user-guide.md 33.5 KB
Newer Older
1
2
3
4
5
6
ARM Trusted Firmware User Guide
===============================

Contents :

1.  Introduction
7
8
9
10
11
2.  Host machine requirements
3.  Tools
4.  Building the Trusted Firmware
5.  Obtaining the normal world software
6.  Running the software
12
13
14
15


1.  Introduction
----------------
16
17
18
19
20
This document describes how to build ARM Trusted Firmware and run it with a
tested set of other software components using defined configurations on ARM
Fixed Virtual Platform (FVP) models. It is possible to use other software
components, configurations and platforms but that is outside the scope of this
document.
21

22
This document should be used in conjunction with the [Firmware Design].
23
24


25
26
2.  Host machine requirements
-----------------------------
27

28
The minimum recommended machine specification for building the software and
29
30
31
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
32

33
The software has been tested on Ubuntu 12.04.04 (64-bit).  Packages used
34
35
for building the software were installed from that distribution unless
otherwise specified.
36
37


38
39
3.  Tools
---------
40
41
42

The following tools are required to use the ARM Trusted Firmware:

43
*   `git` package to obtain source code
44

45
*   `ia32-libs` package
46

47
48
*   `build-essential` and `uuid-dev` packages for building UEFI and the Firmware
    Image Package(FIP) tool
49

50
*   `bc` and `ncurses-dev` packages for building Linux
51
52
53

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
54
    `gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz` tools are used.
55

56
57
        wget http://releases.linaro.org/13.11/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
58

59
*   The Device Tree Compiler (DTC) included with Linux kernel 3.15-rc6 is used
60
    to build the Flattened Device Tree (FDT) source files (`.dts` files)
61
    provided with this software.
62

63
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.18.
64
65


66
67
4.  Building the Trusted Firmware
---------------------------------
68

69
To build the software for the FVPs, follow these steps:
70

71
1.  Clone the ARM Trusted Firmware repository from GitHub:
72
73
74
75
76
77
78

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

79
80
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
    build:
81

82
83
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
84
        make PLAT=fvp all fip
85

86
87
88
    See the "Summary of build options" for information on available build
    options.

89
    By default this produces a release version of the build. To produce a debug
90
91
    version instead, refer to the "Debugging options" section below. UEFI can be
    used as the BL3-3 image, refer to the "Obtaining the normal world software"
92
93
    section below. By default this won't compile the TSP in, refer to the
    "Building the Test Secure Payload" section below.
94

95
96
97
98
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
99

100
101
102
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
103

104
    ... where `<platform>` currently defaults to `fvp` and `<build-type>` is
105
106
    either `debug` or `release`. A Firmare Image Package(FIP) will be created as
    part of the build. It contains all boot loader images except for `bl1.bin`.
107

108
    *   `build/<platform>/<build-type>/fip.bin`
109

110
111
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
112
113
114
115

4.  Copy the `bl1.bin` and `fip.bin` binary files to the directory from which
    the FVP will be launched. Symbolic links of the same names may be created
    instead.
116

117
118
5.  (Optional) Build products for a specific build variant can be removed using:

119
        make DEBUG=<D> PLAT=fvp clean
120
121
122
123
124
125

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

*   `BL33`: Path to BL33 image in the host file system. This is mandatory for
    `fip` target

*   `CROSS_COMPILE`: Prefix to tool chain binaries. Please refer to examples in
    this document for usage

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
    (release) or 1 (debug) as values. 0 is the default

145
146
147
148
149
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
    1 (do save and restore). 0 is the default. An SPD could set this to 1 if it
    wants the timer registers to be saved and restored

150
151
152
153
154
155
156
157
158
159
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
    platform name must be the name of one of the directories under the `plat/`
    directory other than `common`

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
    SPD source; the directory is expected to contain `spd.mk` makefile

*   `V`: Verbose build. If assigned anything other than 0, the build commands
    are printed. Default is 0
160

161
162
163
*   `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM GIC
    driver for implementing the platform GIC API. This API is used
    by the interrupt management framework. Default is 2 i.e. version 2.0.
164

165
166
167
168
169
*   `IMF_READ_INTERRUPT_ID`: Boolean flag used by the interrupt management
    framework to enable passing of the interrupt id to its handler. The id is
    read using a platform GIC API. `INTR_ID_UNAVAILABLE` is passed instead if
    this option set to 0. Default is 0.

170
171
172
173
174
*   `RESET_TO_BL31`: Enable BL3-1 entrypoint as the CPU reset vector in place
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
    entrypoint) or 1 (CPU reset to BL3-1 entrypoint).
    The default value is 0.

175
176
177
178
*   `CRASH_REPORTING`: A non-zero value enables a console dump of processor
    register state when an unexpected exception occurs during execution of
    BL3-1. This option defaults to the value of `DEBUG` - i.e. by default
    this is only enabled for a debug build of the firmware.
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

Create a Firmware package that contains existing FVP BL2 and BL3-1 images:

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
       --bl2 build/fvp/debug/bl2.bin --bl31 build/fvp/debug/bl31.bin

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
      file: 'build/fvp/debug/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
      file: 'build/fvp/debug/bl31.bin'
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
      --bl2 build/fvp/release/bl2.bin

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
      file: 'build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
236
237
238

To compile a debug version and make the build more verbose use

239
240
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
241
    make PLAT=fvp DEBUG=1 V=1 all fip
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
might need to be recalculated (see the later memory layout section).

Extra debug options can be passed to the build system by setting `CFLAGS`:

257
258
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
259
    BL33=<path-to>/<bl33_image>                               \
260
    make PLAT=fvp DEBUG=1 V=1 all fip
261
262
263


NOTE: The Foundation FVP does not provide a debugger interface.
264
265


266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
### Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL3-1 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
BL3-1 binary. Then to build the TSP image and include it into the FIP use:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
    make PLAT=fvp SPD=tspd all fip

An additional boot loader binary file is created in the `build` directory:

    *   `build/<platform>/<build-type>/bl32.bin`

The Firmware Package contains this new image:

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
      file: './build/fvp/release/bl31.bin'
    - Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
      file: './build/fvp/release/bl32.bin'
    - Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"

On FVP, the TSP binary runs from Trusted SRAM by default. It is also possible
to run it from Trusted DRAM. This is controlled by the build configuration
`TSP_RAM_LOCATION`:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
    make PLAT=fvp SPD=tspd TSP_RAM_LOCATION=tdram all fip


308
### Checking source code style
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
the project Makefile contains two targets, which both utilise the checkpatch.pl
script that ships with the Linux source tree.

To check the entire source tree, you must first download a copy of checkpatch.pl
(or the full Linux source), set the CHECKPATCH environment variable to point to
the script and build the target checkcodebase:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkcodebase

To just check the style on the files that differ between your local branch and
the remote master, use:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkpatch

If you wish to check your patch against something other than the remote master,
set the BASE_COMMIT variable to your desired branch.  By default, BASE_COMMIT
is set to 'origin/master'.


331
332
5.  Obtaining the normal world software
---------------------------------------
333

334
### Obtaining EDK2
335

336
337
338
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
339

340
341
Clone the [EDK2 source code][EDK2] from GitHub. This version supports the Base
and Foundation FVPs:
342
343
344

    git clone -n https://github.com/tianocore/edk2.git
    cd edk2
345
    git checkout 129ff94661bd3a6c759b1e154c143d0136bedc7d
346
347


348
349
To build the software to be compatible with Foundation and Base FVPs, follow
these steps:
350

351
1.  Copy build config templates to local workspace
352

353
        # in edk2/
354
        . edksetup.sh
355

356
2.  Build the EDK2 host tools
357

358
359
        make -C BaseTools clean
        make -C BaseTools
360

361
3.  Build the EDK2 software
362

363
        CROSS_COMPILE=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
364
365
366
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"
367
368
369
370
371
372

    The EDK2 binary for use with the ARM Trusted Firmware can then be found
    here:

        Build/ArmVExpress-FVP-AArch64/DEBUG_ARMGCC/FV/FVP_AARCH64_EFI.fd

373
374
375
376
    This will build EDK2 for the default settings as used by the FVPs. The EDK2
    binary `FVP_AARCH64_EFI.fd` should be specified as `BL33` in in the `make`
    command line when building the Trusted Firmware. See the "Building the
    Trusted Firmware" section above.
377

378
379
380
4.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
381

382
383
384
5.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
385

386
387
388
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
389

390
    Then rebuild EDK2 as described in step 3, using the following flag:
391

392
393
394
395
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
396

397

398
### Obtaining a Linux kernel
399

400
The software has been verified using a Linux kernel based on version 3.15-rc6.
401
Patches have been applied in order to enable the CPU idle feature.
402

403
Preparing a Linux kernel for use on the FVPs with CPU idle support can
404
405
406
407
408
409
be done as follows (GICv2 support only):

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

410
    Not all CPU idle features are included in the mainline kernel yet. To
411
    use these, add the patches from Sudeep Holla's kernel:
412
413

        cd linux
414
415
        git remote add -f --tags arm64_idle_v3.15-rc6 git://linux-arm.org/linux-skn.git
        git checkout -b cpuidle arm64_idle_v3.15-rc6
416
417
418
419
420
421
422

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

423
        # Enable CPU idle
424
        make ARCH=arm64 menuconfig
425
426
        # CPU Power Management ---> CPU Idle ---> [*] CPU idle PM support
        # CPU Power Management ---> CPU Idle ---> ARM64 CPU Idle Drivers ---> [*] Generic ARM64 CPU idle Driver
427

428
429
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
430
431

3.  Copy the Linux image `arch/arm64/boot/Image` to the working directory from
432
    where the FVP is launched. Alternatively a symbolic link may be used.
433

434
### Obtaining the Flattened Device Trees
435
436

Depending on the FVP configuration and Linux configuration used, different
437
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
438
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
439
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
440
and MMC support, and has only one CPU cluster.
441
442
443
444

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
445
    Base memory map configuration.
446
447
448

*   `fvp-base-gicv2legacy-psci.dtb`

449
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
450
451
452

*   `fvp-base-gicv3-psci.dtb`

453
454
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
455

456
457
458
459
460
461
462
463
464
465
466
467
468
469
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


470
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
471
is launched. Alternatively a symbolic link may be used.
472

473
### Obtaining a root file-system
474
475
476
477
478

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

479
#### Prepare VirtioBlock
480
481
482
483
484

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

485
    NOTE: The unpacked disk image grows to 3 GiB in size.
486

487
488
        wget http://releases.linaro.org/14.04/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.8_20140417-630.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.8_20140417-630.img.gz
489
490
491
492
493
494
495
496
497

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
498
499
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
500
501
502
503
504

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

505
    1.  In EDK2, edit the following file:
506
507
508
509
510
511
512
513
514
515
516
517
518
519

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
520
    passing it the correct command line option. In the FVPs the following
521
522
523
524
525
526
    option should be provided in addition to the ones described in the
    "Running the software" section below.

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

527
    On the Base FVPs:
528

529
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
530

531
    On the Foundation FVP:
532

533
        --block-device="<path-to>/<file-system-image>"
534
535


536
537
538
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

539
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
540
541
542
543
544

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

545
#### Prepare RAM-disk
546

547
To prepare a RAM-disk root file-system, do the following:
548
549
550

1.  Download the file-system image:

551
        wget http://releases.linaro.org/14.04/openembedded/aarch64/linaro-image-lamp-genericarmv8-20140417-667.rootfs.tar.gz
552
553
554
555
556
557

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
558
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20140417-667.rootfs.tar.gz | cpio -id"
559
560
561
562
563
564
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
565
    launched from. Alternatively a symbolic link may be used.
566
567


568
569
6.  Running the software
------------------------
570

571
This version of the ARM Trusted Firmware has been tested on the following ARM
572
573
FVPs (64-bit versions only).

574
*   `Foundation_v8` (Version 2.0, Build 0.8.5206)
575
576
577
578
*   `FVP_Base_AEMv8A-AEMv8A` (Version 5.6, Build 0.8.5602)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 5.6, Build 0.8.5602)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 5.6, Build 0.8.5602)
*   `FVP_Base_Cortex-A57x2-A53x4` (Version 5.6, Build 0.8.5602)
579
580
581

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
582
583
584
585
586

Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

587
588
589
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

590
591

### Running on the Foundation FVP with reset to BL1 entrypoint
592
593
594
595
596
597
598

The following `Foundation_v8` parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

599
600
601
602
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

603
    <path-to>/Foundation_v8                   \
604
605
606
607
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --gicv3                                   \
608
609
610
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
611

612
613
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
614
615
616
617
618
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

619
### Notes regarding Base FVP configuration options
620

621
622
623
1. The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
section above).
624

625
2. Using `cache_state_modelled=1` makes booting very slow. The software will
626
627
628
still work (and run much faster) without this option but this will hide any
cache maintenance defects in the software.

629
3. Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
630
if a Linux RAM-disk file-system is used (see the "Obtaining a root file-system"
631
632
section above).

633
634
635
636
637
638
639
640
641
642
643
644
645
4. Setting the `-C bp.secure_memory` parameter to `1` is only supported on
Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
instructs the FVP to provide some helpful information if a secure memory
violation occurs.

5. The `--data="<path-to><bl31/bl32/bl33-binary>"@base address of binaries`
parameter is used to load bootloader images in the Base FVP memory (see the
"Building the Trusted Firmware" section above). The base address used to
load the binaries with --data should match the image base addresses in
platform_def.h used while linking the images.
BL3-2 image is only needed if BL3-1 has been built to expect a secure-EL1
payload.
646

647
648
649
650
651
652
653
654

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
655

656
657
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
658
659
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
660
661
662
663
664
665
666
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
667

668
669
670
671
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
672
673
674
675

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

676
677
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
678
679
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
680
681
682
683
684
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
### Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

NOTE: Uses the `-c clusterX.cpuX.RVBAR=@base address of BL3-1` where X is
the cluster number in clusterX and cpu number in cpuX is used to set the reset
vector for each core.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
    -C cluster0.cpu0.RVBAR=0x04006000                            \
    -C cluster0.cpu1.RVBAR=0x04006000                            \
    -C cluster0.cpu2.RVBAR=0x04006000                            \
    -C cluster0.cpu3.RVBAR=0x04006000                            \
    -C cluster1.cpu0.RVBAR=0x04006000                            \
    -C cluster1.cpu1.RVBAR=0x04006000                            \
    -C cluster1.cpu2.RVBAR=0x04006000                            \
    -C cluster1.cpu3.RVBAR=0x04006000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04006000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04024000    \
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

### Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

NOTE: Uses the `-c clusterX.cpuX.RVBARADDR=@base address of BL3-1` where X is
the cluster number in clusterX and cpu number in cpuX is used to set the reset
vector for each core.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
    -C cluster0.cpu0.RVBARADDR=0x04006000                        \
    -C cluster0.cpu1.RVBARADDR=0x04006000                        \
    -C cluster0.cpu2.RVBARADDR=0x04006000                        \
    -C cluster0.cpu3.RVBARADDR=0x04006000                        \
    -C cluster1.cpu0.RVBARADDR=0x04006000                        \
    -C cluster1.cpu1.RVBARADDR=0x04006000                        \
    -C cluster1.cpu2.RVBARADDR=0x04006000                        \
    -C cluster1.cpu3.RVBARADDR=0x04006000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04006000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04024000    \
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

750
751
752
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
753
754
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
755
756
757
758
759
760

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

761
The AEMv8 Base FVP can be configured to support GICv2 at addresses
762
763
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
764
765
766
767
768
769

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

770
771
772
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
773
774
775

*   `SYS_ID.Build[15:12]`

776
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
777
    default value on the Base FVPs.
778
779
780

*   `SYS_ID.Build[15:12]`

781
782
783
784
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
785

786
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
787
BL3-3 images should be used.
788

789
790
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

791
792
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
793

794
795
796
797
798
799
800
801
    <path-to>/Foundation_v8                   \
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
802
803
804

Explicit configuration of the `SYS_ID` register is not required.

805
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
806

807
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
808
809
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
810
811
812
813
814
815
816
817
818
819
820
821
822
823

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
824
    -C bp.variant=0x0
825

826
827
828
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
829
830
831
832


- - - - - - - - - - - - - - - - - - - - - - - - - -

833
_Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved._
834
835


836
[Firmware Design]:  ./firmware-design.md
837

838
[ARM FVP website]:  http://www.arm.com/fvp
839
[Linaro Toolchain]: http://releases.linaro.org/13.11/components/toolchain/binaries/
840
[EDK2]:             http://github.com/tianocore/edk2
841
[DS-5]:             http://www.arm.com/products/tools/software-tools/ds-5/index.php