entrypoint.S 8.84 KB
Newer Older
1
/*
2
 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <asm_macros.S>
#include <bl_common.h>
#include <context.h>
35
#include <el3_common_macros.S>
36
37
38
39
40
41
42
43
44
#include <runtime_svc.h>
#include <smcc_helpers.h>
#include <smcc_macros.S>
#include <xlat_tables.h>

	.globl	sp_min_vector_table
	.globl	sp_min_entrypoint
	.globl	sp_min_warm_entrypoint

45
46

vector_base sp_min_vector_table
47
48
49
50
51
52
53
54
55
56
57
58
59
60
	b	sp_min_entrypoint
	b	plat_panic_handler	/* Undef */
	b	handle_smc		/* Syscall */
	b	plat_panic_handler	/* Prefetch abort */
	b	plat_panic_handler	/* Data abort */
	b	plat_panic_handler	/* Reserved */
	b	plat_panic_handler	/* IRQ */
	b	plat_panic_handler	/* FIQ */


/*
 * The Cold boot/Reset entrypoint for SP_MIN
 */
func sp_min_entrypoint
61
62
63
64
65
66
#if !RESET_TO_SP_MIN
	/* ---------------------------------------------------------------
	 * Preceding bootloader has populated r0 with a pointer to a
	 * 'bl_params_t' structure & r1 with a pointer to platform
	 * specific structure
	 * ---------------------------------------------------------------
67
	 */
68
69
70
71
72
73
74
75
76
77
78
	mov	r11, r0
	mov	r12, r1

	/* ---------------------------------------------------------------------
	 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
	 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
	 * and primary/secondary CPU logic should not be executed in this case.
	 *
	 * Also, assume that the previous bootloader has already set up the CPU
	 * endianness and has initialised the memory.
	 * ---------------------------------------------------------------------
79
	 */
80
81
82
83
84
85
86
87
88
89
90
	el3_entrypoint_common					\
		_set_endian=0					\
		_warm_boot_mailbox=0				\
		_secondary_cold_boot=0				\
		_init_memory=0					\
		_init_c_runtime=1				\
		_exception_vectors=sp_min_vector_table

	/* ---------------------------------------------------------------------
	 * Relay the previous bootloader's arguments to the platform layer
	 * ---------------------------------------------------------------------
91
	 */
92
93
94
95
96
97
98
99
	mov	r0, r11
	mov	r1, r12
#else
	/* ---------------------------------------------------------------------
	 * For RESET_TO_SP_MIN systems which have a programmable reset address,
	 * sp_min_entrypoint() is executed only on the cold boot path so we can
	 * skip the warm boot mailbox mechanism.
	 * ---------------------------------------------------------------------
100
	 */
101
102
103
104
105
106
107
108
109
110
111
112
113
	el3_entrypoint_common					\
		_set_endian=1					\
		_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS	\
		_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU	\
		_init_memory=1					\
		_init_c_runtime=1				\
		_exception_vectors=sp_min_vector_table

	/* ---------------------------------------------------------------------
	 * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader
	 * to run so there's no argument to relay from a previous bootloader.
	 * Zero the arguments passed to the platform layer to reflect that.
	 * ---------------------------------------------------------------------
114
	 */
115
116
117
	mov	r0, #0
	mov	r1, #0
#endif /* RESET_TO_SP_MIN */
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

	bl	sp_min_early_platform_setup
	bl	sp_min_plat_arch_setup

	/* Jump to the main function */
	bl	sp_min_main

	/* -------------------------------------------------------------
	 * Clean the .data & .bss sections to main memory. This ensures
	 * that any global data which was initialised by the primary CPU
	 * is visible to secondary CPUs before they enable their data
	 * caches and participate in coherency.
	 * -------------------------------------------------------------
	 */
	ldr	r0, =__DATA_START__
	ldr	r1, =__DATA_END__
	sub	r1, r1, r0
	bl	clean_dcache_range

	ldr	r0, =__BSS_START__
	ldr	r1, =__BSS_END__
	sub	r1, r1, r0
	bl	clean_dcache_range

	/* Program the registers in cpu_context and exit monitor mode */
	mov	r0, #NON_SECURE
	bl	cm_get_context

	/* Restore the SCR */
	ldr	r2, [r0, #CTX_REGS_OFFSET + CTX_SCR]
	stcopr	r2, SCR
	isb

	/* Restore the SCTLR  */
	ldr	r2, [r0, #CTX_REGS_OFFSET + CTX_NS_SCTLR]
	stcopr	r2, SCTLR

	bl	smc_get_next_ctx
	/* The other cpu_context registers have been copied to smc context */
	b	sp_min_exit
endfunc sp_min_entrypoint

160
161
162
163
164
165
166
167
168
169
170

/*
 * SMC handling function for SP_MIN.
 */
func handle_smc
	smcc_save_gp_mode_regs

	/* r0 points to smc_context */
	mov	r2, r0				/* handle */
	ldcopr	r0, SCR

171
172
173
174
175
	/*
	 * Save SCR in stack. r1 is pushed to meet the 8 byte
	 * stack alignment requirement.
	 */
	push	{r0, r1}
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
	and	r3, r0, #SCR_NS_BIT		/* flags */

	/* Switch to Secure Mode*/
	bic	r0, #SCR_NS_BIT
	stcopr	r0, SCR
	isb
	ldr	r0, [r2, #SMC_CTX_GPREG_R0]	/* smc_fid */
	/* Check whether an SMC64 is issued */
	tst	r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
	beq	1f	/* SMC32 is detected */
	mov	r0, #SMC_UNK
	str	r0, [r2, #SMC_CTX_GPREG_R0]
	mov	r0, r2
	b	2f	/* Skip handling the SMC */
1:
	mov	r1, #0				/* cookie */
	bl	handle_runtime_svc
2:
	/* r0 points to smc context */

	/* Restore SCR from stack */
197
	pop	{r1, r2}
198
199
200
201
202
203
204
	stcopr	r1, SCR
	isb

	b	sp_min_exit
endfunc handle_smc


205
206
207
208
/*
 * The Warm boot entrypoint for SP_MIN.
 */
func sp_min_warm_entrypoint
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
	/*
	 * On the warm boot path, most of the EL3 initialisations performed by
	 * 'el3_entrypoint_common' must be skipped:
	 *
	 *  - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
	 *    programming the reset address do we need to set the CPU endianness.
	 *    In other cases, we assume this has been taken care by the
	 *    entrypoint code.
	 *
	 *  - No need to determine the type of boot, we know it is a warm boot.
	 *
	 *  - Do not try to distinguish between primary and secondary CPUs, this
	 *    notion only exists for a cold boot.
	 *
	 *  - No need to initialise the memory or the C runtime environment,
	 *    it has been done once and for all on the cold boot path.
	 */
	el3_entrypoint_common					\
		_set_endian=PROGRAMMABLE_RESET_ADDRESS		\
		_warm_boot_mailbox=0				\
		_secondary_cold_boot=0				\
		_init_memory=0					\
		_init_c_runtime=0				\
		_exception_vectors=sp_min_vector_table
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
	/*
	 * We're about to enable MMU and participate in PSCI state coordination.
	 *
	 * The PSCI implementation invokes platform routines that enable CPUs to
	 * participate in coherency. On a system where CPUs are not
	 * cache-coherent out of reset, having caches enabled until such time
	 * might lead to coherency issues (resulting from stale data getting
	 * speculatively fetched, among others). Therefore we keep data caches
	 * disabled while enabling the MMU, thereby forcing data accesses to
	 * have non-cacheable, nGnRnE attributes (these will always be coherent
	 * with main memory).
	 *
	 * On systems where CPUs are cache-coherent out of reset, however, PSCI
	 * need not invoke platform routines to enter coherency (as CPUs already
	 * are), and there's no reason to have caches disabled either.
249
	 */
250
251
252
#if HW_ASSISTED_COHERENCY
	mov	r0, #0
#else
253
	mov	r0, #DISABLE_DCACHE
254
#endif
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
	bl	bl32_plat_enable_mmu

	bl	sp_min_warm_boot

	/* Program the registers in cpu_context and exit monitor mode */
	mov	r0, #NON_SECURE
	bl	cm_get_context

	/* Restore the SCR */
	ldr	r2, [r0, #CTX_REGS_OFFSET + CTX_SCR]
	stcopr	r2, SCR
	isb

	/* Restore the SCTLR  */
	ldr	r2, [r0, #CTX_REGS_OFFSET + CTX_NS_SCTLR]
	stcopr	r2, SCTLR

	bl	smc_get_next_ctx

	/* The other cpu_context registers have been copied to smc context */
	b	sp_min_exit
endfunc sp_min_warm_entrypoint

/*
 * The function to restore the registers from SMC context and return
 * to the mode restored to SPSR.
 *
 * Arguments : r0 must point to the SMC context to restore from.
 */
func sp_min_exit
	smcc_restore_gp_mode_regs
	eret
endfunc sp_min_exit