fel.c 54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <libusb.h>
#include <stdint.h>
20
#include <stdbool.h>
21
22
23
24
25
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
26
#include <stdarg.h>
27
#include <errno.h>
28
#include <unistd.h>
29
#include <sys/stat.h>
30

31
#include "portable_endian.h"
32
#include "progress.h"
Eric Molitor's avatar
Eric Molitor committed
33

34
35
36
static const uint16_t AW_USB_VENDOR_ID  = 0x1F3A;
static const uint16_t AW_USB_PRODUCT_ID = 0xEFE8;

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/* a helper function to report libusb errors */
void usb_error(int rc, const char *caption, int exitcode)
{
	if (caption)
		fprintf(stderr, "%s ", caption);

#if defined(LIBUSBX_API_VERSION) && (LIBUSBX_API_VERSION >= 0x01000102)
	fprintf(stderr, "ERROR %d: %s\n", rc, libusb_strerror(rc));
#else
	/* assume that libusb_strerror() is missing in the libusb API */
	fprintf(stderr, "ERROR %d\n", rc);
#endif

	if (exitcode != 0)
		exit(exitcode);
}

54
55
56
57
58
59
60
61
62
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

63
64
65
66
67
68
69
70
71
72
73
struct aw_fel_version {
	char signature[8];
	uint32_t soc_id;	/* 0x00162300 */
	uint32_t unknown_0a;	/* 1 */
	uint16_t protocol;	/* 1 */
	uint8_t  unknown_12;	/* 0x44 */
	uint8_t  unknown_13;	/* 0x08 */
	uint32_t scratchpad;	/* 0x7e00 */
	uint32_t pad[2];	/* unused */
} __attribute__((packed));

74
75
76
static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

77
78
static int AW_USB_FEL_BULK_EP_OUT;
static int AW_USB_FEL_BULK_EP_IN;
79
static int timeout = 60000;
80
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
81
82
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
83
84
85
86
87
88
89
90
91
92

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
93

Bernhard Nortmann's avatar
Bernhard Nortmann committed
94
static const int AW_USB_MAX_BULK_SEND = 4 * 1024 * 1024; /* 4 MiB per bulk request */
95

96
97
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
		   size_t length, bool progress)
98
{
99
100
101
102
103
104
	/*
	 * With no progress notifications, we'll use the maximum chunk size.
	 * Otherwise, it's useful to lower the size (have more chunks) to get
	 * more frequent status updates. 128 KiB per request seem suitable.
	 */
	size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
105
106

	size_t chunk;
107
108
	int rc, sent;
	while (length > 0) {
109
110
		chunk = length < max_chunk ? length : max_chunk;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk, &sent, timeout);
111
112
		if (rc != 0)
			usb_error(rc, "usb_bulk_send()", 2);
113
114
		length -= sent;
		data += sent;
115
116

		if (progress)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
117
			progress_update(sent); /* notification after each chunk */
118
119
120
121
122
123
124
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
125
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
126
127
		if (rc != 0)
			usb_error(rc, "usb_bulk_recv()", 2);
128
129
130
131
132
		length -= recv;
		data += recv;
	}
}

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

173
174
void aw_send_usb_request(libusb_device_handle *usb, int type, int length)
{
175
176
177
178
179
180
181
	struct aw_usb_request req = {
		.signature = "AWUC",
		.request = htole16(type),
		.length = htole32(length),
		.unknown1 = htole32(0x0c000000)
	};
	req.length2 = req.length;
182
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, &req, sizeof(req), false);
183
184
185
186
187
188
189
190
191
}

void aw_read_usb_response(libusb_device_handle *usb)
{
	char buf[13];
	usb_bulk_recv(usb, AW_USB_FEL_BULK_EP_IN, &buf, sizeof(buf));
	assert(strcmp(buf, "AWUS") == 0);
}

192
193
void aw_usb_write(libusb_device_handle *usb, const void *data, size_t len,
		  bool progress)
194
195
{
	aw_send_usb_request(usb, AW_USB_WRITE, len);
196
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, data, len, progress);
197
198
199
200
201
202
	aw_read_usb_response(usb);
}

void aw_usb_read(libusb_device_handle *usb, const void *data, size_t len)
{
	aw_send_usb_request(usb, AW_USB_READ, len);
203
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_IN, data, len, false);
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
	aw_read_usb_response(usb);
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

void aw_send_fel_request(libusb_device_handle *usb, int type, uint32_t addr, uint32_t length)
{
221
222
223
224
225
	struct aw_fel_request req = {
		.request = htole32(type),
		.address = htole32(addr),
		.length = htole32(length)
	};
226
	aw_usb_write(usb, &req, sizeof(req), false);
227
228
229
230
231
232
233
234
}

void aw_read_fel_status(libusb_device_handle *usb)
{
	char buf[8];
	aw_usb_read(usb, &buf, sizeof(buf));
}

235
void aw_fel_get_version(libusb_device_handle *usb, struct aw_fel_version *buf)
236
237
{
	aw_send_fel_request(usb, AW_FEL_VERSION, 0, 0);
238
	aw_usb_read(usb, buf, sizeof(*buf));
239
240
	aw_read_fel_status(usb);

241
242
243
244
245
246
247
248
249
250
251
252
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

void aw_fel_print_version(libusb_device_handle *usb)
{
	struct aw_fel_version buf;
	aw_fel_get_version(usb, &buf);
253

Henrik Nordstrom's avatar
Henrik Nordstrom committed
254
	const char *soc_name="unknown";
255
	switch (buf.soc_id) {
Bernhard Nortmann's avatar
Bernhard Nortmann committed
256
257
258
259
260
261
262
263
264
	case 0x1623: soc_name="A10"; break;
	case 0x1625: soc_name="A13"; break;
	case 0x1633: soc_name="A31"; break;
	case 0x1651: soc_name="A20"; break;
	case 0x1650: soc_name="A23"; break;
	case 0x1639: soc_name="A80"; break;
	case 0x1667: soc_name="A33"; break;
	case 0x1673: soc_name="A83T"; break;
	case 0x1680: soc_name="H3"; break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
265
266
	}

267
268
269
270
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
271
272
273
274
275
276
277
278
279
280
281
282
}

void aw_fel_read(libusb_device_handle *usb, uint32_t offset, void *buf, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_READ, offset, len);
	aw_usb_read(usb, buf, len);
	aw_read_fel_status(usb);
}

void aw_fel_write(libusb_device_handle *usb, void *buf, uint32_t offset, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
283
	aw_usb_write(usb, buf, len, false);
284
285
286
287
288
289
290
291
292
	aw_read_fel_status(usb);
}

void aw_fel_execute(libusb_device_handle *usb, uint32_t offset)
{
	aw_send_fel_request(usb, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(usb);
}

293
294
295
296
297
298
299
300
/*
 * This function is a higher-level wrapper for the FEL write functionality.
 * Unlike aw_fel_write() above - which is reserved for internal use - this
 * routine is meant to be called from "user" code, and supports (= allows)
 * progress callbacks.
 * The return value represents elapsed time in seconds (needed for execution).
 */
double aw_write_buffer(libusb_device_handle *usb, void *buf, uint32_t offset,
301
		       size_t len, bool progress)
302
303
304
305
306
307
308
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
309
			offset, (uint32_t)(offset + len),
310
311
312
313
314
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
315
	aw_usb_write(usb, buf, len, progress);
316
317
318
319
	aw_read_fel_status(usb);
	return gettime() - start;
}

320
321
322
323
324
325
326
327
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
		printf("%08lx: ",(long int)offset + j);
		for (i = 0; i < 16; i++) {
328
			if (j + i < size)
329
				printf("%02x ", buf[j+i]);
330
			else
331
332
				printf("__ ");
		}
333
		putchar(' ');
334
		for (i = 0; i < 16; i++) {
335
336
337
338
			if (j + i >= size)
				putchar('.');
			else
				putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
339
		}
340
		putchar('\n');
341
342
	}
}
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

359
360
361
362
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
363
	if (!out) {
364
		perror("Failed to open output file");
365
366
		exit(1);
	}
367
368
369
370
371
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

372
373
374
375
376
377
378
379
380
381
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
382
	if (!in) {
383
		perror("Failed to open input file");
384
385
		exit(1);
	}
386
	
Bernhard Nortmann's avatar
Bernhard Nortmann committed
387
	while (true) {
388
389
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
390
		offset += n;
391
		if (n < len)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

void aw_fel_hexdump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	hexdump(buf, offset, size);
}

void aw_fel_dump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	fwrite(buf, size, 1, stdout);
}
Henrik Nordstrom's avatar
Henrik Nordstrom committed
416
void aw_fel_fill(libusb_device_handle *usb, uint32_t offset, size_t size, unsigned char value)
417
418
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
419
	memset(buf, value, size);
420
	aw_write_buffer(usb, buf, offset, size, false);
421
422
}

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * The 'sram_swap_buffers' structure is used to describe information about
 * two buffers in SRAM, the content of which needs to be exchanged before
 * calling the U-Boot SPL code and then exchanged again before returning
 * control back to the FEL code from the BROM.
 */

typedef struct {
	uint32_t buf1; /* BROM buffer */
	uint32_t buf2; /* backup storage location */
	uint32_t size; /* buffer size */
} sram_swap_buffers;

/*
 * Each SoC variant may have its own list of memory buffers to be exchanged
 * and the information about the placement of the thunk code, which handles
 * the transition of execution from the BROM FEL code to the U-Boot SPL and
 * back.
 *
 * Note: the entries in the 'swap_buffers' tables need to be sorted by 'buf1'
 * addresses. And the 'buf1' addresses are the BROM data buffers, while 'buf2'
 * addresses are the intended backup locations.
445
446
447
448
449
450
451
452
453
454
455
456
 *
 * Also for performance reasons, we optionally want to have MMU enabled with
 * optimal section attributes configured (the code from the BROM should use
 * I-cache, writing data to the DRAM area should use write combining). The
 * reason is that the BROM FEL protocol implementation moves data using the
 * CPU somewhere on the performance critical path when transferring data over
 * USB. The older SoC variants (A10/A13/A20/A31/A23) already have MMU enabled
 * and we only need to adjust section attributes. The BROM in newer SoC variants
 * (A33/A83T/H3) doesn't enable MMU anymore, so we need to find some 16K of
 * spare space in SRAM to place the translation table there and specify it as
 * the 'mmu_tt_addr' field in the 'soc_sram_info' structure. The 'mmu_tt_addr'
 * address must be 16K aligned.
457
458
 */
typedef struct {
459
	uint32_t           soc_id;       /* ID of the SoC */
460
	uint32_t           spl_addr;     /* SPL load address */
461
462
463
	uint32_t           scratch_addr; /* A safe place to upload & run code */
	uint32_t           thunk_addr;   /* Address of the thunk code */
	uint32_t           thunk_size;   /* Maximal size of the thunk code */
464
	bool               needs_l2en;   /* Set the L2EN bit */
465
	uint32_t           mmu_tt_addr;  /* MMU translation table address */
466
	uint32_t           sid_addr;     /* base address for SID_KEY[0-3] registers */
467
468
469
470
471
472
473
474
	sram_swap_buffers *swap_buffers;
} soc_sram_info;

/*
 * The FEL code from BROM in A10/A13/A20 sets up two stacks for itself. One
 * at 0x2000 (and growing down) for the IRQ handler. And another one at 0x7000
 * (and also growing down) for the regular code. In order to use the whole
 * 32 KiB in the A1/A2 sections of SRAM, we need to temporarily move these
475
476
477
 * stacks elsewhere. And the addresses 0x7D00-0x7FFF contain something
 * importantant too (overwriting them kills FEL). On A10/A13/A20 we can use
 * the SRAM sections A3/A4 (0x8000-0xBFFF) for this purpose.
478
479
 */
sram_swap_buffers a10_a13_a20_sram_swap_buffers[] = {
480
481
482
483
484
485
	/* 0x1C00-0x1FFF (IRQ stack) */
	{ .buf1 = 0x01C00, .buf2 = 0xA400, .size = 0x0400 },
	/* 0x5C00-0x6FFF (Stack) */
	{ .buf1 = 0x05C00, .buf2 = 0xA800, .size = 0x1400 },
	/* 0x7C00-0x7FFF (Something important) */
	{ .buf1 = 0x07C00, .buf2 = 0xBC00, .size = 0x0400 },
486
	{ .size = 0 }  /* End of the table */
487
488
};

489
490
491
492
493
494
495
496
497
498
499
500
501
/*
 * A31 is very similar to A10/A13/A20, except that it has no SRAM at 0x8000.
 * So we use the SRAM section B at 0x20000-0x2FFFF instead. In the FEL mode,
 * the MMU translation table is allocated by the BROM at 0x20000. But we can
 * also safely use it as the backup storage because the MMU is temporarily
 * disabled during the time of the SPL execution.
 */
sram_swap_buffers a31_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x20000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x20800, .size = 0x8000 - 0x5C00 },
	{ .size = 0 }  /* End of the table */
};

502
/*
503
504
505
 * Use the SRAM section at 0x44000 as the backup storage. This is the memory,
 * which is normally shared with the OpenRISC core (should we do an extra check
 * to ensure that this core is powered off and can't interfere?).
506
 */
507
sram_swap_buffers ar100_abusing_sram_swap_buffers[] = {
508
509
	{ .buf1 = 0x01800, .buf2 = 0x44000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x44800, .size = 0x8000 - 0x5C00 },
510
	{ .size = 0 }  /* End of the table */
511
512
};

513
514
515
516
517
518
519
/*
 * A80 has 40KiB SRAM A1 at 0x10000 where the SPL has to be loaded to. The
 * secure SRAM B at 0x20000 is used as backup area for FEL stacks and data.
 */
sram_swap_buffers a80_sram_swap_buffers[] = {
	{ .buf1 = 0x11800, .buf2 = 0x20000, .size = 0x800 },
	{ .buf1 = 0x15400, .buf2 = 0x20800, .size = 0x18000 - 0x15400 },
520
	{ .size = 0 }  /* End of the table */
521
522
};

523
524
525
soc_sram_info soc_sram_info_table[] = {
	{
		.soc_id       = 0x1623, /* Allwinner A10 */
526
		.scratch_addr = 0x1000,
527
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
528
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
529
		.needs_l2en   = true,
530
		.sid_addr     = 0x01C23800,
531
532
533
	},
	{
		.soc_id       = 0x1625, /* Allwinner A13 */
534
		.scratch_addr = 0x1000,
535
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
536
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
537
		.needs_l2en   = true,
538
		.sid_addr     = 0x01C23800,
539
540
541
	},
	{
		.soc_id       = 0x1651, /* Allwinner A20 */
542
		.scratch_addr = 0x1000,
543
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
544
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
545
		.sid_addr     = 0x01C23800,
546
	},
Hans de Goede's avatar
Hans de Goede committed
547
548
	{
		.soc_id       = 0x1650, /* Allwinner A23 */
549
		.scratch_addr = 0x1000,
Hans de Goede's avatar
Hans de Goede committed
550
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
551
		.swap_buffers = ar100_abusing_sram_swap_buffers,
552
		.sid_addr     = 0x01C23800,
Hans de Goede's avatar
Hans de Goede committed
553
	},
554
555
	{
		.soc_id       = 0x1633, /* Allwinner A31 */
556
		.scratch_addr = 0x1000,
557
558
		.thunk_addr   = 0x22E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
559
	},
560
561
	{
		.soc_id       = 0x1667, /* Allwinner A33 */
562
		.scratch_addr = 0x1000,
563
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
564
		.swap_buffers = ar100_abusing_sram_swap_buffers,
565
		.sid_addr     = 0x01C23800,
566
	},
567
568
	{
		.soc_id       = 0x1673, /* Allwinner A83T */
569
		.scratch_addr = 0x1000,
570
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
571
		.swap_buffers = ar100_abusing_sram_swap_buffers,
572
		.sid_addr     = 0x01C14200,
573
	},
574
575
	{
		.soc_id       = 0x1680, /* Allwinner H3 */
576
		.scratch_addr = 0x1000,
577
		.mmu_tt_addr  = 0x44000,
578
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
579
		.swap_buffers = ar100_abusing_sram_swap_buffers,
580
		.sid_addr     = 0x01C14200,
581
	},
582
583
584
	{
		.soc_id       = 0x1639, /* Allwinner A80 */
		.spl_addr     = 0x10000,
585
		.scratch_addr = 0x11000,
586
587
588
		.thunk_addr   = 0x23400, .thunk_size = 0x200,
		.swap_buffers = a80_sram_swap_buffers,
	},
589
	{ .swap_buffers = NULL } /* End of the table */
590
591
592
593
594
595
596
597
598
599
600
601
602
603
};

/*
 * This generic record assumes BROM with similar properties to A10/A13/A20/A31,
 * but no extra SRAM sections beyond 0x8000. It also assumes that the IRQ
 * handler stack usage never exceeds 0x400 bytes.
 *
 * The users may or may not hope that the 0x7000-0x8000 area is also unused
 * by the BROM and re-purpose it for the SPL stack.
 *
 * The size limit for the ".text + .data" sections is ~21 KiB.
 */
sram_swap_buffers generic_sram_swap_buffers[] = {
	{ .buf1 = 0x01C00, .buf2 = 0x5800, .size = 0x400 },
604
	{ .size = 0 }  /* End of the table */
605
606
607
};

soc_sram_info generic_sram_info = {
608
	.scratch_addr = 0x1000,
609
610
611
612
613
614
	.thunk_addr   = 0x5680, .thunk_size = 0x180,
	.swap_buffers = generic_sram_swap_buffers,
};

soc_sram_info *aw_fel_get_sram_info(libusb_device_handle *usb)
{
615
616
617
618
619
620
621
622
623
624
625
626
627
	/* persistent sram_info, retrieves result pointer once and caches it */
	static soc_sram_info *result = NULL;
	if (result == NULL) {
		int i;

		struct aw_fel_version buf;
		aw_fel_get_version(usb, &buf);

		for (i = 0; soc_sram_info_table[i].swap_buffers; i++)
			if (soc_sram_info_table[i].soc_id == buf.soc_id) {
				result = &soc_sram_info_table[i];
				break;
			}
628

629
630
631
632
633
634
635
		if (!result) {
			printf("Warning: no 'soc_sram_info' data for your SoC (id=%04X)\n",
			       buf.soc_id);
			result = &generic_sram_info;
		}
	}
	return result;
636
637
638
639
640
641
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

642
643
644
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
uint32_t aw_read_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 12, &val, sizeof(val));
	return le32toh(val);
}

void aw_write_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
}

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/* multiple "readl" from sequential addresses to a destination buffer */
void aw_fel_readl_n(libusb_device_handle *usb, uint32_t addr,
		    uint32_t *dst, size_t count)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	uint32_t val;
	uint32_t arm_code[] = {
		htole32(0xe59f0010), /* ldr        r0, [pc, #16]            */
		htole32(0xe5901000), /* ldr        r1, [r0]                 */
		htole32(0xe58f100c), /* str        r1, [pc, #12]            */
		htole32(0xe2800004), /* add        r0, r0, #4               */
		htole32(0xe58f0000), /* str        r0, [pc]                 */
		htole32(0xe12fff1e), /* bx         lr                       */
		htole32(addr),
		/* value goes here */
	};
	/* scratch buffer setup: transfers ARM code and also sets the addr */
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	while (count-- > 0) {
		/*
		 * Since the scratch code auto-increments addr, we can simply
		 * execute it repeatedly for sequential "readl"s; retrieving
		 * one uint32_t each time.
		 */
		aw_fel_execute(usb, sram_info->scratch_addr);
		aw_fel_read(usb, sram_info->scratch_addr + 28, &val, sizeof(val));
		*dst++ = le32toh(val);
	}
}

/* "readl" of a single value */
uint32_t aw_fel_readl(libusb_device_handle *usb, uint32_t addr)
{
	uint32_t val;
	aw_fel_readl_n(usb, addr, &val, 1);
	return val;
}

/* multiple "writel" from a source buffer to sequential addresses */
void aw_fel_writel_n(libusb_device_handle *usb, uint32_t addr,
		     uint32_t *src, size_t count)
{
	if (count == 0) return; /* on zero count, do not access *src at all */

	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	uint32_t arm_code[] = {
		htole32(0xe59f0010), /* ldr        r0, [pc, #16]            */
		htole32(0xe59f1010), /* ldr        r1, [pc, #16]            */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xe2800004), /* add        r0, r0, #4               */
		htole32(0xe58f0000), /* str        r0, [pc]                 */
		htole32(0xe12fff1e), /* bx         lr                       */
		htole32(addr),
		htole32(*src++)
	};
	/* scratch buffer setup: transfers ARM code, addr and first value */
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr); /* stores first value */
	while (--count > 0) {
		/*
		 * Subsequent transfers only need to set up the next value
		 * to store (since the scratch code auto-increments addr).
		 */
		aw_fel_write(usb, src++, sram_info->scratch_addr + 28, sizeof(uint32_t));
		aw_fel_execute(usb, sram_info->scratch_addr);
	}
}

/* "writel" of a single value */
void aw_fel_writel(libusb_device_handle *usb, uint32_t addr, uint32_t val)
{
	aw_fel_writel_n(usb, addr, &val, 1);
}

763
764
765
766
767
768
769
770
771
772
void aw_fel_print_sid(libusb_device_handle *usb)
{
	soc_sram_info *soc_info = aw_fel_get_sram_info(usb);
	if (soc_info->sid_addr) {
		pr_info("SID key (e-fuses) at 0x%08X\n", soc_info->sid_addr);

		uint32_t key[4];
		aw_fel_readl_n(usb, soc_info->sid_addr, key, 4);

		unsigned int i;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
773
		/* output SID in "xxxxxxxx:xxxxxxxx:xxxxxxxx:xxxxxxxx" format */
774
		for (i = 0; i <= 3; i++)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
775
			printf("%08x%c", key[i], i < 3 ? ':' : '\n');
776
777
778
779
780
781
	} else {
		printf("SID registers for your SoC (id=%04X) are unknown or inaccessible.\n",
			soc_info->soc_id);
	}
}

782
void aw_enable_l2_cache(libusb_device_handle *usb, soc_sram_info *sram_info)
783
784
785
786
787
788
789
790
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

791
792
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
793
794
}

795
796
void aw_get_stackinfo(libusb_device_handle *usb, soc_sram_info *sram_info,
                      uint32_t *sp_irq, uint32_t *sp)
797
798
799
800
801
802
803
804
805
806
807
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

808
809
810
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x10, results, 8);
811
812
813
814
815
816
817
818
819
820
821
822
823
824
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

825
826
827
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x24, results, 8);
828
829
830
831
832
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

833
uint32_t aw_get_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info)
834
{
835
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0);
836
837
}

838
839
840
841
842
843
844
845
846
847
uint32_t aw_get_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2);
}

uint32_t aw_get_dacr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0);
}

848
uint32_t aw_get_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info)
849
{
850
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0);
851
852
}

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
void aw_set_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbr0)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0, ttbr0);
}

void aw_set_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbcr)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2, ttbcr);
}

void aw_set_dacr(libusb_device_handle *usb, soc_sram_info *sram_info,
		 uint32_t dacr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0, dacr);
}

void aw_set_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t sctlr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0, sctlr);
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

904
905
uint32_t *aw_backup_and_disable_mmu(libusb_device_handle *usb,
                                    soc_sram_info *sram_info)
906
{
907
	uint32_t *tt = NULL;
908
	uint32_t sctlr, ttbr0, ttbcr, dacr;
909
910
911
	uint32_t i;

	uint32_t arm_code[] = {
912
		/* Disable I-cache, MMU and branch prediction */
913
914
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
915
916
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
917
918
919
920
921
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

922
923
924
925
926
927
928
929
930
931
932
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

933
	/* Basically, ignore M/Z/I/V bits and expect no TEX remap */
934
	sctlr = aw_get_sctlr(usb, sram_info);
935
	if ((sctlr & ~((0x7 << 11) | 1)) != 0x00C50078) {
936
937
938
939
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

940
	if (!(sctlr & 1)) {
941
942
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
943
944
	}

945
	dacr = aw_get_dacr(usb, sram_info);
946
947
948
949
950
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

951
	ttbcr = aw_get_ttbcr(usb, sram_info);
952
953
	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
954
955
956
		exit(1);
	}

957
	ttbr0 = aw_get_ttbr0(usb, sram_info);
958
959
960
961
962
	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

963
	tt = malloc(16 * 1024);
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
	aw_fel_read(usb, ttbr0, tt, 16 * 1024);
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

981
	pr_info("Disabling I-cache, MMU and branch prediction...");
982
983
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
984
985
986
987
988
	pr_info(" done.\n");

	return tt;
}

989
990
991
void aw_restore_and_enable_mmu(libusb_device_handle *usb,
                               soc_sram_info *sram_info,
                               uint32_t *tt)
992
993
{
	uint32_t i;
994
	uint32_t ttbr0 = aw_get_ttbr0(usb, sram_info);
995
996

	uint32_t arm_code[] = {
997
998
999
1000
1001
1002
1003
1004
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
1005
1006
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
1007
1008
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
1009
1010
1011
1012
1013
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

1030
1031
1032
1033
1034
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
	aw_fel_write(usb, tt, ttbr0, 16 * 1024);

1035
	pr_info("Enabling I-cache, MMU and branch prediction...");
1036
1037
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
1038
1039
1040
1041
1042
	pr_info(" done.\n");

	free(tt);
}

1043
1044
1045
1046
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
1047
#define SPL_LEN_LIMIT 0x8000
1048

1049
1050
1051
1052
1053
1054
1055
1056
void aw_fel_write_and_execute_spl(libusb_device_handle *usb,
				  uint8_t *buf, size_t len)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
1057
	uint32_t sp, sp_irq;
1058
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
1059
	uint32_t *buf32 = (uint32_t *)buf;
1060
	uint32_t cur_addr = sram_info->spl_addr;
1061
	uint32_t *tt = NULL;
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

	if (!sram_info || !sram_info->swap_buffers) {
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

1090
1091
	if (sram_info->needs_l2en) {
		pr_info("Enabling the L2 cache\n");
1092
		aw_enable_l2_cache(usb, sram_info);
1093
1094
	}

1095
	aw_get_stackinfo(usb, sram_info, &sp_irq, &sp);
1096
1097
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

1098
	tt = aw_backup_and_disable_mmu(usb, sram_info);
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
	if (!tt && sram_info->mmu_tt_addr) {
		if (sram_info->mmu_tt_addr & 0x3FFF) {
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
		        sram_info->mmu_tt_addr);
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
		aw_set_dacr(usb, sram_info, 0x55555555);
		aw_set_ttbcr(usb, sram_info, 0x00000000);
		aw_set_ttbr0(usb, sram_info, sram_info->mmu_tt_addr);
		tt = aw_generate_mmu_translation_table();
	}
1121

1122
1123
	swap_buffers = sram_info->swap_buffers;
	for (i = 0; swap_buffers[i].size; i++) {
1124
1125
1126
1127
1128
		if ((swap_buffers[i].buf2 >= sram_info->spl_addr) &&
		    (swap_buffers[i].buf2 < sram_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - sram_info->spl_addr;
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
1129
1130
			if (tmp > len)
				tmp = len;
1131
1132
			aw_fel_write(usb, buf, cur_addr, tmp);
			cur_addr += tmp;
1133
1134
1135
			buf += tmp;
			len -= tmp;
		}
1136
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
1137
1138
1139
1140
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
			aw_fel_write(usb, buf, swap_buffers[i].buf2, tmp);
1141
			cur_addr += tmp;
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
	if (sram_info->thunk_addr < spl_len_limit)
		spl_len_limit = sram_info->thunk_addr;

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
1159
		aw_fel_write(usb, buf, cur_addr, len);
1160

1161
1162
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(sram_info->spl_addr) +
		     (i + 1) * sizeof(*swap_buffers);
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

	if (thunk_size > sram_info->thunk_size) {
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
			(int)sizeof(fel_to_spl_thunk), sram_info->thunk_size);
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
1173
1174
	       &sram_info->spl_addr, sizeof(sram_info->spl_addr));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
1175
1176
1177
1178
1179
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

1180
	pr_info("=> Executing the SPL...");
1181
1182
	aw_fel_write(usb, thunk_buf, sram_info->thunk_addr, thunk_size);
	aw_fel_execute(usb, sram_info->thunk_addr);
1183
	pr_info(" done.\n");
1184
1185
1186
1187
1188
1189
1190

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
1191
	aw_fel_read(usb, sram_info->spl_addr + 4, header_signature, 8);
1192
1193
1194
1195
1196
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
1197

1198
	/* re-enable the MMU if it was enabled by BROM */
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1199
	if (tt != NULL)
1200
		aw_restore_and_enable_mmu(usb, sram_info, tt);
1201
1202
}

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
void aw_fel_write_uboot_image(libusb_device_handle *usb,
		uint8_t *buf, size_t len)
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
1231
1232
		exit(1);
	}
1233
1234
1235
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
1236
1237
1238
1239
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
1240
	if (data_size != len - HEADER_SIZE) {
1241
		fprintf(stderr, "U-Boot image data size mismatch: "
1242
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
1243
1244
1245
1246
1247
1248
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1249
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

1261
	aw_write_buffer(usb, buf + HEADER_SIZE, load_addr, data_size, false);
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
void aw_fel_process_spl_and_uboot(libusb_device_handle *usb,
		const char *filename)
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
	aw_fel_write_and_execute_spl(usb, buf, size);
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
1280
1281
	if (size > SPL_LEN_LIMIT)
		aw_fel_write_uboot_image(usb, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
1282
	free(buf);
1283
1284
}

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
1295
bool have_sunxi_spl(libusb_device_handle *usb, uint32_t spl_addr)
1296
1297
1298
1299
1300
1301
1302
{
	uint8_t spl_signature[4];

	aw_fel_read(usb, spl_addr + 0x14,
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
1303
		return false; /* signature mismatch, no "sunxi" SPL */
1304
1305
1306
1307
1308
1309

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
1310
		return false;
1311
1312
1313
1314
1315
1316
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
1317
		return false;
1318
	}
1319
	return true; /* sunxi SPL and suitable version */
1320
1321
1322
1323
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1324
1325
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
 */
void pass_fel_information(libusb_device_handle *usb, uint32_t script_address)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);

	/* write something _only_ if we have a suitable SPL header */
	if (have_sunxi_spl(usb, sram_info->spl_addr)) {
		pr_info("Passing boot info via sunxi SPL: script address = 0x%08X\n",
			script_address);
		aw_fel_write(usb, &script_address,
			sram_info->spl_addr + 0x18, sizeof(script_address));
	}
}

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
static int aw_fel_get_endpoint(libusb_device_handle *usb)
{
	struct libusb_device *dev = libusb_get_device(usb);
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

	ret = libusb_get_active_config_descriptor(dev, &config);
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1361
				/* Test for bulk transfer endpoint */
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
					AW_USB_FEL_BULK_EP_IN = ep->bEndpointAddress;
				else
					AW_USB_FEL_BULK_EP_OUT = ep->bEndpointAddress;
			}
		}
	}

	libusb_free_config_descriptor(config);

	return 0;
}

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
/* private helper function, gets used for "write*" and "multi*" transfers */
static unsigned int file_upload(libusb_device_handle *handle, size_t count,
				size_t argc, char **argv, progress_cb_t progress)
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1396
	progress_start(progress, size); /* set total size and progress callback */
1397
1398
1399
1400
1401
1402
1403
1404

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
			aw_write_buffer(handle, buf, offset, size, true);

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1405
			/* If we transferred a script, try to inform U-Boot about its address. */
1406
1407
1408
1409
1410
1411
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
				pass_fel_information(handle, offset);
		}
		free(buf);
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1412
	return i; /* return number of files that were processed */
1413
1414
}

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
/* open libusb handle to desired FEL device */
static libusb_device_handle *open_fel_device(int busnum, int devnum,
		uint16_t vendor_id, uint16_t product_id)
{
	libusb_device_handle *result = NULL;

	if (busnum < 0 || devnum < 0) {
		/* With the default values (busnum -1, devnum -1) we don't care
		 * for a specific USB device; so let libusb open the first
		 * device that matches VID/PID.
		 */
		result = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
		if (!result) {
			switch (errno) {
			case EACCES:
				fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
				break;
			default:
				fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
				break;
			}
			exit(1);
		}
		return result;
	}

	/* look for specific bus and device number */
	pr_info("Selecting USB Bus %03d Device %03d\n", busnum, devnum);
	bool found = false;
	ssize_t rc, i;
	libusb_device **list;

	rc = libusb_get_device_list(NULL, &list);
1448
1449
	if (rc < 0)
		usb_error(rc, "libusb_get_device_list()", 1);
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
	for (i = 0; i < rc; i++) {
		if (libusb_get_bus_number(list[i]) == busnum
		    && libusb_get_device_address(list[i]) == devnum) {
			found = true; /* bus:devnum matched */
			struct libusb_device_descriptor desc;
			libusb_get_device_descriptor(list[i], &desc);
			if (desc.idVendor != vendor_id
			    || desc.idProduct != product_id) {
				fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
					"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
					vendor_id, product_id, desc.idVendor, desc.idProduct);
				exit(1);
			}
			/* open handle to this specific device (incrementing its refcount) */
			rc = libusb_open(list[i], &result);
1465
1466
			if (rc != 0)
				usb_error(rc, "libusb_open()", 1);
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
			break;
		}
	}
	libusb_free_device_list(list, true);

	if (!found) {
		fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
			busnum, devnum);
		exit(1);
	}
	return result;
}

1480
1481
int main(int argc, char **argv)
{
1482
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1483
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1484
1485
	libusb_device_handle *handle;
	int busnum = -1, devnum = -1;
1486
#if defined(__linux__)
1487
	int iface_detached = -1;
1488
#endif
1489
1490

	if (argc <= 1) {
1491
1492
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1493
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1494
			"	-d, --dev bus:devnum		Use specific USB bus and device number\n"
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1506
1507
1508
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1509
1510
			"	readl address			Read 32-bit value from device memory\n"
			"	writel address value		Write 32-bit value to device memory\n"
1511
			"	read address length file	Write memory contents into file\n"
1512
			"	write address file		Store file contents into memory\n"
1513
			"	write-with-progress addr file	\"write\" with progress bar\n"
1514
1515
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1516
1517
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1518
1519
1520
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1521
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1522
			"	ver[sion]			Show BROM version\n"
1523
			"	sid				Retrieve and output 128-bit SID key\n"
1524
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1525
			"	fill address length value	Fill memory\n"
1526
1527
			, argv[0]
		);
1528
		exit(0);
1529
1530
	}

1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
	/* process all "prefix"-type arguments first */
	while (argc > 1) {
		if (strcmp(argv[1], "--verbose") == 0 || strcmp(argv[1], "-v") == 0)
			verbose = true;
		else if (strcmp(argv[1], "--progress") == 0 || strcmp(argv[1], "-p") == 0)
			pflag_active = true;
		else if (strncmp(argv[1], "--dev", 5) == 0 || strncmp(argv[1], "-d", 2) == 0) {
			char *dev_arg = argv[1];
			dev_arg += strspn(dev_arg, "-dev="); /* skip option chars, ignore '=' */
			if (*dev_arg == 0 && argc > 2) { /* at end of argument, use the next one instead */
				dev_arg = argv[2];
				argc -= 1;
				argv += 1;
			}
			if (sscanf(dev_arg, "%d:%d", &busnum, &devnum) != 2
			    || busnum <= 0 || devnum <= 0) {
				fprintf(stderr, "ERROR: Expected 'bus:devnum', got '%s'.\n", dev_arg);
				exit(1);
			}
		} else
			break; /* no valid (prefix) option detected, exit loop */
		argc -= 1;
		argv += 1;
1554
	}
1555

1556
1557
	int rc = libusb_init(NULL);
	assert(rc == 0);
1558
1559
	handle = open_fel_device(busnum, devnum, AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
	assert(handle != NULL);
1560
	rc = libusb_claim_interface(handle, 0);
1561
1562
1563
1564
1565
1566
1567
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
		libusb_detach_kernel_driver(handle, 0);
		iface_detached = 0;
		rc = libusb_claim_interface(handle, 0);
	}
#endif
1568
1569
	assert(rc == 0);

1570
1571
1572
1573
1574
	if (aw_fel_get_endpoint(handle)) {
		fprintf(stderr, "ERROR: Failed to get FEL mode endpoint addresses!\n");
		exit(1);
	}

1575
1576
	while (argc > 1 ) {
		int skip = 1;
1577

1578
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1579
1580
1581
1582
1583
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1584
1585
1586
1587
1588
1589
		} else if (strcmp(argv[1], "readl") == 0 && argc > 2) {
			printf("0x%08x\n", aw_fel_readl(handle, strtoul(argv[2], NULL, 0)));
			skip = 2;
		} else if (strcmp(argv[1], "writel") == 0 && argc > 3) {
			aw_fel_writel(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1590
		} else if (strncmp(argv[1], "exe", 3) == 0 && argc > 2) {
1591
1592
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
1593
		} else if (strncmp(argv[1], "ver", 3) == 0) {
1594
			aw_fel_print_version(handle);
1595
1596
		} else if (strcmp(argv[1], "sid") == 0) {
			aw_fel_print_sid(handle);
1597
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1598
1599
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1600
1601
1602
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1603
1604
1605
1606
1607
1608
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1609
1610
1611
1612
1613
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1624
1625
1626
1627
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1628
1629
1630
1631
1632
1633
1634
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1635
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1636
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1637
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1638
1639
1640
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1641
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1642
1643
1644
1645
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1646
1647
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1648
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1649
			skip=2;
1650
1651
1652
1653
1654
1655
1656
1657
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1658
	/* auto-start U-Boot if requested (by the "uboot" command) */
1659
	if (uboot_autostart) {
1660
1661
1662
1663
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1664
	libusb_release_interface(handle, 0);
1665
1666
1667
1668
#if defined(__linux__)
	if (iface_detached >= 0)
		libusb_attach_kernel_driver(handle, iface_detached);
#endif
1669
1670
	libusb_close(handle);
	libusb_exit(NULL);
1671

1672
1673
	return 0;
}