xlat_tables_common.c 11.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <cassert.h>
11
#include <common_def.h>
12
13
14
#include <debug.h>
#include <platform_def.h>
#include <string.h>
15
#include <types.h>
16
#include <utils.h>
17
#include <xlat_tables.h>
18
#include "xlat_tables_private.h"
19
20
21
22
23
24
25

#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
#define LVL0_SPACER ""
#define LVL1_SPACER "  "
#define LVL2_SPACER "    "
#define LVL3_SPACER "      "
#define get_level_spacer(level)		\
26
27
28
			(((level) == U(0)) ? LVL0_SPACER : \
			(((level) == U(1)) ? LVL1_SPACER : \
			(((level) == U(2)) ? LVL2_SPACER : LVL3_SPACER)))
29
30
31
32
33
#define debug_print(...) tf_printf(__VA_ARGS__)
#else
#define debug_print(...) ((void)0)
#endif

34
#define UNSET_DESC	~0ull
35
36
37
38

static uint64_t xlat_tables[MAX_XLAT_TABLES][XLAT_TABLE_ENTRIES]
			__aligned(XLAT_TABLE_SIZE) __section("xlat_table");

39
static unsigned int next_xlat;
40
41
42
static unsigned long long xlat_max_pa;
static uintptr_t xlat_max_va;

43
44
static uint64_t execute_never_mask;

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
 * Array of all memory regions stored in order of ascending base address.
 * The list is terminated by the first entry with size == 0.
 */
static mmap_region_t mmap[MAX_MMAP_REGIONS + 1];


void print_mmap(void)
{
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
	debug_print("mmap:\n");
	mmap_region_t *mm = mmap;
	while (mm->size) {
		debug_print(" VA:%p  PA:0x%llx  size:0x%zx  attr:0x%x\n",
				(void *)mm->base_va, mm->base_pa,
				mm->size, mm->attr);
		++mm;
	};
	debug_print("\n");
#endif
}

void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
68
			size_t size, mmap_attr_t attr)
69
70
71
{
	mmap_region_t *mm = mmap;
	mmap_region_t *mm_last = mm + ARRAY_SIZE(mmap) - 1;
72
73
	unsigned long long end_pa = base_pa + size - 1;
	uintptr_t end_va = base_va + size - 1;
74
75
76
77
78
79
80
81

	assert(IS_PAGE_ALIGNED(base_pa));
	assert(IS_PAGE_ALIGNED(base_va));
	assert(IS_PAGE_ALIGNED(size));

	if (!size)
		return;

82
83
84
	assert(base_pa < end_pa); /* Check for overflows */
	assert(base_va < end_va);

85
86
87
88
89
	assert((base_va + (uintptr_t)size - (uintptr_t)1) <=
					(PLAT_VIRT_ADDR_SPACE_SIZE - 1));
	assert((base_pa + (unsigned long long)size - 1ULL) <=
					(PLAT_PHY_ADDR_SPACE_SIZE - 1));

90
#if ENABLE_ASSERTIONS
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

	/* Check for PAs and VAs overlaps with all other regions */
	for (mm = mmap; mm->size; ++mm) {

		uintptr_t mm_end_va = mm->base_va + mm->size - 1;

		/*
		 * Check if one of the regions is completely inside the other
		 * one.
		 */
		int fully_overlapped_va =
			((base_va >= mm->base_va) && (end_va <= mm_end_va)) ||
			((mm->base_va >= base_va) && (mm_end_va <= end_va));

		/*
		 * Full VA overlaps are only allowed if both regions are
		 * identity mapped (zero offset) or have the same VA to PA
		 * offset. Also, make sure that it's not the exact same area.
		 */
		if (fully_overlapped_va) {
			assert((mm->base_va - mm->base_pa) ==
			       (base_va - base_pa));
			assert((base_va != mm->base_va) || (size != mm->size));
		} else {
			/*
			 * If the regions do not have fully overlapping VAs,
			 * then they must have fully separated VAs and PAs.
			 * Partial overlaps are not allowed
			 */

			unsigned long long mm_end_pa =
						     mm->base_pa + mm->size - 1;

			int separated_pa =
				(end_pa < mm->base_pa) || (base_pa > mm_end_pa);
			int separated_va =
				(end_va < mm->base_va) || (base_va > mm_end_va);

			assert(separated_va && separated_pa);
		}
	}

	mm = mmap; /* Restore pointer to the start of the array */

135
#endif /* ENABLE_ASSERTIONS */
136

137
138
139
140
	/* Find correct place in mmap to insert new region */
	while (mm->base_va < base_va && mm->size)
		++mm;

141
142
143
144
145
146
147
148
149
150
151
152
153
154
	/*
	 * If a section is contained inside another one with the same base
	 * address, it must be placed after the one it is contained in:
	 *
	 * 1st |-----------------------|
	 * 2nd |------------|
	 * 3rd |------|
	 *
	 * This is required for mmap_region_attr() to get the attributes of the
	 * small region correctly.
	 */
	while ((mm->base_va == base_va) && (mm->size > size))
		++mm;

155
156
157
158
159
160
161
162
163
164
165
	/* Make room for new region by moving other regions up by one place */
	memmove(mm + 1, mm, (uintptr_t)mm_last - (uintptr_t)mm);

	/* Check we haven't lost the empty sentinal from the end of the array */
	assert(mm_last->size == 0);

	mm->base_pa = base_pa;
	mm->base_va = base_va;
	mm->size = size;
	mm->attr = attr;

166
167
168
169
	if (end_pa > xlat_max_pa)
		xlat_max_pa = end_pa;
	if (end_va > xlat_max_va)
		xlat_max_va = end_va;
170
171
172
173
174
175
176
177
178
179
}

void mmap_add(const mmap_region_t *mm)
{
	while (mm->size) {
		mmap_add_region(mm->base_pa, mm->base_va, mm->size, mm->attr);
		++mm;
	}
}

180
static uint64_t mmap_desc(mmap_attr_t attr, unsigned long long addr_pa,
181
							unsigned int level)
182
{
183
	uint64_t desc;
184
185
	int mem_type;

186
187
188
	/* Make sure that the granularity is fine enough to map this address. */
	assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0);

189
	desc = addr_pa;
190
191
192
193
194
	/*
	 * There are different translation table descriptors for level 3 and the
	 * rest.
	 */
	desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
195
196
	desc |= (attr & MT_NS) ? LOWER_ATTRS(NS) : 0;
	desc |= (attr & MT_RW) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
197
198
	desc |= LOWER_ATTRS(ACCESS_FLAG);

199
200
201
202
203
204
205
206
207
208
	/*
	 * Deduce shareability domain and executability of the memory region
	 * from the memory type.
	 *
	 * Data accesses to device memory and non-cacheable normal memory are
	 * coherent for all observers in the system, and correspondingly are
	 * always treated as being Outer Shareable. Therefore, for these 2 types
	 * of memory, it is not strictly needed to set the shareability field
	 * in the translation tables.
	 */
209
	mem_type = MT_TYPE(attr);
210
	if (mem_type == MT_DEVICE) {
211
		desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
212
213
214
215
216
217
		/*
		 * Always map device memory as execute-never.
		 * This is to avoid the possibility of a speculative instruction
		 * fetch, which could be an issue if this memory region
		 * corresponds to a read-sensitive peripheral.
		 */
218
219
		desc |= execute_never_mask;

220
221
222
223
224
225
226
	} else { /* Normal memory */
		/*
		 * Always map read-write normal memory as execute-never.
		 * (Trusted Firmware doesn't self-modify its code, therefore
		 * R/W memory is reserved for data storage, which must not be
		 * executable.)
		 * Note that setting the XN bit here is for consistency only.
227
		 * The function that enables the MMU sets the SCTLR_ELx.WXN bit,
228
229
230
		 * which makes any writable memory region to be treated as
		 * execute-never, regardless of the value of the XN bit in the
		 * translation table.
231
232
233
		 *
		 * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
		 * attribute to figure out the value of the XN bit.
234
		 */
235
236
237
		if ((attr & MT_RW) || (attr & MT_EXECUTE_NEVER)) {
			desc |= execute_never_mask;
		}
238
239
240
241
242
243
244

		if (mem_type == MT_MEMORY) {
			desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH);
		} else {
			assert(mem_type == MT_NON_CACHEABLE);
			desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
		}
245
246
247
248
249
250
	}

	debug_print((mem_type == MT_MEMORY) ? "MEM" :
		((mem_type == MT_NON_CACHEABLE) ? "NC" : "DEV"));
	debug_print(attr & MT_RW ? "-RW" : "-RO");
	debug_print(attr & MT_NS ? "-NS" : "-S");
251
	debug_print(attr & MT_EXECUTE_NEVER ? "-XN" : "-EXEC");
252
253
254
	return desc;
}

255
/*
256
257
258
259
260
261
262
 * Look for the innermost region that contains the area at `base_va` with size
 * `size`. Populate *attr with the attributes of this region.
 *
 * On success, this function returns 0.
 * If there are partial overlaps (meaning that a smaller size is needed) or if
 * the region can't be found in the given area, it returns -1. In this case the
 * value pointed by attr should be ignored by the caller.
263
 */
264
265
static int mmap_region_attr(mmap_region_t *mm, uintptr_t base_va,
					size_t size, mmap_attr_t *attr)
266
{
267
	/* Don't assume that the area is contained in the first region */
268
	int ret = -1;
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

	/*
	 * Get attributes from last (innermost) region that contains the
	 * requested area. Don't stop as soon as one region doesn't contain it
	 * because there may be other internal regions that contain this area:
	 *
	 * |-----------------------------1-----------------------------|
	 * |----2----|     |-------3-------|    |----5----|
	 *                   |--4--|
	 *
	 *                   |---| <- Area we want the attributes of.
	 *
	 * In this example, the area is contained in regions 1, 3 and 4 but not
	 * in region 2. The loop shouldn't stop at region 2 as inner regions
	 * have priority over outer regions, it should stop at region 5.
	 */
	for (;; ++mm) {
286
287

		if (!mm->size)
288
			return ret; /* Reached end of list */
289

290
		if (mm->base_va > base_va + size - 1)
291
			return ret; /* Next region is after area so end */
292

293
		if (mm->base_va + mm->size - 1 < base_va)
294
295
			continue; /* Next region has already been overtaken */

296
		if (!ret && mm->attr == *attr)
297
298
299
			continue; /* Region doesn't override attribs so skip */

		if (mm->base_va > base_va ||
300
			mm->base_va + mm->size - 1 < base_va + size - 1)
301
			return -1; /* Region doesn't fully cover our area */
302

303
304
		*attr = mm->attr;
		ret = 0;
305
	}
306
	return ret;
307
308
309
310
311
}

static mmap_region_t *init_xlation_table_inner(mmap_region_t *mm,
					uintptr_t base_va,
					uint64_t *table,
312
					unsigned int level)
313
{
314
	assert(level >= XLAT_TABLE_LEVEL_MIN && level <= XLAT_TABLE_LEVEL_MAX);
315

316
317
318
319
320
	unsigned int level_size_shift =
		       L0_XLAT_ADDRESS_SHIFT - level * XLAT_TABLE_ENTRIES_SHIFT;
	u_register_t level_size = (u_register_t)1 << level_size_shift;
	u_register_t level_index_mask =
		((u_register_t)XLAT_TABLE_ENTRIES_MASK) << level_size_shift;
321
322
323
324
325
326
327
328
329

	debug_print("New xlat table:\n");

	do  {
		uint64_t desc = UNSET_DESC;

		if (!mm->size) {
			/* Done mapping regions; finish zeroing the table */
			desc = INVALID_DESC;
330
		} else if (mm->base_va + mm->size - 1 < base_va) {
331
			/* This area is after the region so get next region */
332
333
334
335
			++mm;
			continue;
		}

336
337
		debug_print("%s VA:%p size:0x%llx ", get_level_spacer(level),
			(void *)base_va, (unsigned long long)level_size);
338

339
		if (mm->base_va > base_va + level_size - 1) {
340
			/* Next region is after this area. Nothing to map yet */
341
			desc = INVALID_DESC;
342
343
		/* Make sure that the current level allows block descriptors */
		} else if (level >= XLAT_BLOCK_LEVEL_MIN) {
344
345
346
347
348
			/*
			 * Try to get attributes of this area. It will fail if
			 * there are partially overlapping regions. On success,
			 * it will return the innermost region's attributes.
			 */
349
350
351
352
			mmap_attr_t attr;
			int r = mmap_region_attr(mm, base_va, level_size, &attr);

			if (!r) {
353
354
355
				desc = mmap_desc(attr,
					base_va - mm->base_va + mm->base_pa,
					level);
356
			}
357
358
359
360
361
362
		}

		if (desc == UNSET_DESC) {
			/* Area not covered by a region so need finer table */
			uint64_t *new_table = xlat_tables[next_xlat++];
			assert(next_xlat <= MAX_XLAT_TABLES);
363
			desc = TABLE_DESC | (uintptr_t)new_table;
364
365
366
367
368
369
370
371
372
373

			/* Recurse to fill in new table */
			mm = init_xlation_table_inner(mm, base_va,
						new_table, level+1);
		}

		debug_print("\n");

		*table++ = desc;
		base_va += level_size;
374
375
	} while ((base_va & level_index_mask) &&
		 (base_va - 1 < PLAT_VIRT_ADDR_SPACE_SIZE - 1));
376
377
378
379
380

	return mm;
}

void init_xlation_table(uintptr_t base_va, uint64_t *table,
381
			unsigned int level, uintptr_t *max_va,
382
383
			unsigned long long *max_pa)
{
384
	execute_never_mask = xlat_arch_get_xn_desc(xlat_arch_current_el());
385
386
387
388
	init_xlation_table_inner(mmap, base_va, table, level);
	*max_va = xlat_max_va;
	*max_pa = xlat_max_pa;
}