cadence_qspi.c 19.5 KB
Newer Older
1
2
/*
 * Copyright (c) 2019, ARM Limited and Contributors. All rights reserved.
3
 * Copyright (c) 2019, Intel Corporation. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>
#include <common/debug.h>
#include <lib/mmio.h>
#include <string.h>
#include <drivers/delay_timer.h>
#include <drivers/console.h>

#include "cadence_qspi.h"
#include <platform_def.h>

#define LESS(a, b)   (((a) < (b)) ? (a) : (b))
#define MORE(a, b)   (((a) > (b)) ? (a) : (b))


uint32_t qspi_device_size;
int cad_qspi_cs;

int cad_qspi_idle(void)
{
	return (mmio_read_32(CAD_QSPI_OFFSET + CAD_QSPI_CFG)
			& CAD_QSPI_CFG_IDLE) >> 31;
}

int cad_qspi_set_baudrate_div(uint32_t div)
{
	if (div > 0xf)
		return CAD_INVALID;

	mmio_clrsetbits_32(CAD_QSPI_OFFSET + CAD_QSPI_CFG,
			~CAD_QSPI_CFG_BAUDDIV_MSK,
			CAD_QSPI_CFG_BAUDDIV(div));

	return 0;
}

int cad_qspi_configure_dev_size(uint32_t addr_bytes,
		uint32_t bytes_per_dev, uint32_t bytes_per_block)
{

	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_DEVSZ,
			CAD_QSPI_DEVSZ_ADDR_BYTES(addr_bytes) |
			CAD_QSPI_DEVSZ_BYTES_PER_PAGE(bytes_per_dev) |
			CAD_QSPI_DEVSZ_BYTES_PER_BLOCK(bytes_per_block));
	return 0;
}

int cad_qspi_set_read_config(uint32_t opcode, uint32_t instr_type,
		uint32_t addr_type, uint32_t data_type,
		uint32_t mode_bit, uint32_t dummy_clk_cycle)
{
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_DEVRD,
			CAD_QSPI_DEV_OPCODE(opcode) |
			CAD_QSPI_DEV_INST_TYPE(instr_type) |
			CAD_QSPI_DEV_ADDR_TYPE(addr_type) |
			CAD_QSPI_DEV_DATA_TYPE(data_type) |
			CAD_QSPI_DEV_MODE_BIT(mode_bit) |
			CAD_QSPI_DEV_DUMMY_CLK_CYCLE(dummy_clk_cycle));

	return 0;
}

69
70
int cad_qspi_set_write_config(uint32_t opcode, uint32_t addr_type,
		uint32_t data_type, uint32_t dummy_clk_cycle)
71
72
{
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_DEVWR,
73
			CAD_QSPI_DEV_OPCODE(opcode) |
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
			CAD_QSPI_DEV_ADDR_TYPE(addr_type) |
			CAD_QSPI_DEV_DATA_TYPE(data_type) |
			CAD_QSPI_DEV_DUMMY_CLK_CYCLE(dummy_clk_cycle));

	return 0;
}

int cad_qspi_timing_config(uint32_t clkphase, uint32_t clkpol, uint32_t csda,
		uint32_t csdads, uint32_t cseot, uint32_t cssot,
		uint32_t rddatacap)
{
	uint32_t cfg = mmio_read_32(CAD_QSPI_OFFSET + CAD_QSPI_CFG);

	cfg &= CAD_QSPI_CFG_SELCLKPHASE_CLR_MSK &
		CAD_QSPI_CFG_SELCLKPOL_CLR_MSK;
	cfg |= CAD_QSPI_SELCLKPHASE(clkphase) | CAD_QSPI_SELCLKPOL(clkpol);

	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_CFG, cfg);

	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_DELAY,
		CAD_QSPI_DELAY_CSSOT(cssot) | CAD_QSPI_DELAY_CSEOT(cseot) |
		CAD_QSPI_DELAY_CSDADS(csdads) | CAD_QSPI_DELAY_CSDA(csda));

	return 0;
}

int cad_qspi_stig_cmd_helper(int cs, uint32_t cmd)
{
	uint32_t count = 0;

	/* chip select */
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_CFG,
			(mmio_read_32(CAD_QSPI_OFFSET + CAD_QSPI_CFG)
			 & CAD_QSPI_CFG_CS_MSK) | CAD_QSPI_CFG_CS(cs));

	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_FLASHCMD, cmd);
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_FLASHCMD,
			cmd | CAD_QSPI_FLASHCMD_EXECUTE);

	do {
		uint32_t reg = mmio_read_32(CAD_QSPI_OFFSET +
					CAD_QSPI_FLASHCMD);
		if (!(reg & CAD_QSPI_FLASHCMD_EXECUTE_STAT))
			break;
		count++;
	} while (count < CAD_QSPI_COMMAND_TIMEOUT);

	if (count >= CAD_QSPI_COMMAND_TIMEOUT) {
		ERROR("Error sending QSPI command %x, timed out\n",
				cmd);
		return CAD_QSPI_ERROR;
	}

	return 0;
}

int cad_qspi_stig_cmd(uint32_t opcode, uint32_t dummy)
{
	if (dummy > ((1 << CAD_QSPI_FLASHCMD_NUM_DUMMYBYTES_MAX) - 1)) {
		ERROR("Faulty dummy bytes\n");
		return -1;
	}

	return cad_qspi_stig_cmd_helper(cad_qspi_cs,
			CAD_QSPI_FLASHCMD_OPCODE(opcode) |
			CAD_QSPI_FLASHCMD_NUM_DUMMYBYTES(dummy));
}

int cad_qspi_stig_read_cmd(uint32_t opcode, uint32_t dummy, uint32_t num_bytes,
		uint32_t *output)
{
	if (dummy > ((1 << CAD_QSPI_FLASHCMD_NUM_DUMMYBYTES_MAX) - 1)) {
		ERROR("Faulty dummy byes\n");
		return -1;
	}

	if ((num_bytes > 8) || (num_bytes == 0))
		return -1;

	uint32_t cmd =
		CAD_QSPI_FLASHCMD_OPCODE(opcode) |
		CAD_QSPI_FLASHCMD_ENRDDATA(1) |
		CAD_QSPI_FLASHCMD_NUMRDDATABYTES(num_bytes - 1) |
		CAD_QSPI_FLASHCMD_ENCMDADDR(0) |
		CAD_QSPI_FLASHCMD_ENMODEBIT(0) |
		CAD_QSPI_FLASHCMD_NUMADDRBYTES(0) |
		CAD_QSPI_FLASHCMD_ENWRDATA(0) |
		CAD_QSPI_FLASHCMD_NUMWRDATABYTES(0) |
		CAD_QSPI_FLASHCMD_NUMDUMMYBYTES(dummy);

	if (cad_qspi_stig_cmd_helper(cad_qspi_cs, cmd)) {
165
		ERROR("failed to send stig cmd\n");
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
		return -1;
	}

	output[0] = mmio_read_32(CAD_QSPI_OFFSET + CAD_QSPI_FLASHCMD_RDDATA0);

	if (num_bytes > 4) {
		output[1] = mmio_read_32(CAD_QSPI_OFFSET +
				CAD_QSPI_FLASHCMD_RDDATA1);
	}

	return 0;
}

int cad_qspi_stig_wr_cmd(uint32_t opcode, uint32_t dummy, uint32_t num_bytes,
		uint32_t *input)
{
	if (dummy > ((1 << CAD_QSPI_FLASHCMD_NUM_DUMMYBYTES_MAX) - 1)) {
		ERROR("Faulty dummy byes\n");
		return -1;
	}

	if ((num_bytes > 8) || (num_bytes == 0))
		return -1;

	uint32_t cmd = CAD_QSPI_FLASHCMD_OPCODE(opcode) |
		CAD_QSPI_FLASHCMD_ENRDDATA(0) |
		CAD_QSPI_FLASHCMD_NUMRDDATABYTES(0) |
		CAD_QSPI_FLASHCMD_ENCMDADDR(0) |
		CAD_QSPI_FLASHCMD_ENMODEBIT(0) |
		CAD_QSPI_FLASHCMD_NUMADDRBYTES(0) |
		CAD_QSPI_FLASHCMD_ENWRDATA(1) |
		CAD_QSPI_FLASHCMD_NUMWRDATABYTES(num_bytes - 1) |
		CAD_QSPI_FLASHCMD_NUMDUMMYBYTES(dummy);

	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_FLASHCMD_WRDATA0, input[0]);

	if (num_bytes > 4)
		mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_FLASHCMD_WRDATA1,
				input[1]);

	return cad_qspi_stig_cmd_helper(cad_qspi_cs, cmd);
}

int cad_qspi_stig_addr_cmd(uint32_t opcode, uint32_t dummy, uint32_t addr)
{
	uint32_t cmd;

	if (dummy > ((1 << CAD_QSPI_FLASHCMD_NUM_DUMMYBYTES_MAX) - 1))
		return -1;

	cmd = CAD_QSPI_FLASHCMD_OPCODE(opcode) |
		CAD_QSPI_FLASHCMD_NUMDUMMYBYTES(dummy) |
		CAD_QSPI_FLASHCMD_ENCMDADDR(1) |
		CAD_QSPI_FLASHCMD_NUMADDRBYTES(2);

	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_FLASHCMD_ADDR, addr);

	return cad_qspi_stig_cmd_helper(cad_qspi_cs, cmd);
}

int cad_qspi_device_bank_select(uint32_t bank)
{
	int status = 0;

	status = cad_qspi_stig_cmd(CAD_QSPI_STIG_OPCODE_WREN, 0);
	if (status != 0)
		return status;

	status = cad_qspi_stig_wr_cmd(CAD_QSPI_STIG_OPCODE_WREN_EXT_REG,
			0, 1, &bank);
	if (status != 0)
		return status;

	return cad_qspi_stig_cmd(CAD_QSPI_STIG_OPCODE_WRDIS, 0);
}

int cad_qspi_device_status(uint32_t *status)
{
	return cad_qspi_stig_read_cmd(CAD_QSPI_STIG_OPCODE_RDSR, 0, 1, status);
}

#if CAD_QSPI_MICRON_N25Q_SUPPORT
int cad_qspi_n25q_enable(void)
{
	cad_qspi_set_read_config(QSPI_FAST_READ, CAD_QSPI_INST_SINGLE,
			CAD_QSPI_ADDR_FASTREAD, CAT_QSPI_ADDR_SINGLE_IO, 1,
			0);
253
254
	cad_qspi_set_write_config(QSPI_WRITE, 0, 0, 0);

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
	return 0;
}

int cad_qspi_n25q_wait_for_program_and_erase(int program_only)
{
	uint32_t status, flag_sr;
	int count = 0;

	while (count < CAD_QSPI_COMMAND_TIMEOUT) {
		status = cad_qspi_device_status(&status);
		if (status != 0) {
			ERROR("Error getting device status\n");
			return -1;
		}
		if (!CAD_QSPI_STIG_SR_BUSY(status))
			break;
		count++;
	}

	if (count >= CAD_QSPI_COMMAND_TIMEOUT) {
		ERROR("Timed out waiting for idle\n");
		return -1;
	}

	count = 0;

	while (count < CAD_QSPI_COMMAND_TIMEOUT) {
		status = cad_qspi_stig_read_cmd(CAD_QSPI_STIG_OPCODE_RDFLGSR,
				0, 1, &flag_sr);
		if (status != 0) {
			ERROR("Error waiting program and erase.\n");
			return status;
		}

		if ((program_only &&
			CAD_QSPI_STIG_FLAGSR_PROGRAMREADY(flag_sr)) ||
			(!program_only &&
			CAD_QSPI_STIG_FLAGSR_ERASEREADY(flag_sr)))
			break;
	}

	if (count >= CAD_QSPI_COMMAND_TIMEOUT)
		ERROR("Timed out waiting for program and erase\n");

	if ((program_only && CAD_QSPI_STIG_FLAGSR_PROGRAMERROR(flag_sr)) ||
			(!program_only &&
			CAD_QSPI_STIG_FLAGSR_ERASEERROR(flag_sr))) {
		ERROR("Error programming/erasing flash\n");
		cad_qspi_stig_cmd(CAD_QSPI_STIG_OPCODE_CLFSR, 0);
		return -1;
	}

	return 0;
}
#endif

int cad_qspi_indirect_read_start_bank(uint32_t flash_addr, uint32_t num_bytes)
{
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_INDRDSTADDR, flash_addr);
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_INDRDCNT, num_bytes);
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_INDRD,
			CAD_QSPI_INDRD_START |
			CAD_QSPI_INDRD_IND_OPS_DONE);

	return 0;
}


int cad_qspi_indirect_write_start_bank(uint32_t flash_addr,
					uint32_t num_bytes)
{
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_INDWRSTADDR, flash_addr);
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_INDWRCNT, num_bytes);
	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_INDWR,
			CAD_QSPI_INDWR_START |
			CAD_QSPI_INDWR_INDDONE);

	return 0;
}

int cad_qspi_indirect_write_finish(void)
{
#if CAD_QSPI_MICRON_N25Q_SUPPORT
	return cad_qspi_n25q_wait_for_program_and_erase(1);
#else
	return 0;
#endif

}

int cad_qspi_enable(void)
{
	int status;

	mmio_setbits_32(CAD_QSPI_OFFSET + CAD_QSPI_CFG, CAD_QSPI_CFG_ENABLE);

#if CAD_QSPI_MICRON_N25Q_SUPPORT
	status = cad_qspi_n25q_enable();
	if (status != 0)
		return status;
#endif
	return 0;
}

int cad_qspi_enable_subsector_bank(uint32_t addr)
{
	int status = 0;

	status = cad_qspi_stig_cmd(CAD_QSPI_STIG_OPCODE_WREN, 0);
	if (status != 0)
		return status;

	status = cad_qspi_stig_addr_cmd(CAD_QSPI_STIG_OPCODE_SUBSEC_ERASE, 0,
					addr);
	if (status != 0)
		return status;

#if CAD_QSPI_MICRON_N25Q_SUPPORT
	status = cad_qspi_n25q_wait_for_program_and_erase(0);
#endif
	return status;
}

int cad_qspi_erase_subsector(uint32_t addr)
{
	int status = 0;

	status = cad_qspi_device_bank_select(addr >> 24);
	if (status != 0)
		return status;

	return cad_qspi_enable_subsector_bank(addr);
}

int cad_qspi_erase_sector(uint32_t addr)
{
	int status = 0;

	status = cad_qspi_device_bank_select(addr >> 24);
	if (status != 0)
		return status;

	status = cad_qspi_stig_cmd(CAD_QSPI_STIG_OPCODE_WREN, 0);
	if (status != 0)
		return status;

	status = cad_qspi_stig_addr_cmd(CAD_QSPI_STIG_OPCODE_SEC_ERASE, 0,
					addr);
	if (status != 0)
		return status;

#if CAD_QSPI_MICRON_N25Q_SUPPORT
	status = cad_qspi_n25q_wait_for_program_and_erase(0);
#endif
	return status;
}

void cad_qspi_calibration(uint32_t dev_clk, uint32_t qspi_clk_mhz)
{
	int status;
	uint32_t dev_sclk_mhz = 27; /*min value to get biggest 0xF div factor*/
	uint32_t data_cap_delay;
	uint32_t sample_rdid;
	uint32_t rdid;
	uint32_t div_actual;
	uint32_t div_bits;
	int first_pass, last_pass;

	/*1.  Set divider to bigger value (slowest SCLK)
	 *2.  RDID and save the value
	 */
	div_actual = (qspi_clk_mhz + (dev_sclk_mhz - 1)) / dev_sclk_mhz;
	div_bits = (((div_actual + 1) / 2) - 1);
	status = cad_qspi_set_baudrate_div(0xf);

	status = cad_qspi_stig_read_cmd(CAD_QSPI_STIG_OPCODE_RDID,
					0, 3, &sample_rdid);
	if (status != 0)
		return;

	/*3. Set divider to the intended frequency
	 *4.  Set the read delay = 0
	 *5.  RDID and check whether the value is same as item 2
	 *6.  Increase read delay and compared the value against item 2
	 *7.  Find the range of read delay that have same as
	 *    item 2 and divide it to 2
	 */
	div_actual = (qspi_clk_mhz + (dev_clk - 1)) / dev_clk;
	div_bits = (((div_actual + 1) / 2) - 1);
	status = cad_qspi_set_baudrate_div(div_bits);
	if (status != 0)
		return;

	data_cap_delay = 0;
	first_pass = -1;
	last_pass = -1;

	do {
		if (status != 0)
			break;
		status = cad_qspi_stig_read_cmd(CAD_QSPI_STIG_OPCODE_RDID, 0,
						3, &rdid);
		if (status != 0)
			break;
		if (rdid == sample_rdid) {
			if (first_pass == -1)
				first_pass = data_cap_delay;
			else
				last_pass = data_cap_delay;
		}

		data_cap_delay++;

		mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_RDDATACAP,
				CAD_QSPI_RDDATACAP_BYP(1) |
				CAD_QSPI_RDDATACAP_DELAY(data_cap_delay));

	} while (data_cap_delay < 0x10);

	if (first_pass > 0) {
		int diff = first_pass - last_pass;

		data_cap_delay = first_pass + diff / 2;
	}

	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_RDDATACAP,
			CAD_QSPI_RDDATACAP_BYP(1) |
			CAD_QSPI_RDDATACAP_DELAY(data_cap_delay));
	status = cad_qspi_stig_read_cmd(CAD_QSPI_STIG_OPCODE_RDID, 0, 3, &rdid);

	if (status != 0)
		return;
}

int cad_qspi_int_disable(uint32_t mask)
{
	if (cad_qspi_idle() == 0)
		return -1;

	if ((CAD_QSPI_INT_STATUS_ALL & mask) == 0)
		return -1;

	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_IRQMSK, mask);
	return 0;
}

void cad_qspi_set_chip_select(int cs)
{
	cad_qspi_cs = cs;
}

int cad_qspi_init(uint32_t desired_clk_freq, uint32_t clk_phase,
			uint32_t clk_pol, uint32_t csda, uint32_t csdads,
			uint32_t cseot, uint32_t cssot, uint32_t rddatacap)
{
	int status = 0;
	uint32_t qspi_desired_clk_freq;
	uint32_t rdid = 0;
	uint32_t cap_code;

	INFO("Initializing Qspi\n");

	if (cad_qspi_idle() == 0) {
518
		ERROR("device not idle\n");
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
		return -1;
	}


	status = cad_qspi_timing_config(clk_phase, clk_pol, csda, csdads,
					cseot, cssot, rddatacap);

	if (status != 0) {
		ERROR("config set timing failure\n");
		return status;
	}

	mmio_write_32(CAD_QSPI_OFFSET + CAD_QSPI_REMAPADDR,
			CAD_QSPI_REMAPADDR_VALUE_SET(0));

	status = cad_qspi_int_disable(CAD_QSPI_INT_STATUS_ALL);
	if (status != 0) {
		ERROR("failed disable\n");
		return status;
	}

	cad_qspi_set_baudrate_div(0xf);
	status = cad_qspi_enable();
	if (status != 0) {
		ERROR("failed enable\n");
		return status;
	}

	qspi_desired_clk_freq = 100;
	cad_qspi_calibration(qspi_desired_clk_freq, 50000000);

	status = cad_qspi_stig_read_cmd(CAD_QSPI_STIG_OPCODE_RDID, 0, 3,
					&rdid);

	if (status != 0) {
		ERROR("Error reading RDID\n");
		return status;
	}

	/*
	 * NOTE: The Size code seems to be a form of BCD (binary coded decimal).
	 * The first nibble is the 10's digit and the second nibble is the 1's
	 * digit in the number of bytes.
	 *
	 * Capacity ID samples:
	 * 0x15 :   16 Mb =>   2 MiB => 1 << 21 ; BCD=15
	 * 0x16 :   32 Mb =>   4 MiB => 1 << 22 ; BCD=16
	 * 0x17 :   64 Mb =>   8 MiB => 1 << 23 ; BCD=17
	 * 0x18 :  128 Mb =>  16 MiB => 1 << 24 ; BCD=18
	 * 0x19 :  256 Mb =>  32 MiB => 1 << 25 ; BCD=19
	 * 0x1a
	 * 0x1b
	 * 0x1c
	 * 0x1d
	 * 0x1e
	 * 0x1f
	 * 0x20 :  512 Mb =>  64 MiB => 1 << 26 ; BCD=20
	 * 0x21 : 1024 Mb => 128 MiB => 1 << 27 ; BCD=21
	 */

	cap_code = CAD_QSPI_STIG_RDID_CAPACITYID(rdid);

	if (!(((cap_code >> 4) > 0x9) || ((cap_code & 0xf) > 0x9))) {
		uint32_t decoded_cap = ((cap_code >> 4) * 10) +
					(cap_code & 0xf);
		qspi_device_size = 1 << (decoded_cap + 6);
		INFO("QSPI Capacity: %x\n\n", qspi_device_size);

	} else {
		ERROR("Invalid CapacityID encountered: 0x%02x\n",
				cap_code);
		return -1;
	}

593
594
595
	cad_qspi_configure_dev_size(INTEL_QSPI_ADDR_BYTES,
				INTEL_QSPI_BYTES_PER_DEV,
				INTEL_BYTES_PER_BLOCK);
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

	INFO("Flash size: %d Bytes\n", qspi_device_size);

	return status;
}

int cad_qspi_indirect_page_bound_write(uint32_t offset,
		uint8_t *buffer, uint32_t len)
{
	int status = 0, i;
	uint32_t write_count, write_capacity, *write_data, space,
		write_fill_level, sram_partition;

	status = cad_qspi_indirect_write_start_bank(offset, len);
	if (status != 0)
		return status;

	write_count = 0;
	sram_partition = CAD_QSPI_SRAMPART_ADDR(mmio_read_32(CAD_QSPI_OFFSET +
			 CAD_QSPI_SRAMPART));
	write_capacity = (uint32_t) CAD_QSPI_SRAM_FIFO_ENTRY_COUNT -
			sram_partition;

	while (write_count < len) {
		write_fill_level = CAD_QSPI_SRAMFILL_INDWRPART(
					mmio_read_32(CAD_QSPI_OFFSET +
							CAD_QSPI_SRAMFILL));
		space = LESS(write_capacity - write_fill_level,
				(len - write_count) / sizeof(uint32_t));
		write_data = (uint32_t *)(buffer + write_count);
		for (i = 0; i < space; ++i)
			mmio_write_32(CAD_QSPIDATA_OFST, *write_data++);

		write_count += space * sizeof(uint32_t);
	}
	return cad_qspi_indirect_write_finish();
}

int cad_qspi_read_bank(uint8_t *buffer, uint32_t offset, uint32_t size)
{
	int status;
	uint32_t read_count = 0, *read_data;
	int level = 1, count = 0, i;

	status = cad_qspi_indirect_read_start_bank(offset, size);

	if (status != 0)
		return status;

	while (read_count < size) {
		do {
			level = CAD_QSPI_SRAMFILL_INDRDPART(
				mmio_read_32(CAD_QSPI_OFFSET +
					CAD_QSPI_SRAMFILL));
			read_data = (uint32_t *)(buffer + read_count);
			for (i = 0; i < level; ++i)
				*read_data++ = mmio_read_32(CAD_QSPIDATA_OFST);

			read_count += level * sizeof(uint32_t);
			count++;
		} while (level > 0);
	}

	return 0;
}

int cad_qspi_write_bank(uint32_t offset, uint8_t *buffer, uint32_t size)
{
	int status = 0;
	uint32_t page_offset  = offset & (CAD_QSPI_PAGE_SIZE - 1);
	uint32_t write_size = LESS(size, CAD_QSPI_PAGE_SIZE - page_offset);

	while (size) {
		status = cad_qspi_indirect_page_bound_write(offset, buffer,
							write_size);
		if (status != 0)
			break;

		offset  += write_size;
		buffer  += write_size;
		size -= write_size;
		write_size = LESS(size, CAD_QSPI_PAGE_SIZE);
	}
	return status;
}

int cad_qspi_read(void *buffer, uint32_t  offset, uint32_t  size)
{
	uint32_t bank_count, bank_addr, bank_offset, copy_len;
	uint8_t *read_data;
	int i, status;

	status = 0;

	if ((offset >= qspi_device_size) ||
			(offset + size - 1 >= qspi_device_size) ||
			(size == 0) ||
			((long) ((int *)buffer) & 0x3)  ||
			(offset & 0x3) ||
			(size & 0x3)) {
696
		ERROR("Invalid read parameter\n");
697
698
699
700
701
		return -1;
	}

	if (CAD_QSPI_INDRD_RD_STAT(mmio_read_32(CAD_QSPI_OFFSET +
						CAD_QSPI_INDRD))) {
702
		ERROR("Read in progress\n");
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
		return -1;
	}

	/*
	 * bank_count : Number of bank(s) affected, including partial banks.
	 * bank_addr  : Aligned address of the first bank,
	 *		including partial bank.
	 * bank_ofst  : The offset of the bank to read.
	 *		Only used when reading the first bank.
	 */
	bank_count = CAD_QSPI_BANK_ADDR(offset + size - 1) -
			CAD_QSPI_BANK_ADDR(offset) + 1;
	bank_addr  = offset & CAD_QSPI_BANK_ADDR_MSK;
	bank_offset  = offset & (CAD_QSPI_BANK_SIZE - 1);

	read_data = (uint8_t *)buffer;

	copy_len = LESS(size, CAD_QSPI_BANK_SIZE - bank_offset);

	for (i = 0; i < bank_count; ++i) {
		status = cad_qspi_device_bank_select(CAD_QSPI_BANK_ADDR(
								bank_addr));
		if (status != 0)
			break;
		status = cad_qspi_read_bank(read_data, bank_offset, copy_len);
		if (status != 0)
			break;

		bank_addr += CAD_QSPI_BANK_SIZE;
		read_data += copy_len;
		size -= copy_len;
		bank_offset = 0;
		copy_len = LESS(size, CAD_QSPI_BANK_SIZE);
	}

	return status;
}

int cad_qspi_erase(uint32_t offset, uint32_t size)
{
	int status = 0;
	uint32_t subsector_offset  = offset & (CAD_QSPI_SUBSECTOR_SIZE - 1);
	uint32_t erase_size = LESS(size,
				CAD_QSPI_SUBSECTOR_SIZE - subsector_offset);

	while (size) {
		status = cad_qspi_erase_subsector(offset);
		if (status != 0)
			break;

		offset  += erase_size;
		size -= erase_size;
		erase_size = LESS(size, CAD_QSPI_SUBSECTOR_SIZE);
	}
	return status;
}

int cad_qspi_write(void *buffer, uint32_t offset, uint32_t size)
{
	int status, i;
	uint32_t bank_count, bank_addr, bank_offset, copy_len;
	uint8_t *write_data;

	status = 0;

	if ((offset >= qspi_device_size) ||
			(offset + size - 1 >= qspi_device_size) ||
			(size == 0) ||
			((long)buffer & 0x3)  ||
			(offset & 0x3) ||
			(size & 0x3))
		return -2;

	if (CAD_QSPI_INDWR_RDSTAT(mmio_read_32(CAD_QSPI_OFFSET +
						CAD_QSPI_INDWR))) {
		ERROR("QSPI Error: Write in progress\n");
		return -1;
	}

	bank_count = CAD_QSPI_BANK_ADDR(offset + size - 1) -
			CAD_QSPI_BANK_ADDR(offset) + 1;
	bank_addr = offset & CAD_QSPI_BANK_ADDR_MSK;
	bank_offset = offset & (CAD_QSPI_BANK_SIZE - 1);

	write_data = buffer;

	copy_len = LESS(size, CAD_QSPI_BANK_SIZE - bank_offset);

	for (i = 0; i < bank_count; ++i) {
		status = cad_qspi_device_bank_select(
				CAD_QSPI_BANK_ADDR(bank_addr));
		if (status != 0)
			break;

		status = cad_qspi_write_bank(bank_offset, write_data,
						copy_len);
		if (status != 0)
			break;

		bank_addr += CAD_QSPI_BANK_SIZE;
		write_data += copy_len;
		size -= copy_len;
		bank_offset = 0;

		copy_len = LESS(size, CAD_QSPI_BANK_SIZE);
	}
	return status;
}

int cad_qspi_update(void *Buffer, uint32_t offset, uint32_t size)
{
	int status = 0;

	status = cad_qspi_erase(offset, size);
	if (status != 0)
		return status;

	return cad_qspi_write(Buffer, offset, size);
}

void cad_qspi_reset(void)
{
	cad_qspi_stig_cmd(CAD_QSPI_STIG_OPCODE_RESET_EN, 0);
	cad_qspi_stig_cmd(CAD_QSPI_STIG_OPCODE_RESET_MEM, 0);
}