user-guide.md 34.7 KB
Newer Older
1
2
3
4
5
6
ARM Trusted Firmware User Guide
===============================

Contents :

1.  Introduction
7
8
9
10
11
2.  Host machine requirements
3.  Tools
4.  Building the Trusted Firmware
5.  Obtaining the normal world software
6.  Running the software
12
13
14
15


1.  Introduction
----------------
16
17
18
19
20
This document describes how to build ARM Trusted Firmware and run it with a
tested set of other software components using defined configurations on ARM
Fixed Virtual Platform (FVP) models. It is possible to use other software
components, configurations and platforms but that is outside the scope of this
document.
21

22
This document should be used in conjunction with the [Firmware Design].
23
24


25
26
2.  Host machine requirements
-----------------------------
27

28
The minimum recommended machine specification for building the software and
29
30
31
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
32

33
The software has been tested on Ubuntu 12.04.04 (64-bit).  Packages used
34
35
for building the software were installed from that distribution unless
otherwise specified.
36
37


38
39
3.  Tools
---------
40
41
42

The following tools are required to use the ARM Trusted Firmware:

43
*   `git` package to obtain source code
44

45
*   `ia32-libs` package
46

47
48
*   `build-essential` and `uuid-dev` packages for building UEFI and the Firmware
    Image Package(FIP) tool
49

50
*   `bc` and `ncurses-dev` packages for building Linux
51
52
53

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
54
    `gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz` tools are used.
55

56
57
        wget http://releases.linaro.org/13.11/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
58

59
*   The Device Tree Compiler (DTC) included with Linux kernel 3.15-rc6 is used
60
    to build the Flattened Device Tree (FDT) source files (`.dts` files)
61
    provided with this software.
62

63
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.18.
64
65


66
67
4.  Building the Trusted Firmware
---------------------------------
68

69
To build the software for the FVPs, follow these steps:
70

71
1.  Clone the ARM Trusted Firmware repository from GitHub:
72
73
74
75
76
77
78

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

79
80
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
    build:
81

82
83
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
84
        make PLAT=fvp all fip
85

86
87
88
    See the "Summary of build options" for information on available build
    options.

89
    By default this produces a release version of the build. To produce a debug
90
91
    version instead, refer to the "Debugging options" section below. UEFI can be
    used as the BL3-3 image, refer to the "Obtaining the normal world software"
92
93
    section below. By default this won't compile the TSP in, refer to the
    "Building the Test Secure Payload" section below.
94

95
96
97
98
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
99

100
101
102
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
103

104
    ... where `<platform>` currently defaults to `fvp` and `<build-type>` is
105
106
    either `debug` or `release`. A Firmare Image Package(FIP) will be created as
    part of the build. It contains all boot loader images except for `bl1.bin`.
107

108
    *   `build/<platform>/<build-type>/fip.bin`
109

110
111
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
112
113
114
115

4.  Copy the `bl1.bin` and `fip.bin` binary files to the directory from which
    the FVP will be launched. Symbolic links of the same names may be created
    instead.
116

117
118
5.  (Optional) Build products for a specific build variant can be removed using:

119
        make DEBUG=<D> PLAT=fvp clean
120
121
122
123
124
125

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
126

127
128
129
130
131
132
133
134
135
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

136
137
138
139
*   `BL30`: Path to BL3-0 image in the host file system. This image is optional.
    If a BL3-0 image is present then this option must be passed for the `fip`
    target

140
141
142
143
144
145
146
147
148
*   `BL33`: Path to BL33 image in the host file system. This is mandatory for
    `fip` target

*   `CROSS_COMPILE`: Prefix to tool chain binaries. Please refer to examples in
    this document for usage

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
    (release) or 1 (debug) as values. 0 is the default

149
150
151
152
153
154
155
156
157
158
159
160
161
*   `LOG_LEVEL`: Chooses the log level, which controls the amount of console log
    output compiled into the build. This should be one of the following:

        0  (LOG_LEVEL_NONE)
        10 (LOG_LEVEL_NOTICE)
        20 (LOG_LEVEL_ERROR)
        30 (LOG_LEVEL_WARNING)
        40 (LOG_LEVEL_INFO)
        50 (LOG_LEVEL_VERBOSE)

    All log output up to and including the log level is compiled into the build.
    The default value is 40 in debug builds and 20 in release builds.

162
163
164
165
166
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
    1 (do save and restore). 0 is the default. An SPD could set this to 1 if it
    wants the timer registers to be saved and restored

167
168
169
170
171
172
173
174
175
176
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
    platform name must be the name of one of the directories under the `plat/`
    directory other than `common`

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
    SPD source; the directory is expected to contain `spd.mk` makefile

*   `V`: Verbose build. If assigned anything other than 0, the build commands
    are printed. Default is 0
177

178
179
180
*   `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM GIC
    driver for implementing the platform GIC API. This API is used
    by the interrupt management framework. Default is 2 i.e. version 2.0.
181

182
183
184
185
186
*   `IMF_READ_INTERRUPT_ID`: Boolean flag used by the interrupt management
    framework to enable passing of the interrupt id to its handler. The id is
    read using a platform GIC API. `INTR_ID_UNAVAILABLE` is passed instead if
    this option set to 0. Default is 0.

187
188
189
190
191
*   `RESET_TO_BL31`: Enable BL3-1 entrypoint as the CPU reset vector in place
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
    entrypoint) or 1 (CPU reset to BL3-1 entrypoint).
    The default value is 0.

192
193
194
195
*   `CRASH_REPORTING`: A non-zero value enables a console dump of processor
    register state when an unexpected exception occurs during execution of
    BL3-1. This option defaults to the value of `DEBUG` - i.e. by default
    this is only enabled for a debug build of the firmware.
196

197
198
199
200
201
*   `ASM_ASSERTION`: This flag determines whether the assertion checks within
    assembly source files are enabled or not. This option defaults to the
    value of `DEBUG` - i.e. by default this is only enabled for a debug
    build of the firmware.

202
203
204
205
206
207
208
*   `TSP_INIT_ASYNC`: Choose BL3-2 initialization method as asynchronous or
    synchronous, e.g. "(see "Initializing a BL3-2 Image" section in [Firmware
    Design])". It can take the value 0 (BL3-2 is initialized using
    synchronous method) or 1 (BL3-2 is initialized using asynchronous method).
    Default is 0.


209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

Create a Firmware package that contains existing FVP BL2 and BL3-1 images:

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
       --bl2 build/fvp/debug/bl2.bin --bl31 build/fvp/debug/bl31.bin

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
      file: 'build/fvp/debug/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
      file: 'build/fvp/debug/bl31.bin'
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
      --bl2 build/fvp/release/bl2.bin

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
      file: 'build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
265
266
267

To compile a debug version and make the build more verbose use

268
269
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
270
    make PLAT=fvp DEBUG=1 V=1 all fip
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
might need to be recalculated (see the later memory layout section).

Extra debug options can be passed to the build system by setting `CFLAGS`:

286
287
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
288
    BL33=<path-to>/<bl33_image>                               \
289
    make PLAT=fvp DEBUG=1 V=1 all fip
290
291
292


NOTE: The Foundation FVP does not provide a debugger interface.
293
294


295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
### Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL3-1 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
BL3-1 binary. Then to build the TSP image and include it into the FIP use:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
    make PLAT=fvp SPD=tspd all fip

An additional boot loader binary file is created in the `build` directory:

    *   `build/<platform>/<build-type>/bl32.bin`

The Firmware Package contains this new image:

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
      file: './build/fvp/release/bl31.bin'
    - Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
      file: './build/fvp/release/bl32.bin'
    - Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"

On FVP, the TSP binary runs from Trusted SRAM by default. It is also possible
to run it from Trusted DRAM. This is controlled by the build configuration
`TSP_RAM_LOCATION`:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
    make PLAT=fvp SPD=tspd TSP_RAM_LOCATION=tdram all fip


337
### Checking source code style
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
the project Makefile contains two targets, which both utilise the checkpatch.pl
script that ships with the Linux source tree.

To check the entire source tree, you must first download a copy of checkpatch.pl
(or the full Linux source), set the CHECKPATCH environment variable to point to
the script and build the target checkcodebase:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkcodebase

To just check the style on the files that differ between your local branch and
the remote master, use:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkpatch

If you wish to check your patch against something other than the remote master,
set the BASE_COMMIT variable to your desired branch.  By default, BASE_COMMIT
is set to 'origin/master'.


360
361
5.  Obtaining the normal world software
---------------------------------------
362

363
### Obtaining EDK2
364

365
366
367
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
368

369
370
Clone the [EDK2 source code][EDK2] from GitHub. This version supports the Base
and Foundation FVPs:
371
372
373

    git clone -n https://github.com/tianocore/edk2.git
    cd edk2
374
    git checkout 129ff94661bd3a6c759b1e154c143d0136bedc7d
375
376


377
378
To build the software to be compatible with Foundation and Base FVPs, follow
these steps:
379

380
1.  Copy build config templates to local workspace
381

382
        # in edk2/
383
        . edksetup.sh
384

385
2.  Build the EDK2 host tools
386

387
388
        make -C BaseTools clean
        make -C BaseTools
389

390
3.  Build the EDK2 software
391

392
        CROSS_COMPILE=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
393
394
395
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"
396
397
398
399
400
401

    The EDK2 binary for use with the ARM Trusted Firmware can then be found
    here:

        Build/ArmVExpress-FVP-AArch64/DEBUG_ARMGCC/FV/FVP_AARCH64_EFI.fd

402
403
404
405
    This will build EDK2 for the default settings as used by the FVPs. The EDK2
    binary `FVP_AARCH64_EFI.fd` should be specified as `BL33` in in the `make`
    command line when building the Trusted Firmware. See the "Building the
    Trusted Firmware" section above.
406

407
408
409
4.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
410

411
412
413
5.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
414

415
416
417
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
418

419
    Then rebuild EDK2 as described in step 3, using the following flag:
420

421
422
423
424
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
425

426

427
### Obtaining a Linux kernel
428

429
The software has been verified using a Linux kernel based on version 3.15-rc6.
430
Patches have been applied in order to enable the CPU idle feature.
431

432
Preparing a Linux kernel for use on the FVPs with CPU idle support can
433
434
435
436
437
438
be done as follows (GICv2 support only):

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

439
    Not all CPU idle features are included in the mainline kernel yet. To
440
    use these, add the patches from Sudeep Holla's kernel:
441
442

        cd linux
443
444
        git remote add -f --tags arm64_idle_v3.15-rc6 git://linux-arm.org/linux-skn.git
        git checkout -b cpuidle arm64_idle_v3.15-rc6
445
446
447
448
449
450
451

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

452
        # Enable CPU idle
453
        make ARCH=arm64 menuconfig
454
455
        # CPU Power Management ---> CPU Idle ---> [*] CPU idle PM support
        # CPU Power Management ---> CPU Idle ---> ARM64 CPU Idle Drivers ---> [*] Generic ARM64 CPU idle Driver
456

457
458
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
459
460

3.  Copy the Linux image `arch/arm64/boot/Image` to the working directory from
461
    where the FVP is launched. Alternatively a symbolic link may be used.
462

463
### Obtaining the Flattened Device Trees
464
465

Depending on the FVP configuration and Linux configuration used, different
466
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
467
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
468
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
469
and MMC support, and has only one CPU cluster.
470
471
472
473

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
474
    Base memory map configuration.
475
476
477

*   `fvp-base-gicv2legacy-psci.dtb`

478
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
479
480
481

*   `fvp-base-gicv3-psci.dtb`

482
483
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
484

485
486
487
488
489
490
491
492
493
494
495
496
497
498
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


499
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
500
is launched. Alternatively a symbolic link may be used.
501

502
### Obtaining a root file-system
503
504
505
506
507

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

508
#### Prepare VirtioBlock
509
510
511
512
513

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

514
    NOTE: The unpacked disk image grows to 3 GiB in size.
515

516
517
        wget http://releases.linaro.org/14.04/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.8_20140417-630.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.8_20140417-630.img.gz
518
519
520
521
522
523
524
525
526

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
527
528
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
529
530
531
532
533

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

534
    1.  In EDK2, edit the following file:
535
536
537
538
539
540
541
542
543
544
545
546
547
548

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
549
    passing it the correct command line option. In the FVPs the following
550
551
552
553
554
555
    option should be provided in addition to the ones described in the
    "Running the software" section below.

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

556
    On the Base FVPs:
557

558
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
559

560
    On the Foundation FVP:
561

562
        --block-device="<path-to>/<file-system-image>"
563
564


565
566
567
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

568
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
569
570
571
572
573

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

574
#### Prepare RAM-disk
575

576
To prepare a RAM-disk root file-system, do the following:
577
578
579

1.  Download the file-system image:

580
        wget http://releases.linaro.org/14.04/openembedded/aarch64/linaro-image-lamp-genericarmv8-20140417-667.rootfs.tar.gz
581
582
583
584
585
586

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
587
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20140417-667.rootfs.tar.gz | cpio -id"
588
589
590
591
592
593
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
594
    launched from. Alternatively a symbolic link may be used.
595
596


597
598
6.  Running the software
------------------------
599

600
This version of the ARM Trusted Firmware has been tested on the following ARM
601
602
FVPs (64-bit versions only).

603
*   `Foundation_v8` (Version 2.0, Build 0.8.5206)
604
605
606
607
*   `FVP_Base_AEMv8A-AEMv8A` (Version 5.6, Build 0.8.5602)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 5.6, Build 0.8.5602)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 5.6, Build 0.8.5602)
*   `FVP_Base_Cortex-A57x2-A53x4` (Version 5.6, Build 0.8.5602)
608
609
610

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
611
612
613
614
615

Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

616
617
618
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

619
620

### Running on the Foundation FVP with reset to BL1 entrypoint
621
622
623
624
625
626
627

The following `Foundation_v8` parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

628
629
630
631
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

632
    <path-to>/Foundation_v8                   \
633
634
635
636
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --gicv3                                   \
637
638
639
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
640

641
642
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
643
644
645
646
647
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

648
### Notes regarding Base FVP configuration options
649

650
651
652
1. The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
section above).
653

654
2. Using `cache_state_modelled=1` makes booting very slow. The software will
655
656
657
still work (and run much faster) without this option but this will hide any
cache maintenance defects in the software.

658
3. Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
659
if a Linux RAM-disk file-system is used (see the "Obtaining a root file-system"
660
661
section above).

662
663
664
665
666
667
668
669
670
671
672
673
674
4. Setting the `-C bp.secure_memory` parameter to `1` is only supported on
Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
instructs the FVP to provide some helpful information if a secure memory
violation occurs.

5. The `--data="<path-to><bl31/bl32/bl33-binary>"@base address of binaries`
parameter is used to load bootloader images in the Base FVP memory (see the
"Building the Trusted Firmware" section above). The base address used to
load the binaries with --data should match the image base addresses in
platform_def.h used while linking the images.
BL3-2 image is only needed if BL3-1 has been built to expect a secure-EL1
payload.
675

676
677
678
679
680
681
682
683

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
684

685
686
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
687
688
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
689
690
691
692
693
694
695
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
696

697
698
699
700
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
701
702
703
704

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

705
706
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
707
708
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
709
710
711
712
713
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
### Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

NOTE: Uses the `-c clusterX.cpuX.RVBAR=@base address of BL3-1` where X is
the cluster number in clusterX and cpu number in cpuX is used to set the reset
vector for each core.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
    -C cluster0.cpu0.RVBAR=0x04006000                            \
    -C cluster0.cpu1.RVBAR=0x04006000                            \
    -C cluster0.cpu2.RVBAR=0x04006000                            \
    -C cluster0.cpu3.RVBAR=0x04006000                            \
    -C cluster1.cpu0.RVBAR=0x04006000                            \
    -C cluster1.cpu1.RVBAR=0x04006000                            \
    -C cluster1.cpu2.RVBAR=0x04006000                            \
    -C cluster1.cpu3.RVBAR=0x04006000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04006000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04024000    \
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

### Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

NOTE: Uses the `-c clusterX.cpuX.RVBARADDR=@base address of BL3-1` where X is
the cluster number in clusterX and cpu number in cpuX is used to set the reset
vector for each core.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
    -C cluster0.cpu0.RVBARADDR=0x04006000                        \
    -C cluster0.cpu1.RVBARADDR=0x04006000                        \
    -C cluster0.cpu2.RVBARADDR=0x04006000                        \
    -C cluster0.cpu3.RVBARADDR=0x04006000                        \
    -C cluster1.cpu0.RVBARADDR=0x04006000                        \
    -C cluster1.cpu1.RVBARADDR=0x04006000                        \
    -C cluster1.cpu2.RVBARADDR=0x04006000                        \
    -C cluster1.cpu3.RVBARADDR=0x04006000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04006000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04024000    \
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

779
780
781
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
782
783
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
784
785
786
787
788
789

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

790
The AEMv8 Base FVP can be configured to support GICv2 at addresses
791
792
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
793
794
795
796
797
798

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

799
800
801
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
802
803
804

*   `SYS_ID.Build[15:12]`

805
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
806
    default value on the Base FVPs.
807
808
809

*   `SYS_ID.Build[15:12]`

810
811
812
813
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
814

815
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
816
BL3-3 images should be used.
817

818
819
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

820
821
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
822

823
824
825
826
827
828
829
830
    <path-to>/Foundation_v8                   \
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
831
832
833

Explicit configuration of the `SYS_ID` register is not required.

834
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
835

836
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
837
838
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
839
840
841
842
843
844
845
846
847
848
849
850
851
852

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
853
    -C bp.variant=0x0
854

855
856
857
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
858
859
860
861


- - - - - - - - - - - - - - - - - - - - - - - - - -

862
_Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved._
863
864


865
[Firmware Design]:  ./firmware-design.md
866

867
[ARM FVP website]:  http://www.arm.com/fvp
868
[Linaro Toolchain]: http://releases.linaro.org/13.11/components/toolchain/binaries/
869
[EDK2]:             http://github.com/tianocore/edk2
870
[DS-5]:             http://www.arm.com/products/tools/software-tools/ds-5/index.php