fel.c 53.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
19
20
#include "common.h"
#include "portable_endian.h"
#include "progress.h"
21
#include "soc_info.h"
22

23
24
#include <libusb.h>
#include <stdint.h>
25
#include <stdbool.h>
26
27
28
29
30
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
31
#include <stdarg.h>
32
#include <errno.h>
33
#include <unistd.h>
34
#include <sys/stat.h>
35

36
37
38
static const uint16_t AW_USB_VENDOR_ID  = 0x1F3A;
static const uint16_t AW_USB_PRODUCT_ID = 0xEFE8;

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/* a helper function to report libusb errors */
void usb_error(int rc, const char *caption, int exitcode)
{
	if (caption)
		fprintf(stderr, "%s ", caption);

#if defined(LIBUSBX_API_VERSION) && (LIBUSBX_API_VERSION >= 0x01000102)
	fprintf(stderr, "ERROR %d: %s\n", rc, libusb_strerror(rc));
#else
	/* assume that libusb_strerror() is missing in the libusb API */
	fprintf(stderr, "ERROR %d\n", rc);
#endif

	if (exitcode != 0)
		exit(exitcode);
}

56
57
58
59
60
61
62
63
64
65
66
67
/* 'Private' data type that will be used as "USB handle" */
typedef struct _felusb_handle {
	libusb_device_handle *handle;
	int endpoint_out, endpoint_in;
	bool iface_detached;
} felusb_handle;

/* More general FEL "device" handle, to be extended later */
typedef struct {
	felusb_handle *usb;
} feldev_handle;

68
69
70
71
72
73
74
75
76
77
78
79
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

80
81
static int AW_USB_FEL_BULK_EP_OUT;
static int AW_USB_FEL_BULK_EP_IN;
82
83
static int timeout = 10000; /* 10 seconds */

84
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
85
86
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
87
88
89
90
91
92
93
94
95
96

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
97

98
99
100
101
102
103
104
105
106
107
/*
 * AW_USB_MAX_BULK_SEND and the timeout constant are related.
 * Both need to be selected in a way that transferring the maximum chunk size
 * with (SoC-specific) slow transfer speed won't time out.
 *
 * The 512 KiB here are chosen based on the assumption that we want a 10 seconds
 * timeout, and "slow" transfers take place at approx. 64 KiB/sec - so we can
 * expect the maximum chunk being transmitted within 8 seconds or less.
 */
static const int AW_USB_MAX_BULK_SEND = 512 * 1024; /* 512 KiB per bulk request */
108

109
110
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
		   size_t length, bool progress)
111
{
112
113
114
115
	/*
	 * With no progress notifications, we'll use the maximum chunk size.
	 * Otherwise, it's useful to lower the size (have more chunks) to get
	 * more frequent status updates. 128 KiB per request seem suitable.
116
	 * (Worst case of "slow" transfers -> one update every two seconds.)
117
118
	 */
	size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
119
120

	size_t chunk;
121
122
	int rc, sent;
	while (length > 0) {
123
124
		chunk = length < max_chunk ? length : max_chunk;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk, &sent, timeout);
125
126
		if (rc != 0)
			usb_error(rc, "usb_bulk_send()", 2);
127
128
		length -= sent;
		data += sent;
129
130

		if (progress)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
131
			progress_update(sent); /* notification after each chunk */
132
133
134
135
136
137
138
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
139
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
140
141
		if (rc != 0)
			usb_error(rc, "usb_bulk_recv()", 2);
142
143
144
145
146
		length -= recv;
		data += recv;
	}
}

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

187
static void aw_send_usb_request(feldev_handle *dev, int type, int length)
188
{
189
190
191
192
193
194
195
	struct aw_usb_request req = {
		.signature = "AWUC",
		.request = htole16(type),
		.length = htole32(length),
		.unknown1 = htole32(0x0c000000)
	};
	req.length2 = req.length;
196
197
	usb_bulk_send(dev->usb->handle, AW_USB_FEL_BULK_EP_OUT,
		      &req, sizeof(req), false);
198
199
}

200
static void aw_read_usb_response(feldev_handle *dev)
201
202
{
	char buf[13];
203
204
	usb_bulk_recv(dev->usb->handle, AW_USB_FEL_BULK_EP_IN,
		      buf, sizeof(buf));
205
206
207
	assert(strcmp(buf, "AWUS") == 0);
}

208
209
static void aw_usb_write(feldev_handle *dev, const void *data, size_t len,
			 bool progress)
210
{
211
212
213
214
	aw_send_usb_request(dev, AW_USB_WRITE, len);
	usb_bulk_send(dev->usb->handle, AW_USB_FEL_BULK_EP_OUT,
		      data, len, progress);
	aw_read_usb_response(dev);
215
216
}

217
static void aw_usb_read(feldev_handle *dev, const void *data, size_t len)
218
{
219
220
221
222
	aw_send_usb_request(dev, AW_USB_READ, len);
	usb_bulk_send(dev->usb->handle, AW_USB_FEL_BULK_EP_IN,
	              data, len, false);
	aw_read_usb_response(dev);
223
224
225
226
227
228
229
230
231
232
233
234
235
236
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

237
238
void aw_send_fel_request(feldev_handle *dev, int type,
			 uint32_t addr, uint32_t length)
239
{
240
241
242
243
244
	struct aw_fel_request req = {
		.request = htole32(type),
		.address = htole32(addr),
		.length = htole32(length)
	};
245
	aw_usb_write(dev, &req, sizeof(req), false);
246
247
}

248
void aw_read_fel_status(feldev_handle *dev)
249
250
{
	char buf[8];
251
	aw_usb_read(dev, buf, sizeof(buf));
252
253
}

254
void aw_fel_get_version(feldev_handle *dev, struct aw_fel_version *buf)
255
{
256
257
258
	aw_send_fel_request(dev, AW_FEL_VERSION, 0, 0);
	aw_usb_read(dev, buf, sizeof(*buf));
	aw_read_fel_status(dev);
259

260
261
262
263
264
265
266
267
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

268
void aw_fel_print_version(feldev_handle *dev)
269
270
{
	struct aw_fel_version buf;
271
	aw_fel_get_version(dev, &buf);
272

Henrik Nordstrom's avatar
Henrik Nordstrom committed
273
	const char *soc_name="unknown";
274
	switch (buf.soc_id) {
Bernhard Nortmann's avatar
Bernhard Nortmann committed
275
276
277
278
279
	case 0x1623: soc_name="A10"; break;
	case 0x1625: soc_name="A13"; break;
	case 0x1633: soc_name="A31"; break;
	case 0x1651: soc_name="A20"; break;
	case 0x1650: soc_name="A23"; break;
280
	case 0x1689: soc_name="A64"; break;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
281
282
283
284
	case 0x1639: soc_name="A80"; break;
	case 0x1667: soc_name="A33"; break;
	case 0x1673: soc_name="A83T"; break;
	case 0x1680: soc_name="H3"; break;
285
	case 0x1701: soc_name="R40"; break;
286
	case 0x1718: soc_name="H5"; break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
287
288
	}

289
290
291
292
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
293
294
}

295
void aw_fel_read(feldev_handle *dev, uint32_t offset, void *buf, size_t len)
296
{
297
298
299
	aw_send_fel_request(dev, AW_FEL_1_READ, offset, len);
	aw_usb_read(dev, buf, len);
	aw_read_fel_status(dev);
300
301
}

302
void aw_fel_write(feldev_handle *dev, void *buf, uint32_t offset, size_t len)
303
{
304
305
306
	aw_send_fel_request(dev, AW_FEL_1_WRITE, offset, len);
	aw_usb_write(dev, buf, len, false);
	aw_read_fel_status(dev);
307
308
}

309
void aw_fel_execute(feldev_handle *dev, uint32_t offset)
310
{
311
312
	aw_send_fel_request(dev, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(dev);
313
314
}

315
316
317
318
319
320
321
/*
 * This function is a higher-level wrapper for the FEL write functionality.
 * Unlike aw_fel_write() above - which is reserved for internal use - this
 * routine is meant to be called from "user" code, and supports (= allows)
 * progress callbacks.
 * The return value represents elapsed time in seconds (needed for execution).
 */
322
double aw_write_buffer(feldev_handle *dev, void *buf, uint32_t offset,
323
		       size_t len, bool progress)
324
325
326
327
328
329
330
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
331
			offset, (uint32_t)(offset + len),
332
333
334
335
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
336
337
338
	aw_send_fel_request(dev, AW_FEL_1_WRITE, offset, len);
	aw_usb_write(dev, buf, len, progress);
	aw_read_fel_status(dev);
339
340
341
	return gettime() - start;
}

342
343
344
345
346
347
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
348
		printf("%08zx: ", offset + j);
349
		for (i = 0; i < 16; i++) {
350
			if (j + i < size)
351
				printf("%02x ", buf[j+i]);
352
			else
353
354
				printf("__ ");
		}
355
		putchar(' ');
356
		for (i = 0; i < 16; i++) {
357
358
359
360
			if (j + i >= size)
				putchar('.');
			else
				putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
361
		}
362
		putchar('\n');
363
364
	}
}
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

381
382
383
384
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
385
	if (!out) {
386
		perror("Failed to open output file");
387
388
		exit(1);
	}
389
390
391
392
393
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

394
395
396
397
398
399
400
401
402
403
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
404
	if (!in) {
405
		perror("Failed to open input file");
406
407
		exit(1);
	}
408
	
Bernhard Nortmann's avatar
Bernhard Nortmann committed
409
	while (true) {
410
411
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
412
		offset += n;
413
		if (n < len)
414
415
416
417
418
419
420
421
422
423
424
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

425
void aw_fel_hexdump(feldev_handle *dev, uint32_t offset, size_t size)
426
427
{
	unsigned char buf[size];
428
	aw_fel_read(dev, offset, buf, size);
429
430
431
	hexdump(buf, offset, size);
}

432
void aw_fel_dump(feldev_handle *dev, uint32_t offset, size_t size)
433
434
{
	unsigned char buf[size];
435
	aw_fel_read(dev, offset, buf, size);
436
437
	fwrite(buf, size, 1, stdout);
}
438
void aw_fel_fill(feldev_handle *dev, uint32_t offset, size_t size, unsigned char value)
439
440
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
441
	memset(buf, value, size);
442
	aw_write_buffer(dev, buf, offset, size, false);
443
444
}

445
soc_info_t *aw_fel_get_soc_info(feldev_handle *dev)
446
{
447
448
	/* persistent SoC info, retrieves result pointer once and caches it */
	static soc_info_t *result = NULL;
449
450
	if (result == NULL) {
		struct aw_fel_version buf;
451
		aw_fel_get_version(dev, &buf);
452

453
		result = get_soc_info_from_version(&buf);
454
455
	}
	return result;
456
457
458
459
460
461
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

462
463
464
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

465
uint32_t aw_read_arm_cp_reg(feldev_handle *dev, soc_info_t *soc_info,
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
481
482
483
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
	aw_fel_read(dev, soc_info->scratch_addr + 12, &val, sizeof(val));
484
485
486
	return le32toh(val);
}

487
void aw_write_arm_cp_reg(feldev_handle *dev, soc_info_t *soc_info,
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
505
506
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
507
508
}

509
510
511
512
513
514
515
516
517
518
/*
 * We don't want the scratch code/buffer to exceed a maximum size of 0x400 bytes
 * (256 32-bit words) on readl_n/writel_n transfers. To guarantee this, we have
 * to account for the amount of space the ARM code uses.
 */
#define LCODE_ARM_WORDS  12 /* word count of the [read/write]l_n scratch code */
#define LCODE_ARM_SIZE   (LCODE_ARM_WORDS << 2) /* code size in bytes */
#define LCODE_MAX_TOTAL  0x100 /* max. words in buffer */
#define LCODE_MAX_WORDS  (LCODE_MAX_TOTAL - LCODE_ARM_WORDS) /* data words */

519
/* multiple "readl" from sequential addresses to a destination buffer */
520
void aw_fel_readl_n(feldev_handle *dev, uint32_t addr,
521
522
		    uint32_t *dst, size_t count)
{
523
524
525
526
527
528
	if (count == 0) return;
	if (count > LCODE_MAX_WORDS) {
		fprintf(stderr,
			"ERROR: Max. word count exceeded, truncating aw_fel_readl_n() transfer\n");
		count = LCODE_MAX_WORDS;
	}
529
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
530
531

	assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
532
	uint32_t arm_code[] = {
533
534
535
536
537
538
539
540
541
542
543
544
545
546
		htole32(0xe59f0020), /* ldr  r0, [pc, #32] ; ldr r0,[read_addr]  */
		htole32(0xe28f1024), /* add  r1, pc, #36   ; adr r1, read_data   */
		htole32(0xe59f201c), /* ldr  r2, [pc, #28] ; ldr r2,[read_count] */
		htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp	r2, #LCODE_MAX_WORDS */
		htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt	r2, #LCODE_MAX_WORDS */
		/* read_loop: */
		htole32(0xe2522001), /* subs r2, r2, #1    ; r2 -= 1             */
		htole32(0x412fff1e), /* bxmi lr            ; return if (r2 < 0)  */
		htole32(0xe4903004), /* ldr  r3, [r0], #4  ; load and post-inc   */
		htole32(0xe4813004), /* str  r3, [r1], #4  ; store and post-inc  */
		htole32(0xeafffffa), /* b    read_loop                           */
		htole32(addr),       /* read_addr */
		htole32(count)       /* read_count */
		/* read_data (buffer) follows, i.e. values go here */
547
	};
548
549
550
	assert(sizeof(arm_code) == LCODE_ARM_SIZE);

	/* scratch buffer setup: transfers ARM code, including addr and count */
551
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
552
	/* execute code, read back the result */
553
	aw_fel_execute(dev, soc_info->scratch_addr);
554
	uint32_t buffer[count];
555
	aw_fel_read(dev, soc_info->scratch_addr + LCODE_ARM_SIZE,
556
557
558
559
560
		    buffer, sizeof(buffer));
	/* extract values to destination buffer */
	uint32_t *val = buffer;
	while (count-- > 0)
		*dst++ = le32toh(*val++);
561
562
563
}

/* "readl" of a single value */
564
uint32_t aw_fel_readl(feldev_handle *dev, uint32_t addr)
565
566
{
	uint32_t val;
567
	aw_fel_readl_n(dev, addr, &val, 1);
568
569
570
	return val;
}

571
572
573
574
/*
 * aw_fel_readl_n() wrapper that can handle large transfers. If necessary,
 * those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
 */
575
void fel_readl_n(feldev_handle *dev, uint32_t addr, uint32_t *dst, size_t count)
576
577
578
{
	while (count > 0) {
		size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
579
		aw_fel_readl_n(dev, addr, dst, n);
580
581
582
583
584
585
		addr += n * sizeof(uint32_t);
		dst += n;
		count -= n;
	}
}

586
/* multiple "writel" from a source buffer to sequential addresses */
587
void aw_fel_writel_n(feldev_handle *dev, uint32_t addr,
588
589
		     uint32_t *src, size_t count)
{
590
591
592
593
594
595
	if (count == 0) return;
	if (count > LCODE_MAX_WORDS) {
		fprintf(stderr,
			"ERROR: Max. word count exceeded, truncating aw_fel_writel_n() transfer\n");
		count = LCODE_MAX_WORDS;
	}
596
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

	assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
	/*
	 * We need a fixed array size to allow for (partial) initialization,
	 * so we'll claim the maximum total number of words (0x100) here.
	 */
	uint32_t arm_code[LCODE_MAX_TOTAL] = {
		htole32(0xe59f0020), /* ldr  r0, [pc, #32] ; ldr r0,[write_addr] */
		htole32(0xe28f1024), /* add  r1, pc, #36   ; adr r1, write_data  */
		htole32(0xe59f201c), /* ldr  r2, [pc, #28] ; ldr r2,[write_count]*/
		htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp	r2, #LCODE_MAX_WORDS */
		htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt	r2, #LCODE_MAX_WORDS */
		/* write_loop: */
		htole32(0xe2522001), /* subs r2, r2, #1    ; r2 -= 1             */
		htole32(0x412fff1e), /* bxmi lr            ; return if (r2 < 0)  */
		htole32(0xe4913004), /* ldr  r3, [r1], #4  ; load and post-inc   */
		htole32(0xe4803004), /* str  r3, [r0], #4  ; store and post-inc  */
		htole32(0xeafffffa), /* b    write_loop                          */
		htole32(addr),       /* write_addr */
		htole32(count)       /* write_count */
		/* write_data (buffer) follows, i.e. values taken from here */
618
	};
619
620
621
622
623
624

	/* copy values from source buffer */
	size_t i;
	for (i = 0; i < count; i++)
		arm_code[LCODE_ARM_WORDS + i] = htole32(*src++);
	/* scratch buffer setup: transfers ARM code and data */
625
	aw_fel_write(dev, arm_code, soc_info->scratch_addr,
626
627
	             (LCODE_ARM_WORDS + count) * sizeof(uint32_t));
	/* execute, and we're done */
628
	aw_fel_execute(dev, soc_info->scratch_addr);
629
630
631
}

/* "writel" of a single value */
632
void aw_fel_writel(feldev_handle *dev, uint32_t addr, uint32_t val)
633
{
634
	aw_fel_writel_n(dev, addr, &val, 1);
635
636
}

637
638
639
640
/*
 * aw_fel_writel_n() wrapper that can handle large transfers. If necessary,
 * those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
 */
641
void fel_writel_n(feldev_handle *dev, uint32_t addr, uint32_t *src, size_t count)
642
643
644
{
	while (count > 0) {
		size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
645
		aw_fel_writel_n(dev, addr, src, n);
646
647
648
649
650
651
		addr += n * sizeof(uint32_t);
		src += n;
		count -= n;
	}
}

652
void aw_fel_print_sid(feldev_handle *dev)
653
{
654
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
655
656
657
658
	if (soc_info->sid_addr) {
		pr_info("SID key (e-fuses) at 0x%08X\n", soc_info->sid_addr);

		uint32_t key[4];
659
		aw_fel_readl_n(dev, soc_info->sid_addr, key, 4);
660
661

		unsigned int i;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
662
		/* output SID in "xxxxxxxx:xxxxxxxx:xxxxxxxx:xxxxxxxx" format */
663
		for (i = 0; i <= 3; i++)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
664
			printf("%08x%c", key[i], i < 3 ? ':' : '\n');
665
666
667
668
669
670
	} else {
		printf("SID registers for your SoC (id=%04X) are unknown or inaccessible.\n",
			soc_info->soc_id);
	}
}

671
void aw_enable_l2_cache(feldev_handle *dev, soc_info_t *soc_info)
672
673
674
675
676
677
678
679
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

680
681
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
682
683
}

684
void aw_get_stackinfo(feldev_handle *dev, soc_info_t *soc_info,
685
                      uint32_t *sp_irq, uint32_t *sp)
686
687
688
689
690
691
692
693
694
695
696
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

697
698
699
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
	aw_fel_read(dev, soc_info->scratch_addr + 0x10, results, 8);
700
701
702
703
704
705
706
707
708
709
710
711
712
713
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

714
715
716
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
	aw_fel_read(dev, soc_info->scratch_addr + 0x24, results, 8);
717
718
719
720
721
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

722
uint32_t aw_get_ttbr0(feldev_handle *dev, soc_info_t *soc_info)
723
{
724
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 0);
725
726
}

727
uint32_t aw_get_ttbcr(feldev_handle *dev, soc_info_t *soc_info)
728
{
729
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 2);
730
731
}

732
uint32_t aw_get_dacr(feldev_handle *dev, soc_info_t *soc_info)
733
{
734
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 3, 0, 0);
735
736
}

737
uint32_t aw_get_sctlr(feldev_handle *dev, soc_info_t *soc_info)
738
{
739
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 1, 0, 0);
740
741
}

742
void aw_set_ttbr0(feldev_handle *dev, soc_info_t *soc_info,
743
744
		  uint32_t ttbr0)
{
745
	return aw_write_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 0, ttbr0);
746
747
}

748
void aw_set_ttbcr(feldev_handle *dev, soc_info_t *soc_info,
749
750
		  uint32_t ttbcr)
{
751
	return aw_write_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 2, ttbcr);
752
753
}

754
void aw_set_dacr(feldev_handle *dev, soc_info_t *soc_info,
755
756
		 uint32_t dacr)
{
757
	aw_write_arm_cp_reg(dev, soc_info, 15, 0, 3, 0, 0, dacr);
758
759
}

760
void aw_set_sctlr(feldev_handle *dev, soc_info_t *soc_info,
761
762
		  uint32_t sctlr)
{
763
	aw_write_arm_cp_reg(dev, soc_info, 15, 0, 1, 0, 0, sctlr);
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

793
uint32_t *aw_backup_and_disable_mmu(feldev_handle *dev,
794
                                    soc_info_t *soc_info)
795
{
796
	uint32_t *tt = NULL;
797
	uint32_t sctlr, ttbr0, ttbcr, dacr;
798
799
800
	uint32_t i;

	uint32_t arm_code[] = {
801
		/* Disable I-cache, MMU and branch prediction */
802
803
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
804
805
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
806
807
808
809
810
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

811
812
813
814
815
816
817
818
819
820
821
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

822
	/* Basically, ignore M/Z/I/V/UNK bits and expect no TEX remap */
823
	sctlr = aw_get_sctlr(dev, soc_info);
824
	if ((sctlr & ~((0x7 << 11) | (1 << 6) | 1)) != 0x00C50038) {
825
826
827
828
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

829
	if (!(sctlr & 1)) {
830
831
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
832
833
	}

834
	dacr = aw_get_dacr(dev, soc_info);
835
836
837
838
839
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

840
	ttbcr = aw_get_ttbcr(dev, soc_info);
841
842
	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
843
844
845
		exit(1);
	}

846
	ttbr0 = aw_get_ttbr0(dev, soc_info);
847
848
849
850
851
	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

852
	tt = malloc(16 * 1024);
853
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
854
	aw_fel_read(dev, ttbr0, tt, 16 * 1024);
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

870
	pr_info("Disabling I-cache, MMU and branch prediction...");
871
872
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
873
874
875
876
877
	pr_info(" done.\n");

	return tt;
}

878
void aw_restore_and_enable_mmu(feldev_handle *dev,
879
                               soc_info_t *soc_info,
880
                               uint32_t *tt)
881
882
{
	uint32_t i;
883
	uint32_t ttbr0 = aw_get_ttbr0(dev, soc_info);
884
885

	uint32_t arm_code[] = {
886
887
888
889
890
891
892
893
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
894
895
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
896
897
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
898
899
900
901
902
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

919
920
921
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
922
	aw_fel_write(dev, tt, ttbr0, 16 * 1024);
923

924
	pr_info("Enabling I-cache, MMU and branch prediction...");
925
926
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
927
928
929
930
931
	pr_info(" done.\n");

	free(tt);
}

932
933
934
935
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
936
#define SPL_LEN_LIMIT 0x8000
937

938
void aw_fel_write_and_execute_spl(feldev_handle *dev, uint8_t *buf, size_t len)
939
{
940
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
941
942
943
944
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
945
	uint32_t sp, sp_irq;
946
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
947
	uint32_t *buf32 = (uint32_t *)buf;
948
	uint32_t cur_addr = soc_info->spl_addr;
949
	uint32_t *tt = NULL;
950

951
	if (!soc_info || !soc_info->swap_buffers) {
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

978
	if (soc_info->needs_l2en) {
979
		pr_info("Enabling the L2 cache\n");
980
		aw_enable_l2_cache(dev, soc_info);
981
982
	}

983
	aw_get_stackinfo(dev, soc_info, &sp_irq, &sp);
984
985
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

986
	tt = aw_backup_and_disable_mmu(dev, soc_info);
987
988
	if (!tt && soc_info->mmu_tt_addr) {
		if (soc_info->mmu_tt_addr & 0x3FFF) {
989
990
991
992
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
993
		        soc_info->mmu_tt_addr);
994
995
996
997
998
999
1000
1001
1002
1003
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
1004
1005
1006
		aw_set_dacr(dev, soc_info, 0x55555555);
		aw_set_ttbcr(dev, soc_info, 0x00000000);
		aw_set_ttbr0(dev, soc_info, soc_info->mmu_tt_addr);
1007
1008
		tt = aw_generate_mmu_translation_table();
	}
1009

1010
	swap_buffers = soc_info->swap_buffers;
1011
	for (i = 0; swap_buffers[i].size; i++) {
1012
1013
1014
		if ((swap_buffers[i].buf2 >= soc_info->spl_addr) &&
		    (swap_buffers[i].buf2 < soc_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - soc_info->spl_addr;
1015
1016
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
1017
1018
			if (tmp > len)
				tmp = len;
1019
			aw_fel_write(dev, buf, cur_addr, tmp);
1020
			cur_addr += tmp;
1021
1022
1023
			buf += tmp;
			len -= tmp;
		}
1024
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
1025
1026
1027
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
1028
			aw_fel_write(dev, buf, swap_buffers[i].buf2, tmp);
1029
			cur_addr += tmp;
1030
1031
1032
1033
1034
1035
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
1036
1037
	if (soc_info->thunk_addr < spl_len_limit)
		spl_len_limit = soc_info->thunk_addr;
1038
1039
1040
1041
1042
1043
1044
1045
1046

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
1047
		aw_fel_write(dev, buf, cur_addr, len);
1048

1049
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(soc_info->spl_addr) +
1050
		     (i + 1) * sizeof(*swap_buffers);
1051

1052
	if (thunk_size > soc_info->thunk_size) {
1053
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
1054
			(int)sizeof(fel_to_spl_thunk), soc_info->thunk_size);
1055
1056
1057
1058
1059
1060
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
1061
	       &soc_info->spl_addr, sizeof(soc_info->spl_addr));
1062
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
1063
1064
1065
1066
1067
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

1068
	pr_info("=> Executing the SPL...");
1069
1070
	aw_fel_write(dev, thunk_buf, soc_info->thunk_addr, thunk_size);
	aw_fel_execute(dev, soc_info->thunk_addr);
1071
	pr_info(" done.\n");
1072
1073
1074
1075
1076
1077
1078

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
1079
	aw_fel_read(dev, soc_info->spl_addr + 4, header_signature, 8);
1080
1081
1082
1083
1084
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
1085

1086
	/* re-enable the MMU if it was enabled by BROM */
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1087
	if (tt != NULL)
1088
		aw_restore_and_enable_mmu(dev, soc_info, tt);
1089
1090
}

1091
1092
1093
1094
1095
1096
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
1097
void aw_fel_write_uboot_image(feldev_handle *dev, uint8_t *buf, size_t len)
1098
1099
1100
1101
1102
1103
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
1118
1119
		exit(1);
	}
1120
1121
1122
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
1123
1124
1125
1126
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
1127
	if (data_size != len - HEADER_SIZE) {
1128
		fprintf(stderr, "U-Boot image data size mismatch: "
1129
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
1130
1131
1132
1133
1134
1135
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1136
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

1148
	aw_write_buffer(dev, buf + HEADER_SIZE, load_addr, data_size, false);
1149
1150
1151
1152
1153
1154
1155
1156
1157

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
1158
void aw_fel_process_spl_and_uboot(feldev_handle *dev, const char *filename)
1159
1160
1161
1162
1163
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
1164
	aw_fel_write_and_execute_spl(dev, buf, size);
1165
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
1166
	if (size > SPL_LEN_LIMIT)
1167
		aw_fel_write_uboot_image(dev, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
1168
	free(buf);
1169
1170
}

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
1181
bool have_sunxi_spl(feldev_handle *dev, uint32_t spl_addr)
1182
1183
1184
{
	uint8_t spl_signature[4];

1185
	aw_fel_read(dev, spl_addr + 0x14,
1186
1187
1188
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
1189
		return false; /* signature mismatch, no "sunxi" SPL */
1190
1191
1192
1193
1194
1195

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
1196
		return false;
1197
1198
1199
1200
1201
1202
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
1203
		return false;
1204
	}
1205
	return true; /* sunxi SPL and suitable version */
1206
1207
1208
1209
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1210
1211
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1212
 */
1213
void pass_fel_information(feldev_handle *dev,
1214
			  uint32_t script_address, uint32_t uEnv_length)
1215
{
1216
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
1217
1218

	/* write something _only_ if we have a suitable SPL header */
1219
	if (have_sunxi_spl(dev, soc_info->spl_addr)) {
1220
1221
1222
1223
1224
1225
1226
		pr_info("Passing boot info via sunxi SPL: "
			"script address = 0x%08X, uEnv length = %u\n",
			script_address, uEnv_length);
		uint32_t transfer[] = {
			htole32(script_address),
			htole32(uEnv_length)
		};
1227
		aw_fel_write(dev, transfer,
1228
			soc_info->spl_addr + 0x18, sizeof(transfer));
1229
1230
1231
	}
}

1232
static int aw_fel_get_endpoint(feldev_handle *dev)
1233
{
1234
	struct libusb_device *usb = libusb_get_device(dev->usb->handle);
1235
1236
1237
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

1238
	ret = libusb_get_active_config_descriptor(usb, &config);
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1253
				/* Test for bulk transfer endpoint */
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
					AW_USB_FEL_BULK_EP_IN = ep->bEndpointAddress;
				else
					AW_USB_FEL_BULK_EP_OUT = ep->bEndpointAddress;
			}
		}
	}

	libusb_free_config_descriptor(config);

	return 0;
}

1272
1273
1274
1275
1276
1277
1278
1279
1280
/*
 * This function stores a given entry point to the RVBAR address for CPU0,
 * and then writes the Reset Management Register to request a warm boot.
 * It is useful with some AArch64 transitions, e.g. when passing control to
 * ARM Trusted Firmware (ATF) during the boot process of Pine64.
 *
 * The code was inspired by
 * https://github.com/apritzel/u-boot/commit/fda6bd1bf285c44f30ea15c7e6231bf53c31d4a8
 */
1281
void aw_rmr_request(feldev_handle *dev, uint32_t entry_point, bool aarch64)
1282
{
1283
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
	if (!soc_info->rvbar_reg) {
		fprintf(stderr, "ERROR: Can't issue RMR request!\n"
			"RVBAR is not supported or unknown for your SoC (id=%04X).\n",
			soc_info->soc_id);
		return;
	}

	uint32_t rmr_mode = (1 << 1) | (aarch64 ? 1 : 0); /* RR, AA64 flag */
	uint32_t arm_code[] = {
		htole32(0xe59f0028), /* ldr        r0, [rvbar_reg]          */
		htole32(0xe59f1028), /* ldr        r1, [entry_point]        */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xf57ff04f), /* dsb        sy                       */
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe59f101c), /* ldr        r1, [rmr_mode]           */
		htole32(0xee1c0f50), /* mrc        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xe1800001), /* orr        r0, r0, r1               */
		htole32(0xee0c0f50), /* mcr        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe320f003), /* loop:      wfi                      */
		htole32(0xeafffffd), /* b          <loop>                   */

		htole32(soc_info->rvbar_reg),
		htole32(entry_point),
		htole32(rmr_mode)
	};
	/* scratch buffer setup: transfers ARM code and parameter values */
1313
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
1314
1315
1316
1317
	/* execute the thunk code (triggering a warm reset on the SoC) */
	pr_info("Store entry point 0x%08X to RVBAR 0x%08X, "
		"and request warm reset with RMR mode %u...",
		entry_point, soc_info->rvbar_reg, rmr_mode);
1318
	aw_fel_execute(dev, soc_info->scratch_addr);
1319
1320
1321
	pr_info(" done.\n");
}

1322
1323
1324
1325
1326
1327
1328
1329
/* check buffer for magic "#=uEnv", indicating uEnv.txt compatible format */
static bool is_uEnv(void *buffer, size_t size)
{
	if (size <= 6)
		return false; /* insufficient size */
	return memcmp(buffer, "#=uEnv", 6) == 0;
}

1330
/* private helper function, gets used for "write*" and "multi*" transfers */
1331
static unsigned int file_upload(feldev_handle *dev, size_t count,
1332
				size_t argc, char **argv, progress_cb_t callback)
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

1346
	progress_start(callback, size); /* set total size and progress callback */
1347
1348
1349
1350
1351
1352

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
1353
			aw_write_buffer(dev, buf, offset, size, callback != NULL);
1354

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1355
			/* If we transferred a script, try to inform U-Boot about its address. */
1356
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
1357
				pass_fel_information(dev, offset, 0);
1358
			if (is_uEnv(buf, size)) /* uEnv-style data */
1359
				pass_fel_information(dev, offset, size);
1360
1361
1362
1363
		}
		free(buf);
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1364
	return i; /* return number of files that were processed */
1365
1366
}

1367
1368
/* open handle to desired FEL device */
static feldev_handle *open_fel_device(int busnum, int devnum,
1369
1370
		uint16_t vendor_id, uint16_t product_id)
{
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
	feldev_handle *result = calloc(1, sizeof(feldev_handle));
	if (!result) {
		fprintf(stderr, "FAILED to allocate feldev_handle memory.\n");
		exit(1);
	}
	result->usb = calloc(1, sizeof(felusb_handle));
	if (!result->usb) {
		fprintf(stderr, "FAILED to allocate felusb_handle memory.\n");
		free(result);
		exit(1);
	}
1382
1383
1384
1385
1386
1387

	if (busnum < 0 || devnum < 0) {
		/* With the default values (busnum -1, devnum -1) we don't care
		 * for a specific USB device; so let libusb open the first
		 * device that matches VID/PID.
		 */
1388
1389
		result->usb->handle = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
		if (!result->usb->handle) {
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
			switch (errno) {
			case EACCES:
				fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
				break;
			default:
				fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
				break;
			}
			exit(1);
		}
		return result;
	}

	/* look for specific bus and device number */
	pr_info("Selecting USB Bus %03d Device %03d\n", busnum, devnum);
	bool found = false;
	ssize_t rc, i;
	libusb_device **list;

	rc = libusb_get_device_list(NULL, &list);
1410
1411
	if (rc < 0)
		usb_error(rc, "libusb_get_device_list()", 1);
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
	for (i = 0; i < rc; i++) {
		if (libusb_get_bus_number(list[i]) == busnum
		    && libusb_get_device_address(list[i]) == devnum) {
			found = true; /* bus:devnum matched */
			struct libusb_device_descriptor desc;
			libusb_get_device_descriptor(list[i], &desc);
			if (desc.idVendor != vendor_id
			    || desc.idProduct != product_id) {
				fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
					"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
					vendor_id, product_id, desc.idVendor, desc.idProduct);
				exit(1);
			}
			/* open handle to this specific device (incrementing its refcount) */
1426
			rc = libusb_open(list[i], &result->usb->handle);
1427
1428
			if (rc != 0)
				usb_error(rc, "libusb_open()", 1);
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
			break;
		}
	}
	libusb_free_device_list(list, true);

	if (!found) {
		fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
			busnum, devnum);
		exit(1);
	}
	return result;
}

1442
1443
1444
1445
1446
1447
void feldev_close(feldev_handle *dev)
{
	libusb_close(dev->usb->handle);
	free(dev->usb); /* release memory allocated for felusb_handle struct */
}

1448
1449
int main(int argc, char **argv)
{
1450
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1451
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1452
	feldev_handle *handle;
1453
	int busnum = -1, devnum = -1;
1454
#if defined(__linux__)
1455
	int iface_detached = -1;
1456
#endif
1457
1458

	if (argc <= 1) {
1459
		puts("sunxi-fel " VERSION "\n");
1460
1461
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1462
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1463
			"	-d, --dev bus:devnum		Use specific USB bus and device number\n"
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1475
1476
1477
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1478
			"	reset64 address			RMR request for AArch64 warm boot\n"
1479
1480
			"	readl address			Read 32-bit value from device memory\n"
			"	writel address value		Write 32-bit value to device memory\n"
1481
			"	read address length file	Write memory contents into file\n"
1482
			"	write address file		Store file contents into memory\n"
1483
			"	write-with-progress addr file	\"write\" with progress bar\n"
1484
1485
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1486
1487
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1488
1489
1490
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1491
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1492
			"	ver[sion]			Show BROM version\n"
1493
			"	sid				Retrieve and output 128-bit SID key\n"
1494
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1495
			"	fill address length value	Fill memory\n"
1496
1497
			, argv[0]
		);
1498
		exit(0);
1499
1500
	}

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
	/* process all "prefix"-type arguments first */
	while (argc > 1) {
		if (strcmp(argv[1], "--verbose") == 0 || strcmp(argv[1], "-v") == 0)
			verbose = true;
		else if (strcmp(argv[1], "--progress") == 0 || strcmp(argv[1], "-p") == 0)
			pflag_active = true;
		else if (strncmp(argv[1], "--dev", 5) == 0 || strncmp(argv[1], "-d", 2) == 0) {
			char *dev_arg = argv[1];
			dev_arg += strspn(dev_arg, "-dev="); /* skip option chars, ignore '=' */
			if (*dev_arg == 0 && argc > 2) { /* at end of argument, use the next one instead */
				dev_arg = argv[2];
				argc -= 1;
				argv += 1;
			}
			if (sscanf(dev_arg, "%d:%d", &busnum, &devnum) != 2
			    || busnum <= 0 || devnum <= 0) {
				fprintf(stderr, "ERROR: Expected 'bus:devnum', got '%s'.\n", dev_arg);
				exit(1);
			}
		} else
			break; /* no valid (prefix) option detected, exit loop */
		argc -= 1;
		argv += 1;
1524
	}
1525

1526
1527
	int rc = libusb_init(NULL);
	assert(rc == 0);
1528
1529
	handle = open_fel_device(busnum, devnum, AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
	assert(handle != NULL);
1530
	rc = libusb_claim_interface(handle->usb->handle, 0);
1531
1532
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
1533
		libusb_detach_kernel_driver(handle->usb->handle, 0);
1534
		iface_detached = 0;
1535
		rc = libusb_claim_interface(handle->usb->handle, 0);
1536
1537
	}
#endif
1538
1539
	assert(rc == 0);

1540
1541
1542
1543
1544
	if (aw_fel_get_endpoint(handle)) {
		fprintf(stderr, "ERROR: Failed to get FEL mode endpoint addresses!\n");
		exit(1);
	}

1545
1546
	while (argc > 1 ) {
		int skip = 1;
1547

1548
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1549
1550
1551
1552
1553
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1554
1555
1556
1557
1558
1559
		} else if (strcmp(argv[1], "readl") == 0 && argc > 2) {
			printf("0x%08x\n", aw_fel_readl(handle, strtoul(argv[2], NULL, 0)));
			skip = 2;
		} else if (strcmp(argv[1], "writel") == 0 && argc > 3) {
			aw_fel_writel(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1560
		} else if (strncmp(argv[1], "exe", 3) == 0 && argc > 2) {
1561
1562
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
1563
1564
1565
1566
1567
		} else if (strcmp(argv[1], "reset64") == 0 && argc > 2) {
			aw_rmr_request(handle, strtoul(argv[2], NULL, 0), true);
			/* Cancel U-Boot autostart, and stop processing args */
			uboot_autostart = false;
			break;
1568
		} else if (strncmp(argv[1], "ver", 3) == 0) {
1569
			aw_fel_print_version(handle);
1570
1571
		} else if (strcmp(argv[1], "sid") == 0) {
			aw_fel_print_sid(handle);
1572
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1573
1574
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1575
1576
1577
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1578
1579
1580
1581
1582
1583
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1584
1585
1586
1587
1588
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1599
1600
1601
1602
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1603
1604
1605
1606
1607
1608
1609
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1610
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1611
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1612
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1613
1614
1615
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1616
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1617
1618
1619
1620
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1621
1622
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1623
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1624
			skip=2;
1625
1626
1627
1628
1629
1630
1631
1632
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1633
	/* auto-start U-Boot if requested (by the "uboot" command) */
1634
	if (uboot_autostart) {
1635
1636
1637
1638
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1639
	libusb_release_interface(handle->usb->handle, 0);
1640
1641
#if defined(__linux__)
	if (iface_detached >= 0)
1642
		libusb_attach_kernel_driver(handle->usb->handle, iface_detached);
1643
#endif
1644
1645
	feldev_close(handle);
	free(handle);
1646
	libusb_exit(NULL);
1647

1648
1649
	return 0;
}