fel.c 57.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <libusb.h>
#include <stdint.h>
20
#include <stdbool.h>
21
22
23
24
25
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
26
#include <stdarg.h>
27
#include <errno.h>
28
#include <unistd.h>
29
#include <sys/stat.h>
30

31
#include "portable_endian.h"
32
#include "progress.h"
Eric Molitor's avatar
Eric Molitor committed
33

34
35
36
static const uint16_t AW_USB_VENDOR_ID  = 0x1F3A;
static const uint16_t AW_USB_PRODUCT_ID = 0xEFE8;

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/* a helper function to report libusb errors */
void usb_error(int rc, const char *caption, int exitcode)
{
	if (caption)
		fprintf(stderr, "%s ", caption);

#if defined(LIBUSBX_API_VERSION) && (LIBUSBX_API_VERSION >= 0x01000102)
	fprintf(stderr, "ERROR %d: %s\n", rc, libusb_strerror(rc));
#else
	/* assume that libusb_strerror() is missing in the libusb API */
	fprintf(stderr, "ERROR %d\n", rc);
#endif

	if (exitcode != 0)
		exit(exitcode);
}

54
55
56
57
58
59
60
61
62
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

63
64
65
66
67
68
69
70
71
72
73
struct aw_fel_version {
	char signature[8];
	uint32_t soc_id;	/* 0x00162300 */
	uint32_t unknown_0a;	/* 1 */
	uint16_t protocol;	/* 1 */
	uint8_t  unknown_12;	/* 0x44 */
	uint8_t  unknown_13;	/* 0x08 */
	uint32_t scratchpad;	/* 0x7e00 */
	uint32_t pad[2];	/* unused */
} __attribute__((packed));

74
75
76
static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

77
78
static int AW_USB_FEL_BULK_EP_OUT;
static int AW_USB_FEL_BULK_EP_IN;
79
static int timeout = 60000;
80
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
81
82
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
83
84
85
86
87
88
89
90
91
92

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
93

Bernhard Nortmann's avatar
Bernhard Nortmann committed
94
static const int AW_USB_MAX_BULK_SEND = 4 * 1024 * 1024; /* 4 MiB per bulk request */
95

96
97
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
		   size_t length, bool progress)
98
{
99
100
101
102
103
104
	/*
	 * With no progress notifications, we'll use the maximum chunk size.
	 * Otherwise, it's useful to lower the size (have more chunks) to get
	 * more frequent status updates. 128 KiB per request seem suitable.
	 */
	size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
105
106

	size_t chunk;
107
108
	int rc, sent;
	while (length > 0) {
109
110
		chunk = length < max_chunk ? length : max_chunk;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk, &sent, timeout);
111
112
		if (rc != 0)
			usb_error(rc, "usb_bulk_send()", 2);
113
114
		length -= sent;
		data += sent;
115
116

		if (progress)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
117
			progress_update(sent); /* notification after each chunk */
118
119
120
121
122
123
124
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
125
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
126
127
		if (rc != 0)
			usb_error(rc, "usb_bulk_recv()", 2);
128
129
130
131
132
		length -= recv;
		data += recv;
	}
}

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

173
174
void aw_send_usb_request(libusb_device_handle *usb, int type, int length)
{
175
176
177
178
179
180
181
	struct aw_usb_request req = {
		.signature = "AWUC",
		.request = htole16(type),
		.length = htole32(length),
		.unknown1 = htole32(0x0c000000)
	};
	req.length2 = req.length;
182
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, &req, sizeof(req), false);
183
184
185
186
187
188
189
190
191
}

void aw_read_usb_response(libusb_device_handle *usb)
{
	char buf[13];
	usb_bulk_recv(usb, AW_USB_FEL_BULK_EP_IN, &buf, sizeof(buf));
	assert(strcmp(buf, "AWUS") == 0);
}

192
193
void aw_usb_write(libusb_device_handle *usb, const void *data, size_t len,
		  bool progress)
194
195
{
	aw_send_usb_request(usb, AW_USB_WRITE, len);
196
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, data, len, progress);
197
198
199
200
201
202
	aw_read_usb_response(usb);
}

void aw_usb_read(libusb_device_handle *usb, const void *data, size_t len)
{
	aw_send_usb_request(usb, AW_USB_READ, len);
203
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_IN, data, len, false);
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
	aw_read_usb_response(usb);
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

void aw_send_fel_request(libusb_device_handle *usb, int type, uint32_t addr, uint32_t length)
{
221
222
223
224
225
	struct aw_fel_request req = {
		.request = htole32(type),
		.address = htole32(addr),
		.length = htole32(length)
	};
226
	aw_usb_write(usb, &req, sizeof(req), false);
227
228
229
230
231
232
233
234
}

void aw_read_fel_status(libusb_device_handle *usb)
{
	char buf[8];
	aw_usb_read(usb, &buf, sizeof(buf));
}

235
void aw_fel_get_version(libusb_device_handle *usb, struct aw_fel_version *buf)
236
237
{
	aw_send_fel_request(usb, AW_FEL_VERSION, 0, 0);
238
	aw_usb_read(usb, buf, sizeof(*buf));
239
240
	aw_read_fel_status(usb);

241
242
243
244
245
246
247
248
249
250
251
252
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

void aw_fel_print_version(libusb_device_handle *usb)
{
	struct aw_fel_version buf;
	aw_fel_get_version(usb, &buf);
253

Henrik Nordstrom's avatar
Henrik Nordstrom committed
254
	const char *soc_name="unknown";
255
	switch (buf.soc_id) {
Bernhard Nortmann's avatar
Bernhard Nortmann committed
256
257
258
259
260
	case 0x1623: soc_name="A10"; break;
	case 0x1625: soc_name="A13"; break;
	case 0x1633: soc_name="A31"; break;
	case 0x1651: soc_name="A20"; break;
	case 0x1650: soc_name="A23"; break;
261
	case 0x1689: soc_name="A64"; break;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
262
263
264
265
	case 0x1639: soc_name="A80"; break;
	case 0x1667: soc_name="A33"; break;
	case 0x1673: soc_name="A83T"; break;
	case 0x1680: soc_name="H3"; break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
266
267
	}

268
269
270
271
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
272
273
274
275
276
277
278
279
280
281
282
283
}

void aw_fel_read(libusb_device_handle *usb, uint32_t offset, void *buf, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_READ, offset, len);
	aw_usb_read(usb, buf, len);
	aw_read_fel_status(usb);
}

void aw_fel_write(libusb_device_handle *usb, void *buf, uint32_t offset, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
284
	aw_usb_write(usb, buf, len, false);
285
286
287
288
289
290
291
292
293
	aw_read_fel_status(usb);
}

void aw_fel_execute(libusb_device_handle *usb, uint32_t offset)
{
	aw_send_fel_request(usb, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(usb);
}

294
295
296
297
298
299
300
301
/*
 * This function is a higher-level wrapper for the FEL write functionality.
 * Unlike aw_fel_write() above - which is reserved for internal use - this
 * routine is meant to be called from "user" code, and supports (= allows)
 * progress callbacks.
 * The return value represents elapsed time in seconds (needed for execution).
 */
double aw_write_buffer(libusb_device_handle *usb, void *buf, uint32_t offset,
302
		       size_t len, bool progress)
303
304
305
306
307
308
309
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
310
			offset, (uint32_t)(offset + len),
311
312
313
314
315
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
316
	aw_usb_write(usb, buf, len, progress);
317
318
319
320
	aw_read_fel_status(usb);
	return gettime() - start;
}

321
322
323
324
325
326
327
328
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
		printf("%08lx: ",(long int)offset + j);
		for (i = 0; i < 16; i++) {
329
			if (j + i < size)
330
				printf("%02x ", buf[j+i]);
331
			else
332
333
				printf("__ ");
		}
334
		putchar(' ');
335
		for (i = 0; i < 16; i++) {
336
337
338
339
			if (j + i >= size)
				putchar('.');
			else
				putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
340
		}
341
		putchar('\n');
342
343
	}
}
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

360
361
362
363
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
364
	if (!out) {
365
		perror("Failed to open output file");
366
367
		exit(1);
	}
368
369
370
371
372
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

373
374
375
376
377
378
379
380
381
382
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
383
	if (!in) {
384
		perror("Failed to open input file");
385
386
		exit(1);
	}
387
	
Bernhard Nortmann's avatar
Bernhard Nortmann committed
388
	while (true) {
389
390
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
391
		offset += n;
392
		if (n < len)
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

void aw_fel_hexdump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	hexdump(buf, offset, size);
}

void aw_fel_dump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	fwrite(buf, size, 1, stdout);
}
Henrik Nordstrom's avatar
Henrik Nordstrom committed
417
void aw_fel_fill(libusb_device_handle *usb, uint32_t offset, size_t size, unsigned char value)
418
419
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
420
	memset(buf, value, size);
421
	aw_write_buffer(usb, buf, offset, size, false);
422
423
}

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/*
 * The 'sram_swap_buffers' structure is used to describe information about
 * two buffers in SRAM, the content of which needs to be exchanged before
 * calling the U-Boot SPL code and then exchanged again before returning
 * control back to the FEL code from the BROM.
 */

typedef struct {
	uint32_t buf1; /* BROM buffer */
	uint32_t buf2; /* backup storage location */
	uint32_t size; /* buffer size */
} sram_swap_buffers;

/*
 * Each SoC variant may have its own list of memory buffers to be exchanged
 * and the information about the placement of the thunk code, which handles
 * the transition of execution from the BROM FEL code to the U-Boot SPL and
 * back.
 *
 * Note: the entries in the 'swap_buffers' tables need to be sorted by 'buf1'
 * addresses. And the 'buf1' addresses are the BROM data buffers, while 'buf2'
 * addresses are the intended backup locations.
446
447
448
449
450
451
452
453
454
455
456
457
 *
 * Also for performance reasons, we optionally want to have MMU enabled with
 * optimal section attributes configured (the code from the BROM should use
 * I-cache, writing data to the DRAM area should use write combining). The
 * reason is that the BROM FEL protocol implementation moves data using the
 * CPU somewhere on the performance critical path when transferring data over
 * USB. The older SoC variants (A10/A13/A20/A31/A23) already have MMU enabled
 * and we only need to adjust section attributes. The BROM in newer SoC variants
 * (A33/A83T/H3) doesn't enable MMU anymore, so we need to find some 16K of
 * spare space in SRAM to place the translation table there and specify it as
 * the 'mmu_tt_addr' field in the 'soc_sram_info' structure. The 'mmu_tt_addr'
 * address must be 16K aligned.
458
459
 */
typedef struct {
460
	uint32_t           soc_id;       /* ID of the SoC */
461
	uint32_t           spl_addr;     /* SPL load address */
462
463
464
	uint32_t           scratch_addr; /* A safe place to upload & run code */
	uint32_t           thunk_addr;   /* Address of the thunk code */
	uint32_t           thunk_size;   /* Maximal size of the thunk code */
465
	bool               needs_l2en;   /* Set the L2EN bit */
466
	uint32_t           mmu_tt_addr;  /* MMU translation table address */
467
	uint32_t           sid_addr;     /* base address for SID_KEY[0-3] registers */
468
	uint32_t           rvbar_reg;    /* MMIO address of RVBARADDR0_L register */
469
470
471
472
473
474
475
476
	sram_swap_buffers *swap_buffers;
} soc_sram_info;

/*
 * The FEL code from BROM in A10/A13/A20 sets up two stacks for itself. One
 * at 0x2000 (and growing down) for the IRQ handler. And another one at 0x7000
 * (and also growing down) for the regular code. In order to use the whole
 * 32 KiB in the A1/A2 sections of SRAM, we need to temporarily move these
477
478
479
 * stacks elsewhere. And the addresses 0x7D00-0x7FFF contain something
 * importantant too (overwriting them kills FEL). On A10/A13/A20 we can use
 * the SRAM sections A3/A4 (0x8000-0xBFFF) for this purpose.
480
481
 */
sram_swap_buffers a10_a13_a20_sram_swap_buffers[] = {
482
483
484
485
486
487
	/* 0x1C00-0x1FFF (IRQ stack) */
	{ .buf1 = 0x01C00, .buf2 = 0xA400, .size = 0x0400 },
	/* 0x5C00-0x6FFF (Stack) */
	{ .buf1 = 0x05C00, .buf2 = 0xA800, .size = 0x1400 },
	/* 0x7C00-0x7FFF (Something important) */
	{ .buf1 = 0x07C00, .buf2 = 0xBC00, .size = 0x0400 },
488
	{ .size = 0 }  /* End of the table */
489
490
};

491
492
493
494
495
496
497
498
499
500
501
502
503
/*
 * A31 is very similar to A10/A13/A20, except that it has no SRAM at 0x8000.
 * So we use the SRAM section B at 0x20000-0x2FFFF instead. In the FEL mode,
 * the MMU translation table is allocated by the BROM at 0x20000. But we can
 * also safely use it as the backup storage because the MMU is temporarily
 * disabled during the time of the SPL execution.
 */
sram_swap_buffers a31_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x20000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x20800, .size = 0x8000 - 0x5C00 },
	{ .size = 0 }  /* End of the table */
};

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/*
 * A64 has 32KiB of SRAM A at 0x10000 and a large SRAM C at 0x18000. SRAM A
 * and SRAM C reside in the address space back-to-back without any gaps, thus
 * representing a singe large contiguous area. Everything is the same as on
 * A10/A13/A20, but just shifted by 0x10000.
 */
sram_swap_buffers a64_sram_swap_buffers[] = {
	/* 0x11C00-0x11FFF (IRQ stack) */
	{ .buf1 = 0x11C00, .buf2 = 0x1A400, .size = 0x0400 },
	/* 0x15C00-0x16FFF (Stack) */
	{ .buf1 = 0x15C00, .buf2 = 0x1A800, .size = 0x1400 },
	/* 0x17C00-0x17FFF (Something important) */
	{ .buf1 = 0x17C00, .buf2 = 0x1BC00, .size = 0x0400 },
	{ .size = 0 }  /* End of the table */
};

520
/*
521
522
523
 * Use the SRAM section at 0x44000 as the backup storage. This is the memory,
 * which is normally shared with the OpenRISC core (should we do an extra check
 * to ensure that this core is powered off and can't interfere?).
524
 */
525
sram_swap_buffers ar100_abusing_sram_swap_buffers[] = {
526
527
	{ .buf1 = 0x01800, .buf2 = 0x44000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x44800, .size = 0x8000 - 0x5C00 },
528
	{ .size = 0 }  /* End of the table */
529
530
};

531
532
533
534
535
536
537
/*
 * A80 has 40KiB SRAM A1 at 0x10000 where the SPL has to be loaded to. The
 * secure SRAM B at 0x20000 is used as backup area for FEL stacks and data.
 */
sram_swap_buffers a80_sram_swap_buffers[] = {
	{ .buf1 = 0x11800, .buf2 = 0x20000, .size = 0x800 },
	{ .buf1 = 0x15400, .buf2 = 0x20800, .size = 0x18000 - 0x15400 },
538
	{ .size = 0 }  /* End of the table */
539
540
};

541
542
543
soc_sram_info soc_sram_info_table[] = {
	{
		.soc_id       = 0x1623, /* Allwinner A10 */
544
		.scratch_addr = 0x1000,
545
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
546
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
547
		.needs_l2en   = true,
548
		.sid_addr     = 0x01C23800,
549
550
551
	},
	{
		.soc_id       = 0x1625, /* Allwinner A13 */
552
		.scratch_addr = 0x1000,
553
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
554
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
555
		.needs_l2en   = true,
556
		.sid_addr     = 0x01C23800,
557
558
559
	},
	{
		.soc_id       = 0x1651, /* Allwinner A20 */
560
		.scratch_addr = 0x1000,
561
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
562
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
563
		.sid_addr     = 0x01C23800,
564
	},
Hans de Goede's avatar
Hans de Goede committed
565
566
	{
		.soc_id       = 0x1650, /* Allwinner A23 */
567
		.scratch_addr = 0x1000,
Hans de Goede's avatar
Hans de Goede committed
568
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
569
		.swap_buffers = ar100_abusing_sram_swap_buffers,
570
		.sid_addr     = 0x01C23800,
Hans de Goede's avatar
Hans de Goede committed
571
	},
572
573
	{
		.soc_id       = 0x1633, /* Allwinner A31 */
574
		.scratch_addr = 0x1000,
575
576
		.thunk_addr   = 0x22E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
577
	},
578
579
	{
		.soc_id       = 0x1667, /* Allwinner A33 */
580
		.scratch_addr = 0x1000,
581
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
582
		.swap_buffers = ar100_abusing_sram_swap_buffers,
583
		.sid_addr     = 0x01C23800,
584
	},
585
586
587
588
589
590
591
	{
		.soc_id       = 0x1689, /* Allwinner A64 */
		.spl_addr     = 0x10000,
		.scratch_addr = 0x11000,
		.thunk_addr   = 0x1A200, .thunk_size = 0x200,
		.swap_buffers = a64_sram_swap_buffers,
		.sid_addr     = 0x01C14200,
592
		.rvbar_reg    = 0x017000A0,
593
	},
594
595
	{
		.soc_id       = 0x1673, /* Allwinner A83T */
596
		.scratch_addr = 0x1000,
597
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
598
		.swap_buffers = ar100_abusing_sram_swap_buffers,
599
		.sid_addr     = 0x01C14200,
600
	},
601
602
	{
		.soc_id       = 0x1680, /* Allwinner H3 */
603
		.scratch_addr = 0x1000,
604
605
606
		.mmu_tt_addr  = 0x8000,
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
607
		.sid_addr     = 0x01C14200,
608
	},
609
610
611
	{
		.soc_id       = 0x1639, /* Allwinner A80 */
		.spl_addr     = 0x10000,
612
		.scratch_addr = 0x11000,
613
614
615
		.thunk_addr   = 0x23400, .thunk_size = 0x200,
		.swap_buffers = a80_sram_swap_buffers,
	},
616
	{ .swap_buffers = NULL } /* End of the table */
617
618
619
620
621
622
623
624
625
626
627
628
629
630
};

/*
 * This generic record assumes BROM with similar properties to A10/A13/A20/A31,
 * but no extra SRAM sections beyond 0x8000. It also assumes that the IRQ
 * handler stack usage never exceeds 0x400 bytes.
 *
 * The users may or may not hope that the 0x7000-0x8000 area is also unused
 * by the BROM and re-purpose it for the SPL stack.
 *
 * The size limit for the ".text + .data" sections is ~21 KiB.
 */
sram_swap_buffers generic_sram_swap_buffers[] = {
	{ .buf1 = 0x01C00, .buf2 = 0x5800, .size = 0x400 },
631
	{ .size = 0 }  /* End of the table */
632
633
634
};

soc_sram_info generic_sram_info = {
635
	.scratch_addr = 0x1000,
636
637
638
639
640
641
	.thunk_addr   = 0x5680, .thunk_size = 0x180,
	.swap_buffers = generic_sram_swap_buffers,
};

soc_sram_info *aw_fel_get_sram_info(libusb_device_handle *usb)
{
642
643
644
645
646
647
648
649
650
651
652
653
654
	/* persistent sram_info, retrieves result pointer once and caches it */
	static soc_sram_info *result = NULL;
	if (result == NULL) {
		int i;

		struct aw_fel_version buf;
		aw_fel_get_version(usb, &buf);

		for (i = 0; soc_sram_info_table[i].swap_buffers; i++)
			if (soc_sram_info_table[i].soc_id == buf.soc_id) {
				result = &soc_sram_info_table[i];
				break;
			}
655

656
657
658
659
660
661
662
		if (!result) {
			printf("Warning: no 'soc_sram_info' data for your SoC (id=%04X)\n",
			       buf.soc_id);
			result = &generic_sram_info;
		}
	}
	return result;
663
664
665
666
667
668
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

669
670
671
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
uint32_t aw_read_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 12, &val, sizeof(val));
	return le32toh(val);
}

void aw_write_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
}

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/* multiple "readl" from sequential addresses to a destination buffer */
void aw_fel_readl_n(libusb_device_handle *usb, uint32_t addr,
		    uint32_t *dst, size_t count)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	uint32_t val;
	uint32_t arm_code[] = {
		htole32(0xe59f0010), /* ldr        r0, [pc, #16]            */
		htole32(0xe5901000), /* ldr        r1, [r0]                 */
		htole32(0xe58f100c), /* str        r1, [pc, #12]            */
		htole32(0xe2800004), /* add        r0, r0, #4               */
		htole32(0xe58f0000), /* str        r0, [pc]                 */
		htole32(0xe12fff1e), /* bx         lr                       */
		htole32(addr),
		/* value goes here */
	};
	/* scratch buffer setup: transfers ARM code and also sets the addr */
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	while (count-- > 0) {
		/*
		 * Since the scratch code auto-increments addr, we can simply
		 * execute it repeatedly for sequential "readl"s; retrieving
		 * one uint32_t each time.
		 */
		aw_fel_execute(usb, sram_info->scratch_addr);
		aw_fel_read(usb, sram_info->scratch_addr + 28, &val, sizeof(val));
		*dst++ = le32toh(val);
	}
}

/* "readl" of a single value */
uint32_t aw_fel_readl(libusb_device_handle *usb, uint32_t addr)
{
	uint32_t val;
	aw_fel_readl_n(usb, addr, &val, 1);
	return val;
}

/* multiple "writel" from a source buffer to sequential addresses */
void aw_fel_writel_n(libusb_device_handle *usb, uint32_t addr,
		     uint32_t *src, size_t count)
{
	if (count == 0) return; /* on zero count, do not access *src at all */

	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	uint32_t arm_code[] = {
		htole32(0xe59f0010), /* ldr        r0, [pc, #16]            */
		htole32(0xe59f1010), /* ldr        r1, [pc, #16]            */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xe2800004), /* add        r0, r0, #4               */
		htole32(0xe58f0000), /* str        r0, [pc]                 */
		htole32(0xe12fff1e), /* bx         lr                       */
		htole32(addr),
		htole32(*src++)
	};
	/* scratch buffer setup: transfers ARM code, addr and first value */
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr); /* stores first value */
	while (--count > 0) {
		/*
		 * Subsequent transfers only need to set up the next value
		 * to store (since the scratch code auto-increments addr).
		 */
		aw_fel_write(usb, src++, sram_info->scratch_addr + 28, sizeof(uint32_t));
		aw_fel_execute(usb, sram_info->scratch_addr);
	}
}

/* "writel" of a single value */
void aw_fel_writel(libusb_device_handle *usb, uint32_t addr, uint32_t val)
{
	aw_fel_writel_n(usb, addr, &val, 1);
}

790
791
792
793
794
795
796
797
798
799
void aw_fel_print_sid(libusb_device_handle *usb)
{
	soc_sram_info *soc_info = aw_fel_get_sram_info(usb);
	if (soc_info->sid_addr) {
		pr_info("SID key (e-fuses) at 0x%08X\n", soc_info->sid_addr);

		uint32_t key[4];
		aw_fel_readl_n(usb, soc_info->sid_addr, key, 4);

		unsigned int i;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
800
		/* output SID in "xxxxxxxx:xxxxxxxx:xxxxxxxx:xxxxxxxx" format */
801
		for (i = 0; i <= 3; i++)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
802
			printf("%08x%c", key[i], i < 3 ? ':' : '\n');
803
804
805
806
807
808
	} else {
		printf("SID registers for your SoC (id=%04X) are unknown or inaccessible.\n",
			soc_info->soc_id);
	}
}

809
void aw_enable_l2_cache(libusb_device_handle *usb, soc_sram_info *sram_info)
810
811
812
813
814
815
816
817
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

818
819
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
820
821
}

822
823
void aw_get_stackinfo(libusb_device_handle *usb, soc_sram_info *sram_info,
                      uint32_t *sp_irq, uint32_t *sp)
824
825
826
827
828
829
830
831
832
833
834
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

835
836
837
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x10, results, 8);
838
839
840
841
842
843
844
845
846
847
848
849
850
851
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

852
853
854
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x24, results, 8);
855
856
857
858
859
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

860
uint32_t aw_get_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info)
861
{
862
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0);
863
864
}

865
866
867
868
869
870
871
872
873
874
uint32_t aw_get_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2);
}

uint32_t aw_get_dacr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0);
}

875
uint32_t aw_get_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info)
876
{
877
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0);
878
879
}

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
void aw_set_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbr0)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0, ttbr0);
}

void aw_set_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbcr)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2, ttbcr);
}

void aw_set_dacr(libusb_device_handle *usb, soc_sram_info *sram_info,
		 uint32_t dacr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0, dacr);
}

void aw_set_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t sctlr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0, sctlr);
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

931
932
uint32_t *aw_backup_and_disable_mmu(libusb_device_handle *usb,
                                    soc_sram_info *sram_info)
933
{
934
	uint32_t *tt = NULL;
935
	uint32_t sctlr, ttbr0, ttbcr, dacr;
936
937
938
	uint32_t i;

	uint32_t arm_code[] = {
939
		/* Disable I-cache, MMU and branch prediction */
940
941
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
942
943
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
944
945
946
947
948
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

949
950
951
952
953
954
955
956
957
958
959
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

960
	/* Basically, ignore M/Z/I/V/UNK bits and expect no TEX remap */
961
	sctlr = aw_get_sctlr(usb, sram_info);
962
	if ((sctlr & ~((0x7 << 11) | (1 << 6) | 1)) != 0x00C50038) {
963
964
965
966
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

967
	if (!(sctlr & 1)) {
968
969
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
970
971
	}

972
	dacr = aw_get_dacr(usb, sram_info);
973
974
975
976
977
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

978
	ttbcr = aw_get_ttbcr(usb, sram_info);
979
980
	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
981
982
983
		exit(1);
	}

984
	ttbr0 = aw_get_ttbr0(usb, sram_info);
985
986
987
988
989
	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

990
	tt = malloc(16 * 1024);
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
	aw_fel_read(usb, ttbr0, tt, 16 * 1024);
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

1008
	pr_info("Disabling I-cache, MMU and branch prediction...");
1009
1010
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
1011
1012
1013
1014
1015
	pr_info(" done.\n");

	return tt;
}

1016
1017
1018
void aw_restore_and_enable_mmu(libusb_device_handle *usb,
                               soc_sram_info *sram_info,
                               uint32_t *tt)
1019
1020
{
	uint32_t i;
1021
	uint32_t ttbr0 = aw_get_ttbr0(usb, sram_info);
1022
1023

	uint32_t arm_code[] = {
1024
1025
1026
1027
1028
1029
1030
1031
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
1032
1033
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
1034
1035
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
1036
1037
1038
1039
1040
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

1057
1058
1059
1060
1061
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
	aw_fel_write(usb, tt, ttbr0, 16 * 1024);

1062
	pr_info("Enabling I-cache, MMU and branch prediction...");
1063
1064
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
1065
1066
1067
1068
1069
	pr_info(" done.\n");

	free(tt);
}

1070
1071
1072
1073
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
1074
#define SPL_LEN_LIMIT 0x8000
1075

1076
1077
1078
1079
1080
1081
1082
1083
void aw_fel_write_and_execute_spl(libusb_device_handle *usb,
				  uint8_t *buf, size_t len)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
1084
	uint32_t sp, sp_irq;
1085
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
1086
	uint32_t *buf32 = (uint32_t *)buf;
1087
	uint32_t cur_addr = sram_info->spl_addr;
1088
	uint32_t *tt = NULL;
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

	if (!sram_info || !sram_info->swap_buffers) {
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

1117
1118
	if (sram_info->needs_l2en) {
		pr_info("Enabling the L2 cache\n");
1119
		aw_enable_l2_cache(usb, sram_info);
1120
1121
	}

1122
	aw_get_stackinfo(usb, sram_info, &sp_irq, &sp);
1123
1124
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

1125
	tt = aw_backup_and_disable_mmu(usb, sram_info);
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
	if (!tt && sram_info->mmu_tt_addr) {
		if (sram_info->mmu_tt_addr & 0x3FFF) {
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
		        sram_info->mmu_tt_addr);
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
		aw_set_dacr(usb, sram_info, 0x55555555);
		aw_set_ttbcr(usb, sram_info, 0x00000000);
		aw_set_ttbr0(usb, sram_info, sram_info->mmu_tt_addr);
		tt = aw_generate_mmu_translation_table();
	}
1148

1149
1150
	swap_buffers = sram_info->swap_buffers;
	for (i = 0; swap_buffers[i].size; i++) {
1151
1152
1153
1154
1155
		if ((swap_buffers[i].buf2 >= sram_info->spl_addr) &&
		    (swap_buffers[i].buf2 < sram_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - sram_info->spl_addr;
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
1156
1157
			if (tmp > len)
				tmp = len;
1158
1159
			aw_fel_write(usb, buf, cur_addr, tmp);
			cur_addr += tmp;
1160
1161
1162
			buf += tmp;
			len -= tmp;
		}
1163
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
1164
1165
1166
1167
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
			aw_fel_write(usb, buf, swap_buffers[i].buf2, tmp);
1168
			cur_addr += tmp;
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
	if (sram_info->thunk_addr < spl_len_limit)
		spl_len_limit = sram_info->thunk_addr;

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
1186
		aw_fel_write(usb, buf, cur_addr, len);
1187

1188
1189
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(sram_info->spl_addr) +
		     (i + 1) * sizeof(*swap_buffers);
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199

	if (thunk_size > sram_info->thunk_size) {
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
			(int)sizeof(fel_to_spl_thunk), sram_info->thunk_size);
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
1200
1201
	       &sram_info->spl_addr, sizeof(sram_info->spl_addr));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
1202
1203
1204
1205
1206
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

1207
	pr_info("=> Executing the SPL...");
1208
1209
	aw_fel_write(usb, thunk_buf, sram_info->thunk_addr, thunk_size);
	aw_fel_execute(usb, sram_info->thunk_addr);
1210
	pr_info(" done.\n");
1211
1212
1213
1214
1215
1216
1217

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
1218
	aw_fel_read(usb, sram_info->spl_addr + 4, header_signature, 8);
1219
1220
1221
1222
1223
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
1224

1225
	/* re-enable the MMU if it was enabled by BROM */
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1226
	if (tt != NULL)
1227
		aw_restore_and_enable_mmu(usb, sram_info, tt);
1228
1229
}

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
void aw_fel_write_uboot_image(libusb_device_handle *usb,
		uint8_t *buf, size_t len)
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
1258
1259
		exit(1);
	}
1260
1261
1262
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
1263
1264
1265
1266
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
1267
	if (data_size != len - HEADER_SIZE) {
1268
		fprintf(stderr, "U-Boot image data size mismatch: "
1269
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
1270
1271
1272
1273
1274
1275
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1276
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

1288
	aw_write_buffer(usb, buf + HEADER_SIZE, load_addr, data_size, false);
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
void aw_fel_process_spl_and_uboot(libusb_device_handle *usb,
		const char *filename)
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
	aw_fel_write_and_execute_spl(usb, buf, size);
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
1307
1308
	if (size > SPL_LEN_LIMIT)
		aw_fel_write_uboot_image(usb, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
1309
	free(buf);
1310
1311
}

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
1322
bool have_sunxi_spl(libusb_device_handle *usb, uint32_t spl_addr)
1323
1324
1325
1326
1327
1328
1329
{
	uint8_t spl_signature[4];

	aw_fel_read(usb, spl_addr + 0x14,
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
1330
		return false; /* signature mismatch, no "sunxi" SPL */
1331
1332
1333
1334
1335
1336

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
1337
		return false;
1338
1339
1340
1341
1342
1343
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
1344
		return false;
1345
	}
1346
	return true; /* sunxi SPL and suitable version */
1347
1348
1349
1350
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1351
1352
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
 */
void pass_fel_information(libusb_device_handle *usb, uint32_t script_address)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);

	/* write something _only_ if we have a suitable SPL header */
	if (have_sunxi_spl(usb, sram_info->spl_addr)) {
		pr_info("Passing boot info via sunxi SPL: script address = 0x%08X\n",
			script_address);
		aw_fel_write(usb, &script_address,
			sram_info->spl_addr + 0x18, sizeof(script_address));
	}
}

1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
static int aw_fel_get_endpoint(libusb_device_handle *usb)
{
	struct libusb_device *dev = libusb_get_device(usb);
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

	ret = libusb_get_active_config_descriptor(dev, &config);
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1388
				/* Test for bulk transfer endpoint */
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
					AW_USB_FEL_BULK_EP_IN = ep->bEndpointAddress;
				else
					AW_USB_FEL_BULK_EP_OUT = ep->bEndpointAddress;
			}
		}
	}

	libusb_free_config_descriptor(config);

	return 0;
}

1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
/*
 * This function stores a given entry point to the RVBAR address for CPU0,
 * and then writes the Reset Management Register to request a warm boot.
 * It is useful with some AArch64 transitions, e.g. when passing control to
 * ARM Trusted Firmware (ATF) during the boot process of Pine64.
 *
 * The code was inspired by
 * https://github.com/apritzel/u-boot/commit/fda6bd1bf285c44f30ea15c7e6231bf53c31d4a8
 */
void aw_rmr_request(libusb_device_handle *usb, uint32_t entry_point, bool aarch64)
{
	soc_sram_info *soc_info = aw_fel_get_sram_info(usb);
	if (!soc_info->rvbar_reg) {
		fprintf(stderr, "ERROR: Can't issue RMR request!\n"
			"RVBAR is not supported or unknown for your SoC (id=%04X).\n",
			soc_info->soc_id);
		return;
	}

	uint32_t rmr_mode = (1 << 1) | (aarch64 ? 1 : 0); /* RR, AA64 flag */
	uint32_t arm_code[] = {
		htole32(0xe59f0028), /* ldr        r0, [rvbar_reg]          */
		htole32(0xe59f1028), /* ldr        r1, [entry_point]        */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xf57ff04f), /* dsb        sy                       */
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe59f101c), /* ldr        r1, [rmr_mode]           */
		htole32(0xee1c0f50), /* mrc        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xe1800001), /* orr        r0, r0, r1               */
		htole32(0xee0c0f50), /* mcr        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe320f003), /* loop:      wfi                      */
		htole32(0xeafffffd), /* b          <loop>                   */

		htole32(soc_info->rvbar_reg),
		htole32(entry_point),
		htole32(rmr_mode)
	};
	/* scratch buffer setup: transfers ARM code and parameter values */
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	/* execute the thunk code (triggering a warm reset on the SoC) */
	pr_info("Store entry point 0x%08X to RVBAR 0x%08X, "
		"and request warm reset with RMR mode %u...",
		entry_point, soc_info->rvbar_reg, rmr_mode);
	aw_fel_execute(usb, soc_info->scratch_addr);
	pr_info(" done.\n");
}

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
/* private helper function, gets used for "write*" and "multi*" transfers */
static unsigned int file_upload(libusb_device_handle *handle, size_t count,
				size_t argc, char **argv, progress_cb_t progress)
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1473
	progress_start(progress, size); /* set total size and progress callback */
1474
1475
1476
1477
1478
1479
1480
1481

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
			aw_write_buffer(handle, buf, offset, size, true);

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1482
			/* If we transferred a script, try to inform U-Boot about its address. */
1483
1484
1485
1486
1487
1488
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
				pass_fel_information(handle, offset);
		}
		free(buf);
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1489
	return i; /* return number of files that were processed */
1490
1491
}

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
/* open libusb handle to desired FEL device */
static libusb_device_handle *open_fel_device(int busnum, int devnum,
		uint16_t vendor_id, uint16_t product_id)
{
	libusb_device_handle *result = NULL;

	if (busnum < 0 || devnum < 0) {
		/* With the default values (busnum -1, devnum -1) we don't care
		 * for a specific USB device; so let libusb open the first
		 * device that matches VID/PID.
		 */
		result = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
		if (!result) {
			switch (errno) {
			case EACCES:
				fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
				break;
			default:
				fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
				break;
			}
			exit(1);
		}
		return result;
	}

	/* look for specific bus and device number */
	pr_info("Selecting USB Bus %03d Device %03d\n", busnum, devnum);
	bool found = false;
	ssize_t rc, i;
	libusb_device **list;

	rc = libusb_get_device_list(NULL, &list);
1525
1526
	if (rc < 0)
		usb_error(rc, "libusb_get_device_list()", 1);
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
	for (i = 0; i < rc; i++) {
		if (libusb_get_bus_number(list[i]) == busnum
		    && libusb_get_device_address(list[i]) == devnum) {
			found = true; /* bus:devnum matched */
			struct libusb_device_descriptor desc;
			libusb_get_device_descriptor(list[i], &desc);
			if (desc.idVendor != vendor_id
			    || desc.idProduct != product_id) {
				fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
					"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
					vendor_id, product_id, desc.idVendor, desc.idProduct);
				exit(1);
			}
			/* open handle to this specific device (incrementing its refcount) */
			rc = libusb_open(list[i], &result);
1542
1543
			if (rc != 0)
				usb_error(rc, "libusb_open()", 1);
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
			break;
		}
	}
	libusb_free_device_list(list, true);

	if (!found) {
		fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
			busnum, devnum);
		exit(1);
	}
	return result;
}

1557
1558
int main(int argc, char **argv)
{
1559
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1560
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1561
1562
	libusb_device_handle *handle;
	int busnum = -1, devnum = -1;
1563
#if defined(__linux__)
1564
	int iface_detached = -1;
1565
#endif
1566
1567

	if (argc <= 1) {
1568
1569
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1570
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1571
			"	-d, --dev bus:devnum		Use specific USB bus and device number\n"
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1583
1584
1585
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1586
			"	reset64 address			RMR request for AArch64 warm boot\n"
1587
1588
			"	readl address			Read 32-bit value from device memory\n"
			"	writel address value		Write 32-bit value to device memory\n"
1589
			"	read address length file	Write memory contents into file\n"
1590
			"	write address file		Store file contents into memory\n"
1591
			"	write-with-progress addr file	\"write\" with progress bar\n"
1592
1593
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1594
1595
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1596
1597
1598
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1599
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1600
			"	ver[sion]			Show BROM version\n"
1601
			"	sid				Retrieve and output 128-bit SID key\n"
1602
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1603
			"	fill address length value	Fill memory\n"
1604
1605
			, argv[0]
		);
1606
		exit(0);
1607
1608
	}

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
	/* process all "prefix"-type arguments first */
	while (argc > 1) {
		if (strcmp(argv[1], "--verbose") == 0 || strcmp(argv[1], "-v") == 0)
			verbose = true;
		else if (strcmp(argv[1], "--progress") == 0 || strcmp(argv[1], "-p") == 0)
			pflag_active = true;
		else if (strncmp(argv[1], "--dev", 5) == 0 || strncmp(argv[1], "-d", 2) == 0) {
			char *dev_arg = argv[1];
			dev_arg += strspn(dev_arg, "-dev="); /* skip option chars, ignore '=' */
			if (*dev_arg == 0 && argc > 2) { /* at end of argument, use the next one instead */
				dev_arg = argv[2];
				argc -= 1;
				argv += 1;
			}
			if (sscanf(dev_arg, "%d:%d", &busnum, &devnum) != 2
			    || busnum <= 0 || devnum <= 0) {
				fprintf(stderr, "ERROR: Expected 'bus:devnum', got '%s'.\n", dev_arg);
				exit(1);
			}
		} else
			break; /* no valid (prefix) option detected, exit loop */
		argc -= 1;
		argv += 1;
1632
	}
1633

1634
1635
	int rc = libusb_init(NULL);
	assert(rc == 0);
1636
1637
	handle = open_fel_device(busnum, devnum, AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
	assert(handle != NULL);
1638
	rc = libusb_claim_interface(handle, 0);
1639
1640
1641
1642
1643
1644
1645
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
		libusb_detach_kernel_driver(handle, 0);
		iface_detached = 0;
		rc = libusb_claim_interface(handle, 0);
	}
#endif
1646
1647
	assert(rc == 0);

1648
1649
1650
1651
1652
	if (aw_fel_get_endpoint(handle)) {
		fprintf(stderr, "ERROR: Failed to get FEL mode endpoint addresses!\n");
		exit(1);
	}

1653
1654
	while (argc > 1 ) {
		int skip = 1;
1655

1656
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1657
1658
1659
1660
1661
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1662
1663
1664
1665
1666
1667
		} else if (strcmp(argv[1], "readl") == 0 && argc > 2) {
			printf("0x%08x\n", aw_fel_readl(handle, strtoul(argv[2], NULL, 0)));
			skip = 2;
		} else if (strcmp(argv[1], "writel") == 0 && argc > 3) {
			aw_fel_writel(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1668
		} else if (strncmp(argv[1], "exe", 3) == 0 && argc > 2) {
1669
1670
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
1671
1672
1673
1674
1675
		} else if (strcmp(argv[1], "reset64") == 0 && argc > 2) {
			aw_rmr_request(handle, strtoul(argv[2], NULL, 0), true);
			/* Cancel U-Boot autostart, and stop processing args */
			uboot_autostart = false;
			break;
1676
		} else if (strncmp(argv[1], "ver", 3) == 0) {
1677
			aw_fel_print_version(handle);
1678
1679
		} else if (strcmp(argv[1], "sid") == 0) {
			aw_fel_print_sid(handle);
1680
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1681
1682
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1683
1684
1685
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1686
1687
1688
1689
1690
1691
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1692
1693
1694
1695
1696
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1707
1708
1709
1710
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1711
1712
1713
1714
1715
1716
1717
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1718
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1719
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1720
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1721
1722
1723
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1724
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1725
1726
1727
1728
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1729
1730
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1731
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1732
			skip=2;
1733
1734
1735
1736
1737
1738
1739
1740
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1741
	/* auto-start U-Boot if requested (by the "uboot" command) */
1742
	if (uboot_autostart) {
1743
1744
1745
1746
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1747
	libusb_release_interface(handle, 0);
1748
1749
1750
1751
#if defined(__linux__)
	if (iface_detached >= 0)
		libusb_attach_kernel_driver(handle, iface_detached);
#endif
1752
1753
	libusb_close(handle);
	libusb_exit(NULL);
1754

1755
1756
	return 0;
}