fel.c 49.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/* Needs _BSD_SOURCE for htole and letoh  */
19
20
/* glibc 2.20+ also requires _DEFAULT_SOURCE */
#define _DEFAULT_SOURCE
21
#define _BSD_SOURCE
22
#define _NETBSD_SOURCE
23
24
25

#include <libusb.h>
#include <stdint.h>
26
#include <stdbool.h>
27
28
29
30
31
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
32
#include <stdarg.h>
33
#include <errno.h>
34
#include <unistd.h>
35
#include <sys/stat.h>
36

37
#include "endian_compat.h"
38
#include "progress.h"
Eric Molitor's avatar
Eric Molitor committed
39

40
41
42
static const uint16_t AW_USB_VENDOR_ID  = 0x1F3A;
static const uint16_t AW_USB_PRODUCT_ID = 0xEFE8;

43
44
45
46
47
48
49
50
51
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

52
53
54
55
56
57
58
59
60
61
62
struct aw_fel_version {
	char signature[8];
	uint32_t soc_id;	/* 0x00162300 */
	uint32_t unknown_0a;	/* 1 */
	uint16_t protocol;	/* 1 */
	uint8_t  unknown_12;	/* 0x44 */
	uint8_t  unknown_13;	/* 0x08 */
	uint32_t scratchpad;	/* 0x7e00 */
	uint32_t pad[2];	/* unused */
} __attribute__((packed));

63
64
65
static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

66
67
static int AW_USB_FEL_BULK_EP_OUT;
static int AW_USB_FEL_BULK_EP_IN;
68
static int timeout = 60000;
69
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
70
71
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
72
73
74
75
76
77
78
79
80
81

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
82

83
84
static const int AW_USB_MAX_BULK_SEND = 4 * 1024 * 1024; // 4 MiB per bulk request

85
86
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
		   size_t length, bool progress)
87
{
88
89
90
91
92
93
	/*
	 * With no progress notifications, we'll use the maximum chunk size.
	 * Otherwise, it's useful to lower the size (have more chunks) to get
	 * more frequent status updates. 128 KiB per request seem suitable.
	 */
	size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
94
95

	size_t chunk;
96
97
	int rc, sent;
	while (length > 0) {
98
99
		chunk = length < max_chunk ? length : max_chunk;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk, &sent, timeout);
100
		if (rc != 0) {
101
			fprintf(stderr, "libusb usb_bulk_send error %d\n", rc);
102
103
104
105
			exit(2);
		}
		length -= sent;
		data += sent;
106
107
108

		if (progress)
			progress_update(sent); // notification after each chunk
109
110
111
112
113
114
115
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
116
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
117
		if (rc != 0) {
118
			fprintf(stderr, "usb_bulk_recv error %d\n", rc);
119
120
121
122
123
124
125
			exit(2);
		}
		length -= recv;
		data += recv;
	}
}

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

166
167
void aw_send_usb_request(libusb_device_handle *usb, int type, int length)
{
168
169
170
171
172
173
174
	struct aw_usb_request req = {
		.signature = "AWUC",
		.request = htole16(type),
		.length = htole32(length),
		.unknown1 = htole32(0x0c000000)
	};
	req.length2 = req.length;
175
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, &req, sizeof(req), false);
176
177
178
179
180
181
182
183
184
}

void aw_read_usb_response(libusb_device_handle *usb)
{
	char buf[13];
	usb_bulk_recv(usb, AW_USB_FEL_BULK_EP_IN, &buf, sizeof(buf));
	assert(strcmp(buf, "AWUS") == 0);
}

185
186
void aw_usb_write(libusb_device_handle *usb, const void *data, size_t len,
		  bool progress)
187
188
{
	aw_send_usb_request(usb, AW_USB_WRITE, len);
189
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, data, len, progress);
190
191
192
193
194
195
	aw_read_usb_response(usb);
}

void aw_usb_read(libusb_device_handle *usb, const void *data, size_t len)
{
	aw_send_usb_request(usb, AW_USB_READ, len);
196
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_IN, data, len, false);
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
	aw_read_usb_response(usb);
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

void aw_send_fel_request(libusb_device_handle *usb, int type, uint32_t addr, uint32_t length)
{
214
215
216
217
218
	struct aw_fel_request req = {
		.request = htole32(type),
		.address = htole32(addr),
		.length = htole32(length)
	};
219
	aw_usb_write(usb, &req, sizeof(req), false);
220
221
222
223
224
225
226
227
}

void aw_read_fel_status(libusb_device_handle *usb)
{
	char buf[8];
	aw_usb_read(usb, &buf, sizeof(buf));
}

228
void aw_fel_get_version(libusb_device_handle *usb, struct aw_fel_version *buf)
229
230
{
	aw_send_fel_request(usb, AW_FEL_VERSION, 0, 0);
231
	aw_usb_read(usb, buf, sizeof(*buf));
232
233
	aw_read_fel_status(usb);

234
235
236
237
238
239
240
241
242
243
244
245
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

void aw_fel_print_version(libusb_device_handle *usb)
{
	struct aw_fel_version buf;
	aw_fel_get_version(usb, &buf);
246

Henrik Nordstrom's avatar
Henrik Nordstrom committed
247
	const char *soc_name="unknown";
248
	switch (buf.soc_id) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
249
250
251
	case 0x1623: soc_name="A10";break;
	case 0x1625: soc_name="A13";break;
	case 0x1633: soc_name="A31";break;
252
	case 0x1651: soc_name="A20";break;
Chen-Yu Tsai's avatar
Chen-Yu Tsai committed
253
	case 0x1650: soc_name="A23";break;
Chen-Yu Tsai's avatar
Chen-Yu Tsai committed
254
	case 0x1639: soc_name="A80";break;
255
	case 0x1667: soc_name="A33";break;
256
	case 0x1673: soc_name="A83T";break;
257
	case 0x1680: soc_name="H3";break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
258
259
	}

260
261
262
263
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
264
265
266
267
268
269
270
271
272
273
274
275
}

void aw_fel_read(libusb_device_handle *usb, uint32_t offset, void *buf, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_READ, offset, len);
	aw_usb_read(usb, buf, len);
	aw_read_fel_status(usb);
}

void aw_fel_write(libusb_device_handle *usb, void *buf, uint32_t offset, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
276
	aw_usb_write(usb, buf, len, false);
277
278
279
280
281
282
283
284
285
	aw_read_fel_status(usb);
}

void aw_fel_execute(libusb_device_handle *usb, uint32_t offset)
{
	aw_send_fel_request(usb, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(usb);
}

286
287
288
289
290
291
292
293
/*
 * This function is a higher-level wrapper for the FEL write functionality.
 * Unlike aw_fel_write() above - which is reserved for internal use - this
 * routine is meant to be called from "user" code, and supports (= allows)
 * progress callbacks.
 * The return value represents elapsed time in seconds (needed for execution).
 */
double aw_write_buffer(libusb_device_handle *usb, void *buf, uint32_t offset,
294
		       size_t len, bool progress)
295
296
297
298
299
300
301
302
303
304
305
306
307
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
			offset, offset + len,
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
308
	aw_usb_write(usb, buf, len, progress);
309
310
311
312
	aw_read_fel_status(usb);
	return gettime() - start;
}

313
314
315
316
317
318
319
320
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
		printf("%08lx: ",(long int)offset + j);
		for (i = 0; i < 16; i++) {
321
			if (j + i < size)
322
				printf("%02x ", buf[j+i]);
323
			else
324
325
				printf("__ ");
		}
326
		putchar(' ');
327
		for (i = 0; i < 16; i++) {
328
329
330
331
			if (j + i >= size)
				putchar('.');
			else
				putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
332
		}
333
		putchar('\n');
334
335
	}
}
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

352
353
354
355
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
356
	if (!out) {
357
		perror("Failed to open output file");
358
359
		exit(1);
	}
360
361
362
363
364
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

365
366
367
368
369
370
371
372
373
374
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
375
	if (!in) {
376
		perror("Failed to open input file");
377
378
		exit(1);
	}
379
380
	
	while(1) {
381
382
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
383
		offset += n;
384
		if (n < len)
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

void aw_fel_hexdump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	hexdump(buf, offset, size);
}

void aw_fel_dump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	fwrite(buf, size, 1, stdout);
}
Henrik Nordstrom's avatar
Henrik Nordstrom committed
409
void aw_fel_fill(libusb_device_handle *usb, uint32_t offset, size_t size, unsigned char value)
410
411
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
412
	memset(buf, value, size);
413
	aw_write_buffer(usb, buf, offset, size, false);
414
415
}

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
 * The 'sram_swap_buffers' structure is used to describe information about
 * two buffers in SRAM, the content of which needs to be exchanged before
 * calling the U-Boot SPL code and then exchanged again before returning
 * control back to the FEL code from the BROM.
 */

typedef struct {
	uint32_t buf1; /* BROM buffer */
	uint32_t buf2; /* backup storage location */
	uint32_t size; /* buffer size */
} sram_swap_buffers;

/*
 * Each SoC variant may have its own list of memory buffers to be exchanged
 * and the information about the placement of the thunk code, which handles
 * the transition of execution from the BROM FEL code to the U-Boot SPL and
 * back.
 *
 * Note: the entries in the 'swap_buffers' tables need to be sorted by 'buf1'
 * addresses. And the 'buf1' addresses are the BROM data buffers, while 'buf2'
 * addresses are the intended backup locations.
438
439
440
441
442
443
444
445
446
447
448
449
 *
 * Also for performance reasons, we optionally want to have MMU enabled with
 * optimal section attributes configured (the code from the BROM should use
 * I-cache, writing data to the DRAM area should use write combining). The
 * reason is that the BROM FEL protocol implementation moves data using the
 * CPU somewhere on the performance critical path when transferring data over
 * USB. The older SoC variants (A10/A13/A20/A31/A23) already have MMU enabled
 * and we only need to adjust section attributes. The BROM in newer SoC variants
 * (A33/A83T/H3) doesn't enable MMU anymore, so we need to find some 16K of
 * spare space in SRAM to place the translation table there and specify it as
 * the 'mmu_tt_addr' field in the 'soc_sram_info' structure. The 'mmu_tt_addr'
 * address must be 16K aligned.
450
451
 */
typedef struct {
452
	uint32_t           soc_id;       /* ID of the SoC */
453
	uint32_t           spl_addr;     /* SPL load address */
454
455
456
457
	uint32_t           scratch_addr; /* A safe place to upload & run code */
	uint32_t           thunk_addr;   /* Address of the thunk code */
	uint32_t           thunk_size;   /* Maximal size of the thunk code */
	uint32_t           needs_l2en;   /* Set the L2EN bit */
458
	uint32_t           mmu_tt_addr;  /* MMU translation table address */
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
	sram_swap_buffers *swap_buffers;
} soc_sram_info;

/*
 * The FEL code from BROM in A10/A13/A20 sets up two stacks for itself. One
 * at 0x2000 (and growing down) for the IRQ handler. And another one at 0x7000
 * (and also growing down) for the regular code. In order to use the whole
 * 32 KiB in the A1/A2 sections of SRAM, we need to temporarily move these
 * stacks elsewhere. And the addresses above 0x7000 are also a bit suspicious,
 * so it might be safer to backup the 0x7000-0x8000 area too. On A10/A13/A20
 * we can use the SRAM section A3 (0x8000) for this purpose.
 */
sram_swap_buffers a10_a13_a20_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x8000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x8800, .size = 0x8000 - 0x5C00 },
	{ 0 }  /* End of the table */
};

/*
 * A31 is very similar to A10/A13/A20, except that it has no SRAM at 0x8000.
 * So we use the SRAM section at 0x44000 instead. This is the memory, which
 * is normally shared with the OpenRISC core (should we do an extra check to
 * ensure that this core is powered off and can't interfere?).
 */
sram_swap_buffers a31_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x44000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x44800, .size = 0x8000 - 0x5C00 },
	{ 0 }  /* End of the table */
};

489
490
491
492
493
494
495
496
497
498
/*
 * A80 has 40KiB SRAM A1 at 0x10000 where the SPL has to be loaded to. The
 * secure SRAM B at 0x20000 is used as backup area for FEL stacks and data.
 */
sram_swap_buffers a80_sram_swap_buffers[] = {
	{ .buf1 = 0x11800, .buf2 = 0x20000, .size = 0x800 },
	{ .buf1 = 0x15400, .buf2 = 0x20800, .size = 0x18000 - 0x15400 },
	{ 0 }  /* End of the table */
};

499
500
501
soc_sram_info soc_sram_info_table[] = {
	{
		.soc_id       = 0x1623, /* Allwinner A10 */
502
		.scratch_addr = 0x2000,
503
504
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
505
		.needs_l2en   = 1,
506
507
508
	},
	{
		.soc_id       = 0x1625, /* Allwinner A13 */
509
		.scratch_addr = 0x2000,
510
511
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
512
		.needs_l2en   = 1,
513
514
515
	},
	{
		.soc_id       = 0x1651, /* Allwinner A20 */
516
		.scratch_addr = 0x2000,
517
518
519
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
	},
Hans de Goede's avatar
Hans de Goede committed
520
521
	{
		.soc_id       = 0x1650, /* Allwinner A23 */
522
		.scratch_addr = 0x2000,
Hans de Goede's avatar
Hans de Goede committed
523
524
525
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
526
527
	{
		.soc_id       = 0x1633, /* Allwinner A31 */
528
		.scratch_addr = 0x2000,
529
530
531
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
532
533
	{
		.soc_id       = 0x1667, /* Allwinner A33 */
534
		.scratch_addr = 0x2000,
535
536
537
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
538
539
	{
		.soc_id       = 0x1673, /* Allwinner A83T */
540
		.scratch_addr = 0x2000,
541
542
543
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
544
545
	{
		.soc_id       = 0x1680, /* Allwinner H3 */
546
		.scratch_addr = 0x2000,
547
		.mmu_tt_addr  = 0x44000,
548
549
550
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
551
552
553
554
555
556
557
	{
		.soc_id       = 0x1639, /* Allwinner A80 */
		.spl_addr     = 0x10000,
		.scratch_addr = 0x12000,
		.thunk_addr   = 0x23400, .thunk_size = 0x200,
		.swap_buffers = a80_sram_swap_buffers,
	},
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
	{ 0 } /* End of the table */
};

/*
 * This generic record assumes BROM with similar properties to A10/A13/A20/A31,
 * but no extra SRAM sections beyond 0x8000. It also assumes that the IRQ
 * handler stack usage never exceeds 0x400 bytes.
 *
 * The users may or may not hope that the 0x7000-0x8000 area is also unused
 * by the BROM and re-purpose it for the SPL stack.
 *
 * The size limit for the ".text + .data" sections is ~21 KiB.
 */
sram_swap_buffers generic_sram_swap_buffers[] = {
	{ .buf1 = 0x01C00, .buf2 = 0x5800, .size = 0x400 },
	{ 0 }  /* End of the table */
};

soc_sram_info generic_sram_info = {
577
	.scratch_addr = 0x2000,
578
579
580
581
582
583
	.thunk_addr   = 0x5680, .thunk_size = 0x180,
	.swap_buffers = generic_sram_swap_buffers,
};

soc_sram_info *aw_fel_get_sram_info(libusb_device_handle *usb)
{
584
585
586
587
588
589
590
591
592
593
594
595
596
	/* persistent sram_info, retrieves result pointer once and caches it */
	static soc_sram_info *result = NULL;
	if (result == NULL) {
		int i;

		struct aw_fel_version buf;
		aw_fel_get_version(usb, &buf);

		for (i = 0; soc_sram_info_table[i].swap_buffers; i++)
			if (soc_sram_info_table[i].soc_id == buf.soc_id) {
				result = &soc_sram_info_table[i];
				break;
			}
597

598
599
600
601
602
603
604
		if (!result) {
			printf("Warning: no 'soc_sram_info' data for your SoC (id=%04X)\n",
			       buf.soc_id);
			result = &generic_sram_info;
		}
	}
	return result;
605
606
607
608
609
610
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

611
612
613
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
uint32_t aw_read_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 12, &val, sizeof(val));
	return le32toh(val);
}

void aw_write_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
}

658
void aw_enable_l2_cache(libusb_device_handle *usb, soc_sram_info *sram_info)
659
660
661
662
663
664
665
666
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

667
668
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
669
670
}

671
672
void aw_get_stackinfo(libusb_device_handle *usb, soc_sram_info *sram_info,
                      uint32_t *sp_irq, uint32_t *sp)
673
674
675
676
677
678
679
680
681
682
683
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

684
685
686
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x10, results, 8);
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

701
702
703
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x24, results, 8);
704
705
706
707
708
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

709
uint32_t aw_get_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info)
710
{
711
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0);
712
713
}

714
715
716
717
718
719
720
721
722
723
uint32_t aw_get_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2);
}

uint32_t aw_get_dacr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0);
}

724
uint32_t aw_get_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info)
725
{
726
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0);
727
728
}

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
void aw_set_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbr0)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0, ttbr0);
}

void aw_set_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbcr)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2, ttbcr);
}

void aw_set_dacr(libusb_device_handle *usb, soc_sram_info *sram_info,
		 uint32_t dacr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0, dacr);
}

void aw_set_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t sctlr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0, sctlr);
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

780
781
uint32_t *aw_backup_and_disable_mmu(libusb_device_handle *usb,
                                    soc_sram_info *sram_info)
782
{
783
	uint32_t *tt = NULL;
784
	uint32_t sctlr, ttbr0, ttbcr, dacr;
785
786
787
	uint32_t i;

	uint32_t arm_code[] = {
788
		/* Disable I-cache, MMU and branch prediction */
789
790
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
791
792
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
793
794
795
796
797
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

798
799
800
801
802
803
804
805
806
807
808
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

809
	/* Basically, ignore M/Z/I/V bits and expect no TEX remap */
810
	sctlr = aw_get_sctlr(usb, sram_info);
811
	if ((sctlr & ~((0x7 << 11) | 1)) != 0x00C50078) {
812
813
814
815
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

816
	if (!(sctlr & 1)) {
817
818
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
819
820
	}

821
	dacr = aw_get_dacr(usb, sram_info);
822
823
824
825
826
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

827
	ttbcr = aw_get_ttbcr(usb, sram_info);
828
829
	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
830
831
832
		exit(1);
	}

833
	ttbr0 = aw_get_ttbr0(usb, sram_info);
834
835
836
837
838
	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

839
	tt = malloc(16 * 1024);
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
	aw_fel_read(usb, ttbr0, tt, 16 * 1024);
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

857
	pr_info("Disabling I-cache, MMU and branch prediction...");
858
859
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
860
861
862
863
864
	pr_info(" done.\n");

	return tt;
}

865
866
867
void aw_restore_and_enable_mmu(libusb_device_handle *usb,
                               soc_sram_info *sram_info,
                               uint32_t *tt)
868
869
{
	uint32_t i;
870
	uint32_t ttbr0 = aw_get_ttbr0(usb, sram_info);
871
872

	uint32_t arm_code[] = {
873
874
875
876
877
878
879
880
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
881
882
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
883
884
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
885
886
887
888
889
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

906
907
908
909
910
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
	aw_fel_write(usb, tt, ttbr0, 16 * 1024);

911
	pr_info("Enabling I-cache, MMU and branch prediction...");
912
913
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
914
915
916
917
918
	pr_info(" done.\n");

	free(tt);
}

919
920
921
922
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
923
#define SPL_LEN_LIMIT 0x8000
924

925
926
927
928
929
930
931
932
void aw_fel_write_and_execute_spl(libusb_device_handle *usb,
				  uint8_t *buf, size_t len)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
933
	uint32_t sp, sp_irq;
934
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
935
	uint32_t *buf32 = (uint32_t *)buf;
936
	uint32_t cur_addr = sram_info->spl_addr;
937
	uint32_t *tt = NULL;
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

	if (!sram_info || !sram_info->swap_buffers) {
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

966
967
	if (sram_info->needs_l2en) {
		pr_info("Enabling the L2 cache\n");
968
		aw_enable_l2_cache(usb, sram_info);
969
970
	}

971
	aw_get_stackinfo(usb, sram_info, &sp_irq, &sp);
972
973
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

974
	tt = aw_backup_and_disable_mmu(usb, sram_info);
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
	if (!tt && sram_info->mmu_tt_addr) {
		if (sram_info->mmu_tt_addr & 0x3FFF) {
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
		        sram_info->mmu_tt_addr);
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
		aw_set_dacr(usb, sram_info, 0x55555555);
		aw_set_ttbcr(usb, sram_info, 0x00000000);
		aw_set_ttbr0(usb, sram_info, sram_info->mmu_tt_addr);
		tt = aw_generate_mmu_translation_table();
	}
997

998
999
	swap_buffers = sram_info->swap_buffers;
	for (i = 0; swap_buffers[i].size; i++) {
1000
1001
1002
1003
1004
		if ((swap_buffers[i].buf2 >= sram_info->spl_addr) &&
		    (swap_buffers[i].buf2 < sram_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - sram_info->spl_addr;
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
1005
1006
			if (tmp > len)
				tmp = len;
1007
1008
			aw_fel_write(usb, buf, cur_addr, tmp);
			cur_addr += tmp;
1009
1010
1011
			buf += tmp;
			len -= tmp;
		}
1012
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
1013
1014
1015
1016
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
			aw_fel_write(usb, buf, swap_buffers[i].buf2, tmp);
1017
			cur_addr += tmp;
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
	if (sram_info->thunk_addr < spl_len_limit)
		spl_len_limit = sram_info->thunk_addr;

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
1035
		aw_fel_write(usb, buf, cur_addr, len);
1036

1037
1038
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(sram_info->spl_addr) +
		     (i + 1) * sizeof(*swap_buffers);
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

	if (thunk_size > sram_info->thunk_size) {
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
			(int)sizeof(fel_to_spl_thunk), sram_info->thunk_size);
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
1049
1050
	       &sram_info->spl_addr, sizeof(sram_info->spl_addr));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
1051
1052
1053
1054
1055
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

1056
	pr_info("=> Executing the SPL...");
1057
1058
	aw_fel_write(usb, thunk_buf, sram_info->thunk_addr, thunk_size);
	aw_fel_execute(usb, sram_info->thunk_addr);
1059
	pr_info(" done.\n");
1060
1061
1062
1063
1064
1065
1066

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
1067
	aw_fel_read(usb, sram_info->spl_addr + 4, header_signature, 8);
1068
1069
1070
1071
1072
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
1073

1074
1075
	/* re-enable the MMU if it was enabled by BROM */
	if(tt != NULL)
1076
		aw_restore_and_enable_mmu(usb, sram_info, tt);
1077
1078
}

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
void aw_fel_write_uboot_image(libusb_device_handle *usb,
		uint8_t *buf, size_t len)
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
1107
1108
		exit(1);
	}
1109
1110
1111
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
1112
1113
1114
1115
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
1116
	if (data_size != len - HEADER_SIZE) {
1117
		fprintf(stderr, "U-Boot image data size mismatch: "
1118
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
1119
1120
1121
1122
1123
1124
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1125
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

1137
	aw_write_buffer(usb, buf + HEADER_SIZE, load_addr, data_size, false);
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
void aw_fel_process_spl_and_uboot(libusb_device_handle *usb,
		const char *filename)
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
	aw_fel_write_and_execute_spl(usb, buf, size);
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
1156
1157
	if (size > SPL_LEN_LIMIT)
		aw_fel_write_uboot_image(usb, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
1158
	free(buf);
1159
1160
}

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
1171
bool have_sunxi_spl(libusb_device_handle *usb, uint32_t spl_addr)
1172
1173
1174
1175
1176
1177
1178
{
	uint8_t spl_signature[4];

	aw_fel_read(usb, spl_addr + 0x14,
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
1179
		return false; /* signature mismatch, no "sunxi" SPL */
1180
1181
1182
1183
1184
1185

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
1186
		return false;
1187
1188
1189
1190
1191
1192
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
1193
		return false;
1194
	}
1195
	return true; /* sunxi SPL and suitable version */
1196
1197
1198
1199
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1200
1201
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
 */
void pass_fel_information(libusb_device_handle *usb, uint32_t script_address)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);

	/* write something _only_ if we have a suitable SPL header */
	if (have_sunxi_spl(usb, sram_info->spl_addr)) {
		pr_info("Passing boot info via sunxi SPL: script address = 0x%08X\n",
			script_address);
		aw_fel_write(usb, &script_address,
			sram_info->spl_addr + 0x18, sizeof(script_address));
	}
}

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
static int aw_fel_get_endpoint(libusb_device_handle *usb)
{
	struct libusb_device *dev = libusb_get_device(usb);
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

	ret = libusb_get_active_config_descriptor(dev, &config);
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

				// Test for bulk transfer endpoint
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
					AW_USB_FEL_BULK_EP_IN = ep->bEndpointAddress;
				else
					AW_USB_FEL_BULK_EP_OUT = ep->bEndpointAddress;
			}
		}
	}

	libusb_free_config_descriptor(config);

	return 0;
}

1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
/* private helper function, gets used for "write*" and "multi*" transfers */
static unsigned int file_upload(libusb_device_handle *handle, size_t count,
				size_t argc, char **argv, progress_cb_t progress)
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

	progress_start(progress, size); // set total size and progress callback

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
			aw_write_buffer(handle, buf, offset, size, true);

			// If we transferred a script, try to inform U-Boot about its address.
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
				pass_fel_information(handle, offset);
		}
		free(buf);
	}

	return i; // return number of files that were processed
}

1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
/* open libusb handle to desired FEL device */
static libusb_device_handle *open_fel_device(int busnum, int devnum,
		uint16_t vendor_id, uint16_t product_id)
{
	libusb_device_handle *result = NULL;

	if (busnum < 0 || devnum < 0) {
		/* With the default values (busnum -1, devnum -1) we don't care
		 * for a specific USB device; so let libusb open the first
		 * device that matches VID/PID.
		 */
		result = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
		if (!result) {
			switch (errno) {
			case EACCES:
				fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
				break;
			default:
				fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
				break;
			}
			exit(1);
		}
		return result;
	}

	/* look for specific bus and device number */
	pr_info("Selecting USB Bus %03d Device %03d\n", busnum, devnum);
	bool found = false;
	ssize_t rc, i;
	libusb_device **list;

	rc = libusb_get_device_list(NULL, &list);
	if (rc < 0) {
		fprintf(stderr, "libusb_get_device_list() ERROR: %s\n",
			libusb_strerror(rc));
		exit(1);
	}
	for (i = 0; i < rc; i++) {
		if (libusb_get_bus_number(list[i]) == busnum
		    && libusb_get_device_address(list[i]) == devnum) {
			found = true; /* bus:devnum matched */
			struct libusb_device_descriptor desc;
			libusb_get_device_descriptor(list[i], &desc);
			if (desc.idVendor != vendor_id
			    || desc.idProduct != product_id) {
				fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
					"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
					vendor_id, product_id, desc.idVendor, desc.idProduct);
				exit(1);
			}
			/* open handle to this specific device (incrementing its refcount) */
			rc = libusb_open(list[i], &result);
			if (rc != 0) {
				fprintf(stderr, "libusb_open() ERROR: %s\n",
					libusb_strerror(rc));
				exit(1);
			}
			break;
		}
	}
	libusb_free_device_list(list, true);

	if (!found) {
		fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
			busnum, devnum);
		exit(1);
	}
	return result;
}

1362
1363
int main(int argc, char **argv)
{
1364
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1365
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1366
1367
	libusb_device_handle *handle;
	int busnum = -1, devnum = -1;
1368
	int iface_detached = -1;
1369
1370

	if (argc <= 1) {
1371
1372
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1373
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1374
			"	-d, --dev bus:devnum		Use specific USB bus and device number\n"
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1386
1387
1388
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1389
			"	read address length file	Write memory contents into file\n"
1390
			"	write address file		Store file contents into memory\n"
1391
			"	write-with-progress addr file	\"write\" with progress bar\n"
1392
1393
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1394
1395
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1396
1397
1398
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1399
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1400
1401
			"	ver[sion]			Show BROM version\n"
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1402
			"	fill address length value	Fill memory\n"
1403
1404
			, argv[0]
		);
1405
		exit(0);
1406
1407
	}

1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
	/* process all "prefix"-type arguments first */
	while (argc > 1) {
		if (strcmp(argv[1], "--verbose") == 0 || strcmp(argv[1], "-v") == 0)
			verbose = true;
		else if (strcmp(argv[1], "--progress") == 0 || strcmp(argv[1], "-p") == 0)
			pflag_active = true;
		else if (strncmp(argv[1], "--dev", 5) == 0 || strncmp(argv[1], "-d", 2) == 0) {
			char *dev_arg = argv[1];
			dev_arg += strspn(dev_arg, "-dev="); /* skip option chars, ignore '=' */
			if (*dev_arg == 0 && argc > 2) { /* at end of argument, use the next one instead */
				dev_arg = argv[2];
				argc -= 1;
				argv += 1;
			}
			if (sscanf(dev_arg, "%d:%d", &busnum, &devnum) != 2
			    || busnum <= 0 || devnum <= 0) {
				fprintf(stderr, "ERROR: Expected 'bus:devnum', got '%s'.\n", dev_arg);
				exit(1);
			}
		} else
			break; /* no valid (prefix) option detected, exit loop */
		argc -= 1;
		argv += 1;
1431
	}
1432

1433
1434
	int rc = libusb_init(NULL);
	assert(rc == 0);
1435
1436
	handle = open_fel_device(busnum, devnum, AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
	assert(handle != NULL);
1437
	rc = libusb_claim_interface(handle, 0);
1438
1439
1440
1441
1442
1443
1444
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
		libusb_detach_kernel_driver(handle, 0);
		iface_detached = 0;
		rc = libusb_claim_interface(handle, 0);
	}
#endif
1445
1446
	assert(rc == 0);

1447
1448
1449
1450
1451
	if (aw_fel_get_endpoint(handle)) {
		fprintf(stderr, "ERROR: Failed to get FEL mode endpoint addresses!\n");
		exit(1);
	}

1452
1453
	while (argc > 1 ) {
		int skip = 1;
1454

1455
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1456
1457
1458
1459
1460
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1461
		} else if (strncmp(argv[1], "exe", 3) == 0 && argc > 2) {
1462
1463
1464
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
		} else if (strncmp(argv[1], "ver", 3) == 0 && argc > 1) {
1465
			aw_fel_print_version(handle);
1466
1467
			skip=1;
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1468
1469
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1470
1471
1472
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1473
1474
1475
1476
1477
1478
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1479
1480
1481
1482
1483
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1494
1495
1496
1497
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1498
1499
1500
1501
1502
1503
1504
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1505
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1506
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1507
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1508
1509
1510
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1511
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1512
1513
1514
1515
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1516
1517
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1518
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1519
			skip=2;
1520
1521
1522
1523
1524
1525
1526
1527
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

1528
	// auto-start U-Boot if requested (by the "uboot" command)
1529
	if (uboot_autostart) {
1530
1531
1532
1533
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1534
	libusb_release_interface(handle, 0);
1535
1536
1537
1538
#if defined(__linux__)
	if (iface_detached >= 0)
		libusb_attach_kernel_driver(handle, iface_detached);
#endif
1539
1540
	libusb_close(handle);
	libusb_exit(NULL);
1541

1542
1543
	return 0;
}