ext_csd[EXT_CSD_REV];
1018
1019

	switch (ext_csd_rev) {
1020
1021
1022
	case 7:
		str = "5.0";
		break;
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
	case 6:
		str = "4.5";
		break;
	case 5:
		str = "4.41";
		break;
	case 3:
		str = "4.3";
		break;
	case 2:
		str = "4.2";
		break;
	case 1:
		str = "4.1";
		break;
	case 0:
		str = "4.0";
		break;
	default:
		goto out_free;
	}
	printf("=============================================\n");
	printf("  Extended CSD rev 1.%d (MMC %s)\n", ext_csd_rev, str);
	printf("=============================================\n\n");

	if (ext_csd_rev < 3)
		goto out_free; /* No ext_csd */

	/* Parse the Extended CSD registers.
	 * Reserved bit should be read as "0" in case of spec older
	 * than A441.
	 */
	reg = ext_csd[EXT_CSD_S_CMD_SET];
	printf("Card Supported Command sets [S_CMD_SET: 0x%02x]\n", reg);
	if (!reg)
1058
		printf(" - Standard MMC command sets\n");
1059
1060
1061
1062
1063

	reg = ext_csd[EXT_CSD_HPI_FEATURE];
	printf("HPI Features [HPI_FEATURE: 0x%02x]: ", reg);
	if (reg & EXT_CSD_HPI_SUPP) {
		if (reg & EXT_CSD_HPI_IMPL)
1064
			printf("implementation based on CMD12\n");
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
		else
			printf("implementation based on CMD13\n");
	}

	printf("Background operations support [BKOPS_SUPPORT: 0x%02x]\n",
		ext_csd[502]);

	if (ext_csd_rev >= 6) {
		printf("Max Packet Read Cmd [MAX_PACKED_READS: 0x%02x]\n",
			ext_csd[501]);
		printf("Max Packet Write Cmd [MAX_PACKED_WRITES: 0x%02x]\n",
			ext_csd[500]);
		printf("Data TAG support [DATA_TAG_SUPPORT: 0x%02x]\n",
			ext_csd[499]);

		printf("Data TAG Unit Size [TAG_UNIT_SIZE: 0x%02x]\n",
			ext_csd[498]);
		printf("Tag Resources Size [TAG_RES_SIZE: 0x%02x]\n",
			ext_csd[497]);
		printf("Context Management Capabilities"
			" [CONTEXT_CAPABILITIES: 0x%02x]\n", ext_csd[496]);
		printf("Large Unit Size [LARGE_UNIT_SIZE_M1: 0x%02x]\n",
			ext_csd[495]);
		printf("Extended partition attribute support"
			" [EXT_SUPPORT: 0x%02x]\n", ext_csd[494]);
		printf("Generic CMD6 Timer [GENERIC_CMD6_TIME: 0x%02x]\n",
			ext_csd[248]);
		printf("Power off notification [POWER_OFF_LONG_TIME: 0x%02x]\n",
			ext_csd[247]);
		printf("Cache Size [CACHE_SIZE] is %d KiB\n",
			ext_csd[249] << 0 | (ext_csd[250] << 8) |
			(ext_csd[251] << 16) | (ext_csd[252] << 24));
	}

	/* A441: Reserved [501:247]
	    A43: reserved [246:229] */
	if (ext_csd_rev >= 5) {
		printf("Background operations status"
1103
			" [BKOPS_STATUS: 0x%02x]\n", ext_csd[246]);
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

		/* CORRECTLY_PRG_SECTORS_NUM [245:242] TODO */

		printf("1st Initialisation Time after programmed sector"
			" [INI_TIMEOUT_AP: 0x%02x]\n", ext_csd[241]);

		/* A441: reserved [240] */
		printf("Power class for 52MHz, DDR at 3.6V"
			" [PWR_CL_DDR_52_360: 0x%02x]\n", ext_csd[239]);
		printf("Power class for 52MHz, DDR at 1.95V"
			" [PWR_CL_DDR_52_195: 0x%02x]\n", ext_csd[238]);

		/* A441: reserved [237-236] */

		if (ext_csd_rev >= 6) {
			printf("Power class for 200MHz at 3.6V"
				" [PWR_CL_200_360: 0x%02x]\n", ext_csd[237]);
			printf("Power class for 200MHz, at 1.95V"
				" [PWR_CL_200_195: 0x%02x]\n", ext_csd[236]);
		}
1124
		printf("Minimum Performance for 8bit at 52MHz in DDR mode:\n");
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
		printf(" [MIN_PERF_DDR_W_8_52: 0x%02x]\n", ext_csd[235]);
		printf(" [MIN_PERF_DDR_R_8_52: 0x%02x]\n", ext_csd[234]);
		/* A441: reserved [233] */
		printf("TRIM Multiplier [TRIM_MULT: 0x%02x]\n", ext_csd[232]);
		printf("Secure Feature support [SEC_FEATURE_SUPPORT: 0x%02x]\n",
			ext_csd[231]);
	}
	if (ext_csd_rev == 5) { /* Obsolete in 4.5 */
		printf("Secure Erase Multiplier [SEC_ERASE_MULT: 0x%02x]\n",
			ext_csd[230]);
		printf("Secure TRIM Multiplier [SEC_TRIM_MULT: 0x%02x]\n",
			ext_csd[229]);
	}
	reg = ext_csd[EXT_CSD_BOOT_INFO];
	printf("Boot Information [BOOT_INFO: 0x%02x]\n", reg);
	if (reg & EXT_CSD_BOOT_INFO_ALT)
		printf(" Device supports alternative boot method\n");
	if (reg & EXT_CSD_BOOT_INFO_DDR_DDR)
		printf(" Device supports dual data rate during boot\n");
	if (reg & EXT_CSD_BOOT_INFO_HS_MODE)
		printf(" Device supports high speed timing during boot\n");

	/* A441/A43: reserved [227] */
	printf("Boot partition size [BOOT_SIZE_MULTI: 0x%02x]\n", ext_csd[226]);
	printf("Access size [ACC_SIZE: 0x%02x]\n", ext_csd[225]);
Ben Gardiner's avatar
Ben Gardiner committed
1150
1151

	reg = get_hc_erase_grp_size(ext_csd);
1152
	printf("High-capacity erase unit size [HC_ERASE_GRP_SIZE: 0x%02x]\n",
Ben Gardiner's avatar
Ben Gardiner committed
1153
1154
1155
		reg);
	printf(" i.e. %u KiB\n", 512 * reg);

1156
1157
1158
1159
	printf("High-capacity erase timeout [ERASE_TIMEOUT_MULT: 0x%02x]\n",
		ext_csd[223]);
	printf("Reliable write sector count [REL_WR_SEC_C: 0x%02x]\n",
		ext_csd[222]);
Ben Gardiner's avatar
Ben Gardiner committed
1160
1161

	reg = get_hc_wp_grp_size(ext_csd);
1162
	printf("High-capacity W protect group size [HC_WP_GRP_SIZE: 0x%02x]\n",
Ben Gardiner's avatar
Ben Gardiner committed
1163
1164
1165
		reg);
	printf(" i.e. %lu KiB\n", 512l * get_hc_erase_grp_size(ext_csd) * reg);

1166
1167
1168
1169
1170
	printf("Sleep current (VCC) [S_C_VCC: 0x%02x]\n", ext_csd[220]);
	printf("Sleep current (VCCQ) [S_C_VCCQ: 0x%02x]\n", ext_csd[219]);
	/* A441/A43: reserved [218] */
	printf("Sleep/awake timeout [S_A_TIMEOUT: 0x%02x]\n", ext_csd[217]);
	/* A441/A43: reserved [216] */
1171
1172
1173
1174
1175
1176
1177
1178

	unsigned int sectors =	get_sector_count(ext_csd);
	printf("Sector Count [SEC_COUNT: 0x%08x]\n", sectors);
	if (is_blockaddresed(ext_csd))
		printf(" Device is block-addressed\n");
	else
		printf(" Device is NOT block-addressed\n");

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
	/* A441/A43: reserved [211] */
	printf("Minimum Write Performance for 8bit:\n");
	printf(" [MIN_PERF_W_8_52: 0x%02x]\n", ext_csd[210]);
	printf(" [MIN_PERF_R_8_52: 0x%02x]\n", ext_csd[209]);
	printf(" [MIN_PERF_W_8_26_4_52: 0x%02x]\n", ext_csd[208]);
	printf(" [MIN_PERF_R_8_26_4_52: 0x%02x]\n", ext_csd[207]);
	printf("Minimum Write Performance for 4bit:\n");
	printf(" [MIN_PERF_W_4_26: 0x%02x]\n", ext_csd[206]);
	printf(" [MIN_PERF_R_4_26: 0x%02x]\n", ext_csd[205]);
	/* A441/A43: reserved [204] */
	printf("Power classes registers:\n");
	printf(" [PWR_CL_26_360: 0x%02x]\n", ext_csd[203]);
	printf(" [PWR_CL_52_360: 0x%02x]\n", ext_csd[202]);
	printf(" [PWR_CL_26_195: 0x%02x]\n", ext_csd[201]);
	printf(" [PWR_CL_52_195: 0x%02x]\n", ext_csd[200]);

	/* A43: reserved [199:198] */
	if (ext_csd_rev >= 5) {
		printf("Partition switching timing "
			"[PARTITION_SWITCH_TIME: 0x%02x]\n", ext_csd[199]);
		printf("Out-of-interrupt busy timing"
			" [OUT_OF_INTERRUPT_TIME: 0x%02x]\n", ext_csd[198]);
	}

	/* A441/A43: reserved	[197] [195] [193] [190] [188]
	 * [186] [184] [182] [180] [176] */

	if (ext_csd_rev >= 6)
		printf("I/O Driver Strength [DRIVER_STRENGTH: 0x%02x]\n",
			ext_csd[197]);

1210
1211
1212
1213
1214
1215
1216
1217
1218
	/* DEVICE_TYPE in A45, CARD_TYPE in A441 */
	reg = ext_csd[196];
	printf("Card Type [CARD_TYPE: 0x%02x]\n", reg);
	if (reg & 0x20) printf(" HS200 Single Data Rate eMMC @200MHz 1.2VI/O\n");
	if (reg & 0x10) printf(" HS200 Single Data Rate eMMC @200MHz 1.8VI/O\n");
	if (reg & 0x08) printf(" HS Dual Data Rate eMMC @52MHz 1.2VI/O\n");
	if (reg & 0x04)	printf(" HS Dual Data Rate eMMC @52MHz 1.8V or 3VI/O\n");
	if (reg & 0x02)	printf(" HS eMMC @52MHz - at rated device voltage(s)\n");
	if (reg & 0x01) printf(" HS eMMC @26MHz - at rated device voltage(s)\n");
1219
1220

	printf("CSD structure version [CSD_STRUCTURE: 0x%02x]\n", ext_csd[194]);
1221
	/* ext_csd_rev = ext_csd[EXT_CSD_REV] (already done!!!) */
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
	printf("Command set [CMD_SET: 0x%02x]\n", ext_csd[191]);
	printf("Command set revision [CMD_SET_REV: 0x%02x]\n", ext_csd[189]);
	printf("Power class [POWER_CLASS: 0x%02x]\n", ext_csd[187]);
	printf("High-speed interface timing [HS_TIMING: 0x%02x]\n",
		ext_csd[185]);
	/* bus_width: ext_csd[183] not readable */
	printf("Erased memory content [ERASED_MEM_CONT: 0x%02x]\n",
		ext_csd[181]);
	reg = ext_csd[EXT_CSD_BOOT_CFG];
	printf("Boot configuration bytes [PARTITION_CONFIG: 0x%02x]\n", reg);
1232
	switch ((reg & EXT_CSD_BOOT_CFG_EN)>>3) {
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
	case 0x0:
		printf(" Not boot enable\n");
		break;
	case 0x1:
		printf(" Boot Partition 1 enabled\n");
		break;
	case 0x2:
		printf(" Boot Partition 2 enabled\n");
		break;
	case 0x7:
		printf(" User Area Enabled for boot\n");
		break;
	}
	switch (reg & EXT_CSD_BOOT_CFG_ACC) {
	case 0x0:
		printf(" No access to boot partition\n");
		break;
	case 0x1:
		printf(" R/W Boot Partition 1\n");
		break;
	case 0x2:
		printf(" R/W Boot Partition 2\n");
		break;
1256
1257
1258
	case 0x3:
		printf(" R/W Replay Protected Memory Block (RPMB)\n");
		break;
1259
	default:
1260
		printf(" Access to General Purpose partition %d\n",
1261
1262
1263
1264
1265
1266
1267
1268
1269
			(reg & EXT_CSD_BOOT_CFG_ACC) - 3);
		break;
	}

	printf("Boot config protection [BOOT_CONFIG_PROT: 0x%02x]\n",
		ext_csd[178]);
	printf("Boot bus Conditions [BOOT_BUS_CONDITIONS: 0x%02x]\n",
		ext_csd[177]);
	printf("High-density erase group definition"
1270
		" [ERASE_GROUP_DEF: 0x%02x]\n", ext_csd[EXT_CSD_ERASE_GROUP_DEF]);
1271

1272
	print_writeprotect_status(ext_csd);
1273

1274
	if (ext_csd_rev >= 5) {
1275
1276
1277
1278
1279
1280
		/* A441]: reserved [172] */
		printf("User area write protection register"
			" [USER_WP]: 0x%02x\n", ext_csd[171]);
		/* A441]: reserved [170] */
		printf("FW configuration [FW_CONFIG]: 0x%02x\n", ext_csd[169]);
		printf("RPMB Size [RPMB_SIZE_MULT]: 0x%02x\n", ext_csd[168]);
1281
1282
1283
1284
1285
1286
1287

		reg = ext_csd[EXT_CSD_WR_REL_SET];
		const char * const fast = "existing data is at risk if a power "
				"failure occurs during a write operation";
		const char * const reliable = "the device protects existing "
				"data if a power failure occurs during a write "
				"operation";
1288
		printf("Write reliability setting register"
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
			" [WR_REL_SET]: 0x%02x\n", reg);

		printf(" user area: %s\n", reg & (1<<0) ? reliable : fast);
		int i;
		for (i = 1; i <= 4; i++) {
			printf(" partition %d: %s\n", i,
				reg & (1<<i) ? reliable : fast);
		}

		reg = ext_csd[EXT_CSD_WR_REL_PARAM];
1299
		printf("Write reliability parameter register"
1300
1301
1302
1303
1304
1305
1306
			" [WR_REL_PARAM]: 0x%02x\n", reg);
		if (reg & 0x01)
			printf(" Device supports writing EXT_CSD_WR_REL_SET\n");
		if (reg & 0x04)
			printf(" Device supports the enhanced def. of reliable "
				"write\n");

1307
1308
1309
1310
1311
1312
1313
		/* sanitize_start ext_csd[165]]: not readable
		 * bkops_start ext_csd[164]]: only writable */
		printf("Enable background operations handshake"
			" [BKOPS_EN]: 0x%02x\n", ext_csd[163]);
		printf("H/W reset function"
			" [RST_N_FUNCTION]: 0x%02x\n", ext_csd[162]);
		printf("HPI management [HPI_MGMT]: 0x%02x\n", ext_csd[161]);
1314
		reg = ext_csd[EXT_CSD_PARTITIONING_SUPPORT];
1315
1316
		printf("Partitioning Support [PARTITIONING_SUPPORT]: 0x%02x\n",
			reg);
1317
		if (reg & EXT_CSD_PARTITIONING_EN)
1318
1319
1320
			printf(" Device support partitioning feature\n");
		else
			printf(" Device NOT support partitioning feature\n");
1321
		if (reg & EXT_CSD_ENH_ATTRIBUTE_EN)
1322
1323
1324
1325
			printf(" Device can have enhanced tech.\n");
		else
			printf(" Device cannot have enhanced tech.\n");

1326
		regl = (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_2] << 16) |
1327
1328
1329
			(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_1] << 8) |
			ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT_0];

1330
		printf("Max Enhanced Area Size [MAX_ENH_SIZE_MULT]: 0x%06x\n",
1331
			   regl);
Ben Gardiner's avatar
Ben Gardiner committed
1332
1333
		unsigned int wp_sz = get_hc_wp_grp_size(ext_csd);
		unsigned int erase_sz = get_hc_erase_grp_size(ext_csd);
1334
		printf(" i.e. %lu KiB\n", 512l * regl * wp_sz * erase_sz);
Ben Gardiner's avatar
Ben Gardiner committed
1335

1336
		printf("Partitions attribute [PARTITIONS_ATTRIBUTE]: 0x%02x\n",
1337
			ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE]);
1338
		reg = ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED];
1339
1340
		printf("Partitioning Setting"
			" [PARTITION_SETTING_COMPLETED]: 0x%02x\n",
1341
1342
1343
1344
1345
1346
			reg);
		if (reg)
			printf(" Device partition setting complete\n");
		else
			printf(" Device partition setting NOT complete\n");

1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
		printf("General Purpose Partition Size\n"
			" [GP_SIZE_MULT_4]: 0x%06x\n", (ext_csd[154] << 16) |
			(ext_csd[153] << 8) | ext_csd[152]);
		printf(" [GP_SIZE_MULT_3]: 0x%06x\n", (ext_csd[151] << 16) |
			   (ext_csd[150] << 8) | ext_csd[149]);
		printf(" [GP_SIZE_MULT_2]: 0x%06x\n", (ext_csd[148] << 16) |
			   (ext_csd[147] << 8) | ext_csd[146]);
		printf(" [GP_SIZE_MULT_1]: 0x%06x\n", (ext_csd[145] << 16) |
			   (ext_csd[144] << 8) | ext_csd[143]);

1357
		regl =	(ext_csd[EXT_CSD_ENH_SIZE_MULT_2] << 16) |
Ben Gardiner's avatar
Ben Gardiner committed
1358
1359
			(ext_csd[EXT_CSD_ENH_SIZE_MULT_1] << 8) |
			ext_csd[EXT_CSD_ENH_SIZE_MULT_0];
1360
		printf("Enhanced User Data Area Size"
1361
1362
			" [ENH_SIZE_MULT]: 0x%06x\n", regl);
		printf(" i.e. %lu KiB\n", 512l * regl *
Ben Gardiner's avatar
Ben Gardiner committed
1363
1364
		       get_hc_erase_grp_size(ext_csd) *
		       get_hc_wp_grp_size(ext_csd));
Ben Gardiner's avatar
Ben Gardiner committed
1365

1366
		regl =	(ext_csd[EXT_CSD_ENH_START_ADDR_3] << 24) |
Ben Gardiner's avatar
Ben Gardiner committed
1367
1368
1369
			(ext_csd[EXT_CSD_ENH_START_ADDR_2] << 16) |
			(ext_csd[EXT_CSD_ENH_START_ADDR_1] << 8) |
			ext_csd[EXT_CSD_ENH_START_ADDR_0];
1370
		printf("Enhanced User Data Start Address"
1371
			" [ENH_START_ADDR]: 0x%06x\n", regl);
1372
		printf(" i.e. %lu bytes offset\n", (is_blockaddresed(ext_csd) ?
1373
				1l : 512l) * regl);
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

		/* A441]: reserved [135] */
		printf("Bad Block Management mode"
			" [SEC_BAD_BLK_MGMNT]: 0x%02x\n", ext_csd[134]);
		/* A441: reserved [133:0] */
	}
	/* B45 */
	if (ext_csd_rev >= 6) {
		int j;
		/* tcase_support ext_csd[132] not readable */
		printf("Periodic Wake-up [PERIODIC_WAKEUP]: 0x%02x\n",
			ext_csd[131]);
		printf("Program CID/CSD in DDR mode support"
			" [PROGRAM_CID_CSD_DDR_SUPPORT]: 0x%02x\n",
			   ext_csd[130]);

		for (j = 127; j >= 64; j--)
			printf("Vendor Specific Fields"
				" [VENDOR_SPECIFIC_FIELD[%d]]: 0x%02x\n",
				j, ext_csd[j]);

		printf("Native sector size [NATIVE_SECTOR_SIZE]: 0x%02x\n",
			ext_csd[63]);
		printf("Sector size emulation [USE_NATIVE_SECTOR]: 0x%02x\n",
			ext_csd[62]);
		printf("Sector size [DATA_SECTOR_SIZE]: 0x%02x\n", ext_csd[61]);
		printf("1st initialization after disabling sector"
			" size emulation [INI_TIMEOUT_EMU]: 0x%02x\n",
			ext_csd[60]);
		printf("Class 6 commands control [CLASS_6_CTRL]: 0x%02x\n",
			ext_csd[59]);
		printf("Number of addressed group to be Released"
			"[DYNCAP_NEEDED]: 0x%02x\n", ext_csd[58]);
		printf("Exception events control"
			" [EXCEPTION_EVENTS_CTRL]: 0x%04x\n",
			(ext_csd[57] << 8) | ext_csd[56]);
		printf("Exception events status"
			"[EXCEPTION_EVENTS_STATUS]: 0x%04x\n",
			(ext_csd[55] << 8) | ext_csd[54]);
		printf("Extended Partitions Attribute"
			" [EXT_PARTITIONS_ATTRIBUTE]: 0x%04x\n",
			(ext_csd[53] << 8) | ext_csd[52]);

		for (j = 51; j >= 37; j--)
			printf("Context configuration"
				" [CONTEXT_CONF[%d]]: 0x%02x\n", j, ext_csd[j]);

		printf("Packed command status"
			" [PACKED_COMMAND_STATUS]: 0x%02x\n", ext_csd[36]);
		printf("Packed command failure index"
			" [PACKED_FAILURE_INDEX]: 0x%02x\n", ext_csd[35]);
		printf("Power Off Notification"
			" [POWER_OFF_NOTIFICATION]: 0x%02x\n", ext_csd[34]);
1427
1428
		printf("Control to turn the Cache ON/OFF"
			" [CACHE_CTRL]: 0x%02x\n", ext_csd[33]);
1429
1430
1431
1432
1433
		/* flush_cache ext_csd[32] not readable */
		/*Reserved [31:0] */
	}

out_free:
1434
1435
	return ret;
}
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463

int do_sanitize(int nargs, char **argv)
{
	int fd, ret;
	char *device;

	CHECK(nargs != 2, "Usage: mmc sanitize </path/to/mmcblkX>\n",
			exit(1));

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = write_extcsd_value(fd, EXT_CSD_SANITIZE_START, 1);
	if (ret) {
		fprintf(stderr, "Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			1, EXT_CSD_SANITIZE_START, device);
		exit(1);
	}

	return ret;

}

1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
#define DO_IO(func, fd, buf, nbyte)					\
	({												\
		ssize_t ret = 0, r;							\
		do {										\
			r = func(fd, buf + ret, nbyte - ret);	\
			if (r < 0 && errno != EINTR) {			\
				ret = -1;							\
				break;								\
			}										\
			else if (r > 0)							\
				ret += r;							\
		} while (r != 0 && (size_t)ret != nbyte);	\
													\
		ret;										\
	})

enum rpmb_op_type {
	MMC_RPMB_WRITE_KEY = 0x01,
	MMC_RPMB_READ_CNT  = 0x02,
	MMC_RPMB_WRITE     = 0x03,
	MMC_RPMB_READ      = 0x04,

	/* For internal usage only, do not use it directly */
	MMC_RPMB_READ_RESP = 0x05
};

struct rpmb_frame {
	u_int8_t  stuff[196];
	u_int8_t  key_mac[32];
	u_int8_t  data[256];
	u_int8_t  nonce[16];
	u_int32_t write_counter;
	u_int16_t addr;
	u_int16_t block_count;
	u_int16_t result;
	u_int16_t req_resp;
};

/* Performs RPMB operation.
 *
 * @fd: RPMB device on which we should perform ioctl command
 * @frame_in: input RPMB frame, should be properly inited
 * @frame_out: output (result) RPMB frame. Caller is responsible for checking
 *             result and req_resp for output frame.
 * @out_cnt: count of outer frames. Used only for multiple blocks reading,
 *           in the other cases -EINVAL will be returned.
 */
static int do_rpmb_op(int fd,
					  const struct rpmb_frame *frame_in,
					  struct rpmb_frame *frame_out,
					  unsigned int out_cnt)
{
	int err;
	u_int16_t rpmb_type;

	struct mmc_ioc_cmd ioc = {
		.arg        = 0x0,
		.blksz      = 512,
		.blocks     = 1,
		.write_flag = 1,
		.opcode     = MMC_WRITE_MULTIPLE_BLOCK,
		.flags      = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC,
		.data_ptr   = (uintptr_t)frame_in
	};

	if (!frame_in || !frame_out || !out_cnt)
		return -EINVAL;

	rpmb_type = be16toh(frame_in->req_resp);

	switch(rpmb_type) {
	case MMC_RPMB_WRITE:
	case MMC_RPMB_WRITE_KEY:
		if (out_cnt != 1) {
			err = -EINVAL;
			goto out;
		}

		/* Write request */
		ioc.write_flag |= (1<<31);
		err = ioctl(fd, MMC_IOC_CMD, &ioc);
		if (err < 0) {
			err = -errno;
			goto out;
		}

		/* Result request */
		memset(frame_out, 0, sizeof(*frame_out));
		frame_out->req_resp = htobe16(MMC_RPMB_READ_RESP);
		ioc.write_flag = 1;
		ioc.data_ptr = (uintptr_t)frame_out;
		err = ioctl(fd, MMC_IOC_CMD, &ioc);
		if (err < 0) {
			err = -errno;
			goto out;
		}

		/* Get response */
		ioc.write_flag = 0;
		ioc.opcode = MMC_READ_MULTIPLE_BLOCK;
		err = ioctl(fd, MMC_IOC_CMD, &ioc);
		if (err < 0) {
			err = -errno;
			goto out;
		}

		break;
	case MMC_RPMB_READ_CNT:
		if (out_cnt != 1) {
			err = -EINVAL;
			goto out;
		}
		/* fall through */

	case MMC_RPMB_READ:
		/* Request */
		err = ioctl(fd, MMC_IOC_CMD, &ioc);
		if (err < 0) {
			err = -errno;
			goto out;
		}

		/* Get response */
		ioc.write_flag = 0;
		ioc.opcode   = MMC_READ_MULTIPLE_BLOCK;
		ioc.blocks   = out_cnt;
		ioc.data_ptr = (uintptr_t)frame_out;
		err = ioctl(fd, MMC_IOC_CMD, &ioc);
		if (err < 0) {
			err = -errno;
			goto out;
		}

		break;
	default:
		err = -EINVAL;
		goto out;
	}

out:
	return err;
}

int do_rpmb_write_key(int nargs, char **argv)
{
	int ret, dev_fd, key_fd;
	struct rpmb_frame frame_in = {
		.req_resp = htobe16(MMC_RPMB_WRITE_KEY)
	}, frame_out;

	CHECK(nargs != 3, "Usage: mmc rpmb write-key </path/to/mmcblkXrpmb> </path/to/key>\n",
			exit(1));

	dev_fd = open(argv[1], O_RDWR);
	if (dev_fd < 0) {
		perror("device open");
		exit(1);
	}

	if (0 == strcmp(argv[2], "-"))
		key_fd = STDIN_FILENO;
	else {
		key_fd = open(argv[2], O_RDONLY);
		if (key_fd < 0) {
			perror("can't open key file");
			exit(1);
		}
	}

	/* Read the auth key */
	ret = DO_IO(read, key_fd, frame_in.key_mac, sizeof(frame_in.key_mac));
	if (ret < 0) {
		perror("read the key");
		exit(1);
	} else if (ret != sizeof(frame_in.key_mac)) {
		printf("Auth key must be %lu bytes length, but we read only %d, exit\n",
			   (unsigned long)sizeof(frame_in.key_mac),
			   ret);
		exit(1);
	}

	/* Execute RPMB op */
	ret = do_rpmb_op(dev_fd, &frame_in, &frame_out, 1);
	if (ret != 0) {
		perror("RPMB ioctl failed");
		exit(1);
	}

	/* Check RPMB response */
	if (frame_out.result != 0) {
		printf("RPMB operation failed, retcode 0x%04x\n",
			   be16toh(frame_out.result));
		exit(1);
	}

	close(dev_fd);
	if (key_fd != STDIN_FILENO)
		close(key_fd);

	return ret;
}

int rpmb_read_counter(int dev_fd, unsigned int *cnt)
{
	int ret;
	struct rpmb_frame frame_in = {
		.req_resp = htobe16(MMC_RPMB_READ_CNT)
	}, frame_out;

	/* Execute RPMB op */
	ret = do_rpmb_op(dev_fd, &frame_in, &frame_out, 1);
	if (ret != 0) {
		perror("RPMB ioctl failed");
		exit(1);
	}

	/* Check RPMB response */
	if (frame_out.result != 0)
		return be16toh(frame_out.result);

	*cnt = be32toh(frame_out.write_counter);

	return 0;
}

int do_rpmb_read_counter(int nargs, char **argv)
{
	int ret, dev_fd;
	unsigned int cnt;

	CHECK(nargs != 2, "Usage: mmc rpmb read-counter </path/to/mmcblkXrpmb>\n",
			exit(1));

	dev_fd = open(argv[1], O_RDWR);
	if (dev_fd < 0) {
		perror("device open");
		exit(1);
	}

	ret = rpmb_read_counter(dev_fd, &cnt);

	/* Check RPMB response */
	if (ret != 0) {
		printf("RPMB operation failed, retcode 0x%04x\n", ret);
		exit(1);
	}

	close(dev_fd);

	printf("Counter value: 0x%08x\n", cnt);

	return ret;
}

int do_rpmb_read_block(int nargs, char **argv)
{
	int i, ret, dev_fd, data_fd, key_fd = -1;
	uint16_t addr, blocks_cnt;
	unsigned char key[32];
	struct rpmb_frame frame_in = {
		.req_resp    = htobe16(MMC_RPMB_READ),
	}, *frame_out_p;

	CHECK(nargs != 5 && nargs != 6, "Usage: mmc rpmb read-block </path/to/mmcblkXrpmb> <address> <blocks count> </path/to/output_file> [/path/to/key]\n",
			exit(1));

	dev_fd = open(argv[1], O_RDWR);
	if (dev_fd < 0) {
		perror("device open");
		exit(1);
	}

	/* Get block address */
	errno = 0;
	addr = strtol(argv[2], NULL, 0);
	if (errno) {
		perror("incorrect address");
		exit(1);
	}
	frame_in.addr = htobe16(addr);

	/* Get blocks count */
	errno = 0;
	blocks_cnt = strtol(argv[3], NULL, 0);
	if (errno) {
		perror("incorrect blocks count");
		exit(1);
	}

	if (!blocks_cnt) {
		printf("please, specify valid blocks count number\n");
		exit(1);
	}

	frame_out_p = calloc(sizeof(*frame_out_p), blocks_cnt);
	if (!frame_out_p) {
		printf("can't allocate memory for RPMB outer frames\n");
		exit(1);
	}

	/* Write 256b data */
	if (0 == strcmp(argv[4], "-"))
		data_fd = STDOUT_FILENO;
	else {
		data_fd = open(argv[4], O_WRONLY | O_CREAT | O_APPEND,
					   S_IRUSR | S_IWUSR);
		if (data_fd < 0) {
			perror("can't open output file");
			exit(1);
		}
	}

	/* Key is specified */
	if (nargs == 6) {
		if (0 == strcmp(argv[5], "-"))
			key_fd = STDIN_FILENO;
		else {
			key_fd = open(argv[5], O_RDONLY);
			if (key_fd < 0) {
				perror("can't open input key file");
				exit(1);
			}
		}

		ret = DO_IO(read, key_fd, key, sizeof(key));
		if (ret < 0) {
			perror("read the key data");
			exit(1);
		} else if (ret != sizeof(key)) {
			printf("Data must be %lu bytes length, but we read only %d, exit\n",
				   (unsigned long)sizeof(key),
				   ret);
			exit(1);
		}
	}

	/* Execute RPMB op */
	ret = do_rpmb_op(dev_fd, &frame_in, frame_out_p, blocks_cnt);
	if (ret != 0) {
		perror("RPMB ioctl failed");
		exit(1);
	}

	/* Check RPMB response */
	if (frame_out_p[blocks_cnt - 1].result != 0) {
		printf("RPMB operation failed, retcode 0x%04x\n",
			   be16toh(frame_out_p[blocks_cnt - 1].result));
		exit(1);
	}

	/* Do we have to verify data against key? */
	if (nargs == 6) {
		unsigned char mac[32];
		hmac_sha256_ctx ctx;
		struct rpmb_frame *frame_out = NULL;

		hmac_sha256_init(&ctx, key, sizeof(key));
		for (i = 0; i < blocks_cnt; i++) {
			frame_out = &frame_out_p[i];
			hmac_sha256_update(&ctx, frame_out->data,
							   sizeof(*frame_out) -
								   offsetof(struct rpmb_frame, data));
		}

		hmac_sha256_final(&ctx, mac, sizeof(mac));

		/* Impossible */
		assert(frame_out);

		/* Compare calculated MAC and MAC from last frame */
		if (memcmp(mac, frame_out->key_mac, sizeof(mac))) {
			printf("RPMB MAC missmatch\n");
			exit(1);
		}
	}

	/* Write data */
	for (i = 0; i < blocks_cnt; i++) {
		struct rpmb_frame *frame_out = &frame_out_p[i];
		ret = DO_IO(write, data_fd, frame_out->data, sizeof(frame_out->data));
		if (ret < 0) {
			perror("write the data");
			exit(1);
		} else if (ret != sizeof(frame_out->data)) {
			printf("Data must be %lu bytes length, but we wrote only %d, exit\n",
				   (unsigned long)sizeof(frame_out->data),
				   ret);
			exit(1);
		}
	}

	free(frame_out_p);
	close(dev_fd);
	if (data_fd != STDOUT_FILENO)
		close(data_fd);
	if (key_fd != -1 && key_fd != STDIN_FILENO)
		close(key_fd);

	return ret;
}

int do_rpmb_write_block(int nargs, char **argv)
{
	int ret, dev_fd, key_fd, data_fd;
	unsigned char key[32];
	uint16_t addr;
	unsigned int cnt;
	struct rpmb_frame frame_in = {
		.req_resp    = htobe16(MMC_RPMB_WRITE),
		.block_count = htobe16(1)
	}, frame_out;

	CHECK(nargs != 5, "Usage: mmc rpmb write-block </path/to/mmcblkXrpmb> <address> </path/to/input_file> </path/to/key>\n",
			exit(1));

	dev_fd = open(argv[1], O_RDWR);
	if (dev_fd < 0) {
		perror("device open");
		exit(1);
	}

	ret = rpmb_read_counter(dev_fd, &cnt);
	/* Check RPMB response */
	if (ret != 0) {
		printf("RPMB read counter operation failed, retcode 0x%04x\n", ret);
		exit(1);
	}
	frame_in.write_counter = htobe32(cnt);

	/* Get block address */
	errno = 0;
	addr = strtol(argv[2], NULL, 0);
	if (errno) {
		perror("incorrect address");
		exit(1);
	}
	frame_in.addr = htobe16(addr);

	/* Read 256b data */
	if (0 == strcmp(argv[3], "-"))
		data_fd = STDIN_FILENO;
	else {
		data_fd = open(argv[3], O_RDONLY);
		if (data_fd < 0) {
			perror("can't open input file");
			exit(1);
		}
	}

	ret = DO_IO(read, data_fd, frame_in.data, sizeof(frame_in.data));
	if (ret < 0) {
		perror("read the data");
		exit(1);
	} else if (ret != sizeof(frame_in.data)) {
		printf("Data must be %lu bytes length, but we read only %d, exit\n",
			   (unsigned long)sizeof(frame_in.data),
			   ret);
		exit(1);
	}

	/* Read the auth key */
	if (0 == strcmp(argv[4], "-"))
		key_fd = STDIN_FILENO;
	else {
		key_fd = open(argv[4], O_RDONLY);
		if (key_fd < 0) {
			perror("can't open key file");
			exit(1);
		}
	}

	ret = DO_IO(read, key_fd, key, sizeof(key));
	if (ret < 0) {
		perror("read the key");
		exit(1);
	} else if (ret != sizeof(key)) {
		printf("Auth key must be %lu bytes length, but we read only %d, exit\n",
			   (unsigned long)sizeof(key),
			   ret);
		exit(1);
	}

	/* Calculate HMAC SHA256 */
	hmac_sha256(
		key, sizeof(key),
		frame_in.data, sizeof(frame_in) - offsetof(struct rpmb_frame, data),
		frame_in.key_mac, sizeof(frame_in.key_mac));

	/* Execute RPMB op */
	ret = do_rpmb_op(dev_fd, &frame_in, &frame_out, 1);
	if (ret != 0) {
		perror("RPMB ioctl failed");
		exit(1);
	}

	/* Check RPMB response */
	if (frame_out.result != 0) {
		printf("RPMB operation failed, retcode 0x%04x\n",
			   be16toh(frame_out.result));
		exit(1);
	}

	close(dev_fd);
	if (data_fd != STDIN_FILENO)
		close(data_fd);
	if (key_fd != STDIN_FILENO)
		close(key_fd);

	return ret;
}
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

int do_cache_ctrl(int value, int nargs, char **argv)
{
	__u8 ext_csd[512];
	int fd, ret;
	char *device;

	CHECK(nargs != 2, "Usage: mmc cache enable </path/to/mmcblkX>\n",
			  exit(1));

	device = argv[1];

	fd = open(device, O_RDWR);
	if (fd < 0) {
		perror("open");
		exit(1);
	}

	ret = read_extcsd(fd, ext_csd);
	if (ret) {
		fprintf(stderr, "Could not read EXT_CSD from %s\n", device);
		exit(1);
	}

	if (ext_csd[EXT_CSD_REV] < EXT_CSD_REV_V4_5) {
		fprintf(stderr,
			"The CACHE option is only availabe on devices >= "
			"MMC 4.5 %s\n", device);
		exit(1);
	}

	/* If the cache size is zero, this device does not have a cache */
	if (!(ext_csd[EXT_CSD_CACHE_SIZE_3] ||
			ext_csd[EXT_CSD_CACHE_SIZE_2] ||
			ext_csd[EXT_CSD_CACHE_SIZE_1] ||
			ext_csd[EXT_CSD_CACHE_SIZE_0])) {
		fprintf(stderr,
			"The CACHE option is not available on %s\n",
			device);
		exit(1);
	}
	ret = write_extcsd_value(fd, EXT_CSD_CACHE_CTRL, value);
	if (ret) {
		fprintf(stderr,
			"Could not write 0x%02x to EXT_CSD[%d] in %s\n",
			value, EXT_CSD_CACHE_CTRL, device);
		exit(1);
	}

	return ret;
}

int do_cache_en(int nargs, char **argv)
{
	return do_cache_ctrl(1, nargs, argv);
}

int do_cache_dis(int nargs, char **argv)
{
	return do_cache_ctrl(0, nargs, argv);
}