/* * Generic binary BCH encoding/decoding library * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Copyright © 2011 Parrot S.A. * * Author: Ivan Djelic * * Description: * * This library provides runtime configurable encoding/decoding of binary * Bose-Chaudhuri-Hocquenghem (BCH) codes. * * Call init_bch to get a pointer to a newly allocated bch_control structure for * the given m (Galois field order), t (error correction capability) and * (optional) primitive polynomial parameters. * * Call encode_bch to compute and store ecc parity bytes to a given buffer. * Call decode_bch to detect and locate errors in received data. * * On systems supporting hw BCH features, intermediate results may be provided * to decode_bch in order to skip certain steps. See decode_bch() documentation * for details. * * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of * parameters m and t; thus allowing extra compiler optimizations and providing * better (up to 2x) encoding performance. Using this option makes sense when * (m,t) are fixed and known in advance, e.g. when using BCH error correction * on a particular NAND flash device. * * Algorithmic details: * * Encoding is performed by processing 32 input bits in parallel, using 4 * remainder lookup tables. * * The final stage of decoding involves the following internal steps: * a. Syndrome computation * b. Error locator polynomial computation using Berlekamp-Massey algorithm * c. Error locator root finding (by far the most expensive step) * * In this implementation, step c is not performed using the usual Chien search. * Instead, an alternative approach described in [1] is used. It consists in * factoring the error locator polynomial using the Berlekamp Trace algorithm * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial * solving techniques [2] are used. The resulting algorithm, called BTZ, yields * much better performance than Chien search for usual (m,t) values (typically * m >= 13, t < 32, see [1]). * * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields * of characteristic 2, in: Western European Workshop on Research in Cryptology * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. */ #include #include #include #include #include #include #include "portable_endian.h" #if defined(CONFIG_BCH_CONST_PARAMS) #define GF_M(_p) (CONFIG_BCH_CONST_M) #define GF_T(_p) (CONFIG_BCH_CONST_T) #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) #else #define GF_M(_p) ((_p)->m) #define GF_T(_p) ((_p)->t) #define GF_N(_p) ((_p)->n) #endif #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) #ifndef dbg #define dbg(_fmt, args...) do {} while (0) #endif #define cpu_to_be32 htobe32 #define kfree free #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) #define BCH_PRIMITIVE_POLY 0x5803 struct image_info { int ecc_strength; int ecc_step_size; int page_size; int oob_size; int usable_page_size; int eraseblock_size; int scramble; int boot0; off_t offset; const char *source; const char *dest; }; /** * struct bch_control - BCH control structure * @m: Galois field order * @n: maximum codeword size in bits (= 2^m-1) * @t: error correction capability in bits * @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t) * @ecc_bytes: ecc max size (m*t bits) in bytes * @a_pow_tab: Galois field GF(2^m) exponentiation lookup table * @a_log_tab: Galois field GF(2^m) log lookup table * @mod8_tab: remainder generator polynomial lookup tables * @ecc_buf: ecc parity words buffer * @ecc_buf2: ecc parity words buffer * @xi_tab: GF(2^m) base for solving degree 2 polynomial roots * @syn: syndrome buffer * @cache: log-based polynomial representation buffer * @elp: error locator polynomial * @poly_2t: temporary polynomials of degree 2t */ struct bch_control { unsigned int m; unsigned int n; unsigned int t; unsigned int ecc_bits; unsigned int ecc_bytes; /* private: */ uint16_t *a_pow_tab; uint16_t *a_log_tab; uint32_t *mod8_tab; uint32_t *ecc_buf; uint32_t *ecc_buf2; unsigned int *xi_tab; unsigned int *syn; int *cache; struct gf_poly *elp; struct gf_poly *poly_2t[4]; }; static int fls(int x) { int r = 32; if (!x) return 0; if (!(x & 0xffff0000u)) { x <<= 16; r -= 16; } if (!(x & 0xff000000u)) { x <<= 8; r -= 8; } if (!(x & 0xf0000000u)) { x <<= 4; r -= 4; } if (!(x & 0xc0000000u)) { x <<= 2; r -= 2; } if (!(x & 0x80000000u)) { x <<= 1; r -= 1; } return r; } /* * represent a polynomial over GF(2^m) */ struct gf_poly { unsigned int deg; /* polynomial degree */ unsigned int c[0]; /* polynomial terms */ }; /* given its degree, compute a polynomial size in bytes */ #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) /* polynomial of degree 1 */ struct gf_poly_deg1 { struct gf_poly poly; unsigned int c[2]; }; /* * same as encode_bch(), but process input data one byte at a time */ static void encode_bch_unaligned(struct bch_control *bch, const unsigned char *data, unsigned int len, uint32_t *ecc) { int i; const uint32_t *p; const int l = BCH_ECC_WORDS(bch)-1; while (len--) { p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); for (i = 0; i < l; i++) ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); ecc[l] = (ecc[l] << 8)^(*p); } } /* * convert ecc bytes to aligned, zero-padded 32-bit ecc words */ static void load_ecc8(struct bch_control *bch, uint32_t *dst, const uint8_t *src) { uint8_t pad[4] = {0, 0, 0, 0}; unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; for (i = 0; i < nwords; i++, src += 4) dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; } /* * convert 32-bit ecc words to ecc bytes */ static void store_ecc8(struct bch_control *bch, uint8_t *dst, const uint32_t *src) { uint8_t pad[4]; unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; for (i = 0; i < nwords; i++) { *dst++ = (src[i] >> 24); *dst++ = (src[i] >> 16) & 0xff; *dst++ = (src[i] >> 8) & 0xff; *dst++ = (src[i] >> 0) & 0xff; } pad[0] = (src[nwords] >> 24); pad[1] = (src[nwords] >> 16) & 0xff; pad[2] = (src[nwords] >> 8) & 0xff; pad[3] = (src[nwords] >> 0) & 0xff; memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); } /** * encode_bch - calculate BCH ecc parity of data * @bch: BCH control structure * @data: data to encode * @len: data length in bytes * @ecc: ecc parity data, must be initialized by caller * * The @ecc parity array is used both as input and output parameter, in order to * allow incremental computations. It should be of the size indicated by member * @ecc_bytes of @bch, and should be initialized to 0 before the first call. * * The exact number of computed ecc parity bits is given by member @ecc_bits of * @bch; it may be less than m*t for large values of t. */ static void encode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, uint8_t *ecc) { const unsigned int l = BCH_ECC_WORDS(bch)-1; unsigned int i, mlen; unsigned long m; uint32_t w, r[l+1]; const uint32_t * const tab0 = bch->mod8_tab; const uint32_t * const tab1 = tab0 + 256*(l+1); const uint32_t * const tab2 = tab1 + 256*(l+1); const uint32_t * const tab3 = tab2 + 256*(l+1); const uint32_t *pdata, *p0, *p1, *p2, *p3; if (ecc) { /* load ecc parity bytes into internal 32-bit buffer */ load_ecc8(bch, bch->ecc_buf, ecc); } else { memset(bch->ecc_buf, 0, sizeof(r)); } /* process first unaligned data bytes */ m = ((unsigned long)data) & 3; if (m) { mlen = (len < (4-m)) ? len : 4-m; encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); data += mlen; len -= mlen; } /* process 32-bit aligned data words */ pdata = (uint32_t *)data; mlen = len/4; data += 4*mlen; len -= 4*mlen; memcpy(r, bch->ecc_buf, sizeof(r)); /* * split each 32-bit word into 4 polynomials of weight 8 as follows: * * 31 ...24 23 ...16 15 ... 8 7 ... 0 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt * tttttttt mod g = r0 (precomputed) * zzzzzzzz 00000000 mod g = r1 (precomputed) * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 */ while (mlen--) { /* input data is read in big-endian format */ w = r[0]^cpu_to_be32(*pdata++); p0 = tab0 + (l+1)*((w >> 0) & 0xff); p1 = tab1 + (l+1)*((w >> 8) & 0xff); p2 = tab2 + (l+1)*((w >> 16) & 0xff); p3 = tab3 + (l+1)*((w >> 24) & 0xff); for (i = 0; i < l; i++) r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; r[l] = p0[l]^p1[l]^p2[l]^p3[l]; } memcpy(bch->ecc_buf, r, sizeof(r)); /* process last unaligned bytes */ if (len) encode_bch_unaligned(bch, data, len, bch->ecc_buf); /* store ecc parity bytes into original parity buffer */ if (ecc) store_ecc8(bch, ecc, bch->ecc_buf); } static inline int modulo(struct bch_control *bch, unsigned int v) { const unsigned int n = GF_N(bch); while (v >= n) { v -= n; v = (v & n) + (v >> GF_M(bch)); } return v; } /* * shorter and faster modulo function, only works when v < 2N. */ static inline int mod_s(struct bch_control *bch, unsigned int v) { const unsigned int n = GF_N(bch); return (v < n) ? v : v-n; } static inline int deg(unsigned int poly) { /* polynomial degree is the most-significant bit index */ return fls(poly)-1; } /* Galois field basic operations: multiply, divide, inverse, etc. */ static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, unsigned int b) { return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ bch->a_log_tab[b])] : 0; } static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) { return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; } static inline unsigned int a_pow(struct bch_control *bch, int i) { return bch->a_pow_tab[modulo(bch, i)]; } static inline int a_log(struct bch_control *bch, unsigned int x) { return bch->a_log_tab[x]; } /* * generate Galois field lookup tables */ static int build_gf_tables(struct bch_control *bch, unsigned int poly) { unsigned int i, x = 1; const unsigned int k = 1 << deg(poly); /* primitive polynomial must be of degree m */ if (k != (1u << GF_M(bch))) return -1; for (i = 0; i < GF_N(bch); i++) { bch->a_pow_tab[i] = x; bch->a_log_tab[x] = i; if (i && (x == 1)) /* polynomial is not primitive (a^i=1 with 0a_pow_tab[GF_N(bch)] = 1; bch->a_log_tab[0] = 0; return 0; } /* * compute generator polynomial remainder tables for fast encoding */ static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) { int i, j, b, d; uint32_t data, hi, lo, *tab; const int l = BCH_ECC_WORDS(bch); const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); for (i = 0; i < 256; i++) { /* p(X)=i is a small polynomial of weight <= 8 */ for (b = 0; b < 4; b++) { /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ tab = bch->mod8_tab + (b*256+i)*l; data = i << (8*b); while (data) { d = deg(data); /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ data ^= g[0] >> (31-d); for (j = 0; j < ecclen; j++) { hi = (d < 31) ? g[j] << (d+1) : 0; lo = (j+1 < plen) ? g[j+1] >> (31-d) : 0; tab[j] ^= hi|lo; } } } } } /* * build a base for factoring degree 2 polynomials */ static int build_deg2_base(struct bch_control *bch) { const int m = GF_M(bch); int i, j, r; unsigned int sum, x, y, remaining, ak = 0, xi[m]; /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ for (i = 0; i < m; i++) { for (j = 0, sum = 0; j < m; j++) sum ^= a_pow(bch, i*(1 << j)); if (sum) { ak = bch->a_pow_tab[i]; break; } } /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ remaining = m; memset(xi, 0, sizeof(xi)); for (x = 0; (x <= GF_N(bch)) && remaining; x++) { y = gf_sqr(bch, x)^x; for (i = 0; i < 2; i++) { r = a_log(bch, y); if (y && (r < m) && !xi[r]) { bch->xi_tab[r] = x; xi[r] = 1; remaining--; dbg("x%d = %x\n", r, x); break; } y ^= ak; } } /* should not happen but check anyway */ return remaining ? -1 : 0; } static void *bch_alloc(size_t size, int *err) { void *ptr; ptr = malloc(size); if (ptr == NULL) *err = 1; return ptr; } /* * compute generator polynomial for given (m,t) parameters. */ static uint32_t *compute_generator_polynomial(struct bch_control *bch) { const unsigned int m = GF_M(bch); const unsigned int t = GF_T(bch); int n, err = 0; unsigned int i, j, nbits, r, word, *roots; struct gf_poly *g; uint32_t *genpoly; g = bch_alloc(GF_POLY_SZ(m*t), &err); roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); if (err) { kfree(genpoly); genpoly = NULL; goto finish; } /* enumerate all roots of g(X) */ memset(roots , 0, (bch->n+1)*sizeof(*roots)); for (i = 0; i < t; i++) { for (j = 0, r = 2*i+1; j < m; j++) { roots[r] = 1; r = mod_s(bch, 2*r); } } /* build generator polynomial g(X) */ g->deg = 0; g->c[0] = 1; for (i = 0; i < GF_N(bch); i++) { if (roots[i]) { /* multiply g(X) by (X+root) */ r = bch->a_pow_tab[i]; g->c[g->deg+1] = 1; for (j = g->deg; j > 0; j--) g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; g->c[0] = gf_mul(bch, g->c[0], r); g->deg++; } } /* store left-justified binary representation of g(X) */ n = g->deg+1; i = 0; while (n > 0) { nbits = (n > 32) ? 32 : n; for (j = 0, word = 0; j < nbits; j++) { if (g->c[n-1-j]) word |= 1u << (31-j); } genpoly[i++] = word; n -= nbits; } bch->ecc_bits = g->deg; finish: kfree(g); kfree(roots); return genpoly; } /** * free_bch - free the BCH control structure * @bch: BCH control structure to release */ static void free_bch(struct bch_control *bch) { unsigned int i; if (bch) { kfree(bch->a_pow_tab); kfree(bch->a_log_tab); kfree(bch->mod8_tab); kfree(bch->ecc_buf); kfree(bch->ecc_buf2); kfree(bch->xi_tab); kfree(bch->syn); kfree(bch->cache); kfree(bch->elp); for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) kfree(bch->poly_2t[i]); kfree(bch); } } /** * init_bch - initialize a BCH encoder/decoder * @m: Galois field order, should be in the range 5-15 * @t: maximum error correction capability, in bits * @prim_poly: user-provided primitive polynomial (or 0 to use default) * * Returns: * a newly allocated BCH control structure if successful, NULL otherwise * * This initialization can take some time, as lookup tables are built for fast * encoding/decoding; make sure not to call this function from a time critical * path. Usually, init_bch() should be called on module/driver init and * free_bch() should be called to release memory on exit. * * You may provide your own primitive polynomial of degree @m in argument * @prim_poly, or let init_bch() use its default polynomial. * * Once init_bch() has successfully returned a pointer to a newly allocated * BCH control structure, ecc length in bytes is given by member @ecc_bytes of * the structure. */ static struct bch_control *init_bch(int m, int t, unsigned int prim_poly) { int err = 0; unsigned int i, words; uint32_t *genpoly; struct bch_control *bch = NULL; const int min_m = 5; const int max_m = 15; /* default primitive polynomials */ static const unsigned int prim_poly_tab[] = { 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, 0x402b, 0x8003, }; #if defined(CONFIG_BCH_CONST_PARAMS) if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { printk(KERN_ERR "bch encoder/decoder was configured to support " "parameters m=%d, t=%d only!\n", CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); goto fail; } #endif if ((m < min_m) || (m > max_m)) /* * values of m greater than 15 are not currently supported; * supporting m > 15 would require changing table base type * (uint16_t) and a small patch in matrix transposition */ goto fail; /* sanity checks */ if ((t < 1) || (m*t >= ((1 << m)-1))) /* invalid t value */ goto fail; /* select a primitive polynomial for generating GF(2^m) */ if (prim_poly == 0) prim_poly = prim_poly_tab[m-min_m]; bch = malloc(sizeof(*bch)); if (bch == NULL) goto fail; memset(bch, 0, sizeof(*bch)); bch->m = m; bch->t = t; bch->n = (1 << m)-1; words = DIV_ROUND_UP(m*t, 32); bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); if (err) goto fail; err = build_gf_tables(bch, prim_poly); if (err) goto fail; /* use generator polynomial for computing encoding tables */ genpoly = compute_generator_polynomial(bch); if (genpoly == NULL) goto fail; build_mod8_tables(bch, genpoly); kfree(genpoly); err = build_deg2_base(bch); if (err) goto fail; return bch; fail: free_bch(bch); return NULL; } static void swap_bits(uint8_t *buf, int len) { int i, j; for (j = 0; j < len; j++) { uint8_t byte = buf[j]; buf[j] = 0; for (i = 0; i < 8; i++) { if (byte & (1 << i)) buf[j] |= (1 << (7 - i)); } } } static uint16_t lfsr_step(uint16_t state, int count) { state &= 0x7fff; while (count--) state = ((state >> 1) | ((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff; return state; } static uint16_t default_scrambler_seeds[] = { 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, }; static uint16_t brom_scrambler_seeds[] = { 0x4a80 }; static void scramble(const struct image_info *info, int page, uint8_t *data, int datalen) { uint16_t state; int i; /* Boot0 is always scrambled no matter the command line option. */ if (info->boot0) { state = brom_scrambler_seeds[0]; } else { unsigned seedmod = info->eraseblock_size / info->page_size; /* Bail out earlier if the user didn't ask for scrambling. */ if (!info->scramble) return; if (seedmod > ARRAY_SIZE(default_scrambler_seeds)) seedmod = ARRAY_SIZE(default_scrambler_seeds); state = default_scrambler_seeds[page % seedmod]; } /* Prepare the initial state... */ state = lfsr_step(state, 15); /* and start scrambling data. */ for (i = 0; i < datalen; i++) { data[i] ^= state; state = lfsr_step(state, 8); } } static int write_page(const struct image_info *info, uint8_t *buffer, FILE *src, FILE *rnd, FILE *dst, struct bch_control *bch, int page) { int steps = info->usable_page_size / info->ecc_step_size; int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); off_t pos = ftell(dst); size_t pad, cnt; int i; if (eccbytes % 2) eccbytes++; memset(buffer, 0xff, info->page_size + info->oob_size); cnt = fread(buffer, 1, info->usable_page_size, src); if (!cnt) { if (!feof(src)) { fprintf(stderr, "Failed to read data from the source\n"); return -1; } else { return 0; } } fwrite(buffer, info->page_size + info->oob_size, 1, dst); for (i = 0; i < info->usable_page_size; i++) { if (buffer[i] != 0xff) break; } /* We leave empty pages at 0xff. */ if (i == info->usable_page_size) return 0; /* Restore the source pointer to read it again. */ fseek(src, -cnt, SEEK_CUR); /* Randomize unused space if scrambling is required. */ if (info->scramble) { int offs; if (info->boot0) { offs = steps * (info->ecc_step_size + eccbytes + 4); cnt = info->page_size + info->oob_size - offs; fread(buffer + offs, 1, cnt, rnd); } else { offs = info->page_size + (steps * (eccbytes + 4)); cnt = info->page_size + info->oob_size - offs; memset(buffer + offs, 0xff, cnt); scramble(info, page, buffer + offs, cnt); } fseek(dst, pos + offs, SEEK_SET); fwrite(buffer + offs, cnt, 1, dst); } for (i = 0; i < steps; i++) { int ecc_offs, data_offs; uint8_t *ecc; memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4); ecc = buffer + info->ecc_step_size + 4; if (info->boot0) { data_offs = i * (info->ecc_step_size + eccbytes + 4); ecc_offs = data_offs + info->ecc_step_size + 4; } else { data_offs = i * info->ecc_step_size; ecc_offs = info->page_size + 4 + (i * (eccbytes + 4)); } cnt = fread(buffer, 1, info->ecc_step_size, src); if (!cnt && !feof(src)) { fprintf(stderr, "Failed to read data from the source\n"); return -1; } pad = info->ecc_step_size - cnt; if (pad) { if (info->scramble && info->boot0) fread(buffer + cnt, 1, pad, rnd); else memset(buffer + cnt, 0xff, pad); } memset(ecc, 0, eccbytes); swap_bits(buffer, info->ecc_step_size + 4); encode_bch(bch, buffer, info->ecc_step_size + 4, ecc); swap_bits(buffer, info->ecc_step_size + 4); swap_bits(ecc, eccbytes); scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes); fseek(dst, pos + data_offs, SEEK_SET); fwrite(buffer, info->ecc_step_size, 1, dst); fseek(dst, pos + ecc_offs - 4, SEEK_SET); fwrite(ecc - 4, eccbytes + 4, 1, dst); } /* Fix BBM. */ fseek(dst, pos + info->page_size, SEEK_SET); memset(buffer, 0xff, 2); fwrite(buffer, 2, 1, dst); /* Make dst pointer point to the next page. */ fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET); return 0; } static int create_image(const struct image_info *info) { off_t page = info->offset / info->page_size; struct bch_control *bch; FILE *src, *dst, *rnd; uint8_t *buffer; bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY); if (!bch) { fprintf(stderr, "Failed to init the BCH engine\n"); return -1; } buffer = malloc(info->page_size + info->oob_size); if (!buffer) { fprintf(stderr, "Failed to allocate the NAND page buffer\n"); return -1; } memset(buffer, 0xff, info->page_size + info->oob_size); src = fopen(info->source, "r"); if (!src) { fprintf(stderr, "Failed to open source file (%s)\n", info->source); return -1; } dst = fopen(info->dest, "w"); if (!dst) { fprintf(stderr, "Failed to open dest file (%s)\n", info->dest); return -1; } rnd = fopen("/dev/urandom", "r"); if (!rnd) { fprintf(stderr, "Failed to open /dev/urandom\n"); return -1; } while (!feof(src)) { int ret; ret = write_page(info, buffer, src, rnd, dst, bch, page++); if (ret) return ret; } return 0; } static void display_help(int status) { fprintf(status == EXIT_SUCCESS ? stdout : stderr, "Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n" "Creates a raw NAND image that can be read by the sunxi NAND controller.\n" "\n" "-h --help Display this help and exit\n" "-c / --ecc=/ ECC config\n" " Valid strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n" " Valid steps: 512 and 1024\n" "-p --page-size= Page size\n" "-o --oob-size= OOB size\n" "-u --usable-page-size= Usable page size. Only needed for boot0 mode\n" "-e --eraseblock-size= Erase block size\n" "-b --boot0 Build a boot0 image.\n" "-s --scramble Scramble data\n" "-a --address Where the image will be programmed.\n" " This option is only required for non boot0 images that are meant to be programmed at a non eraseblock aligned offset.\n" "\n"); exit(status); } static int check_image_info(struct image_info *info) { static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; int eccbytes, eccsteps; unsigned i; if (!info->page_size || !info->oob_size || !info->eraseblock_size || !info->usable_page_size) return -EINVAL; if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) return -EINVAL; for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) { if (valid_ecc_strengths[i] == info->ecc_strength) break; } if (i == ARRAY_SIZE(valid_ecc_strengths)) return -EINVAL; eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); if (eccbytes % 2) eccbytes++; eccbytes += 4; eccsteps = info->usable_page_size / info->ecc_step_size; if (info->page_size + info->oob_size < info->usable_page_size + (eccsteps * (eccbytes))) return -EINVAL; return 0; } int main(int argc, char **argv) { struct image_info info; memset(&info, 0, sizeof(info)); /* * Process user arguments */ for (;;) { int option_index = 0; char *endptr = NULL; static const struct option long_options[] = { {"help", no_argument, 0, 0}, {"ecc", required_argument, 0, 'c'}, {"page-size", required_argument, 0, 'p'}, {"oob-size", required_argument, 0, 'o'}, {"usable-page-size", required_argument, 0, 'u'}, {"eraseblock-size", required_argument, 0, 'e'}, {"boot0", no_argument, 0, 'b'}, {"scramble", no_argument, 0, 's'}, {"address", required_argument, 0, 'a'}, {0, 0, 0, 0}, }; int c = getopt_long(argc, argv, "c:p:o:u:e:ba:s", long_options, &option_index); if (c == EOF) break; switch (c) { case 'h': display_help(0); break; case 's': info.scramble = 1; break; case 'c': info.ecc_strength = strtol(optarg, &endptr, 0); if (endptr || *endptr == '/') info.ecc_step_size = strtol(endptr + 1, NULL, 0); break; case 'p': info.page_size = strtol(optarg, NULL, 0); break; case 'o': info.oob_size = strtol(optarg, NULL, 0); break; case 'u': info.usable_page_size = strtol(optarg, NULL, 0); break; case 'e': info.eraseblock_size = strtol(optarg, NULL, 0); break; case 'b': info.boot0 = 1; break; case 'a': info.offset = strtoull(optarg, NULL, 0); break; case '?': display_help(-1); break; } } if ((argc - optind) != 2) display_help(-1); info.source = argv[optind]; info.dest = argv[optind + 1]; if (!info.boot0) { info.usable_page_size = info.page_size; } else if (!info.usable_page_size) { if (info.page_size > 8192) info.usable_page_size = 8192; else if (info.page_size > 4096) info.usable_page_size = 4096; else info.usable_page_size = 1024; } if (check_image_info(&info)) display_help(-1); return create_image(&info); }