spm_main.c 14.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch_helpers.h>
#include <assert.h>
#include <bl31.h>
#include <context_mgmt.h>
#include <debug.h>
#include <errno.h>
13
#include <mm_svc.h>
14
15
16
#include <platform.h>
#include <runtime_svc.h>
#include <secure_partition.h>
Antonio Nino Diaz's avatar
Antonio Nino Diaz committed
17
18
#include <smccc.h>
#include <smccc_helpers.h>
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <spinlock.h>
#include <spm_svc.h>
#include <utils.h>
#include <xlat_tables_v2.h>

#include "spm_private.h"

/* Lock used for SP_MEMORY_ATTRIBUTES_GET and SP_MEMORY_ATTRIBUTES_SET */
static spinlock_t mem_attr_smc_lock;

/*******************************************************************************
 * Secure Partition context information.
 ******************************************************************************/
static secure_partition_context_t sp_ctx;

/*******************************************************************************
 * Replace the S-EL1 re-entry information with S-EL0 re-entry
 * information
 ******************************************************************************/
38
static void spm_setup_next_eret_into_sel0(const cpu_context_t *secure_context)
39
40
41
42
43
44
45
46
47
48
49
50
{
	assert(secure_context == cm_get_context(SECURE));

	cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
}

/*******************************************************************************
 * This function takes an SP context pointer and:
 * 1. Applies the S-EL1 system register context from sp_ctx->cpu_ctx.
 * 2. Saves the current C runtime state (callee-saved registers) on the stack
 *    frame and saves a reference to this state.
 * 3. Calls el3_exit() so that the EL3 system and general purpose registers
51
 *    from the sp_ctx->cpu_ctx are used to enter the secure partition image.
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
 ******************************************************************************/
static uint64_t spm_synchronous_sp_entry(secure_partition_context_t *sp_ctx_ptr)
{
	uint64_t rc;

	assert(sp_ctx_ptr != NULL);
	assert(sp_ctx_ptr->c_rt_ctx == 0);
	assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);

	/* Apply the Secure EL1 system register context and switch to it */
	cm_el1_sysregs_context_restore(SECURE);
	cm_set_next_eret_context(SECURE);

	VERBOSE("%s: We're about to enter the Secure partition...\n", __func__);

	rc = spm_secure_partition_enter(&sp_ctx_ptr->c_rt_ctx);
#if ENABLE_ASSERTIONS
	sp_ctx_ptr->c_rt_ctx = 0;
#endif

	return rc;
}


/*******************************************************************************
 * This function takes a Secure partition context pointer and:
78
 * 1. Saves the S-EL1 system register context to sp_ctx->cpu_ctx.
79
80
81
82
83
84
85
 * 2. Restores the current C runtime state (callee saved registers) from the
 *    stack frame using the reference to this state saved in
 *    spm_secure_partition_enter().
 * 3. It does not need to save any general purpose or EL3 system register state
 *    as the generic smc entry routine should have saved those.
 ******************************************************************************/
static void __dead2 spm_synchronous_sp_exit(
86
		const secure_partition_context_t *sp_ctx_ptr, uint64_t ret)
87
88
89
90
91
92
{
	assert(sp_ctx_ptr != NULL);
	/* Save the Secure EL1 system register context */
	assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);
	cm_el1_sysregs_context_save(SECURE);

93
	assert(sp_ctx_ptr->c_rt_ctx != 0U);
94
95
96
97
98
99
100
101
102
103
	spm_secure_partition_exit(sp_ctx_ptr->c_rt_ctx, ret);

	/* Should never reach here */
	assert(0);
}

/*******************************************************************************
 * This function passes control to the Secure Partition image (BL32) for the
 * first time on the primary cpu after a cold boot. It assumes that a valid
 * secure context has already been created by spm_setup() which can be directly
104
 * used. This function performs a synchronous entry into the Secure partition.
105
106
 * The SP passes control back to this routine through a SMC.
 ******************************************************************************/
107
static int32_t spm_init(void)
108
109
110
111
112
113
114
115
116
117
118
{
	entry_point_info_t *secure_partition_ep_info;
	uint64_t rc;

	VERBOSE("%s entry\n", __func__);

	/*
	 * Get information about the Secure Partition (BL32) image. Its
	 * absence is a critical failure.
	 */
	secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
119
	assert(secure_partition_ep_info != NULL);
120
121
122
123
124
125
126
127

	/*
	 * Initialise the common context and then overlay the S-EL0 specific
	 * context on top of it.
	 */
	cm_init_my_context(secure_partition_ep_info);
	secure_partition_setup();

128
129
130
131
132
133
134
	/*
	 * Make all CPUs use the same secure context.
	 */
	for (unsigned int i = 0; i < PLATFORM_CORE_COUNT; i++) {
		cm_set_context_by_index(i, &sp_ctx.cpu_ctx, SECURE);
	}

135
	/*
136
	 * Arrange for an entry into the secure partition.
137
	 */
138
	sp_ctx.sp_init_in_progress = 1;
139
140
	rc = spm_synchronous_sp_entry(&sp_ctx);
	assert(rc == 0);
141
	sp_ctx.sp_init_in_progress = 0;
142
	VERBOSE("SP_MEMORY_ATTRIBUTES_SET_AARCH64 availability has been revoked\n");
143
144
145
146
147

	return rc;
}

/*******************************************************************************
148
 * Given a secure partition entrypoint info pointer, entry point PC & pointer to
149
 * a context data structure, this function will initialize the SPM context and
150
 * entry point info for the secure partition.
151
152
153
154
155
156
157
 ******************************************************************************/
void spm_init_sp_ep_state(struct entry_point_info *sp_ep_info,
			  uint64_t pc,
			  secure_partition_context_t *sp_ctx_ptr)
{
	uint32_t ep_attr;

158
159
160
	assert(sp_ep_info != NULL);
	assert(pc != 0U);
	assert(sp_ctx_ptr != NULL);
161
162
163
164
165

	cm_set_context(&sp_ctx_ptr->cpu_ctx, SECURE);

	/* initialise an entrypoint to set up the CPU context */
	ep_attr = SECURE | EP_ST_ENABLE;
166
	if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0U)
167
168
169
170
		ep_attr |= EP_EE_BIG;
	SET_PARAM_HEAD(sp_ep_info, PARAM_EP, VERSION_1, ep_attr);

	sp_ep_info->pc = pc;
171
	/* The secure partition runs in S-EL0. */
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
	sp_ep_info->spsr = SPSR_64(MODE_EL0,
				   MODE_SP_EL0,
				   DISABLE_ALL_EXCEPTIONS);

	zeromem(&sp_ep_info->args, sizeof(sp_ep_info->args));
}

/*******************************************************************************
 * Secure Partition Manager setup. The SPM finds out the SP entrypoint if not
 * already known and initialises the context for entry into the SP for its
 * initialisation.
 ******************************************************************************/
int32_t spm_setup(void)
{
	entry_point_info_t *secure_partition_ep_info;

	VERBOSE("%s entry\n", __func__);

	/*
	 * Get information about the Secure Partition (BL32) image. Its
	 * absence is a critical failure.
	 */
	secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
195
	if (secure_partition_ep_info == NULL) {
196
197
198
199
200
201
202
203
204
205
206
		WARN("No SPM provided by BL2 boot loader, Booting device"
			" without SPM initialization. SMCs destined for SPM"
			" will return SMC_UNK\n");
		return 1;
	}

	/*
	 * If there's no valid entry point for SP, we return a non-zero value
	 * signalling failure initializing the service. We bail out without
	 * registering any handlers
	 */
207
	if (secure_partition_ep_info->pc == 0U) {
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
		return 1;
	}

	spm_init_sp_ep_state(secure_partition_ep_info,
			      secure_partition_ep_info->pc,
			      &sp_ctx);

	/*
	 * All SPM initialization done. Now register our init function with
	 * BL31 for deferred invocation
	 */
	bl31_register_bl32_init(&spm_init);

	VERBOSE("%s exit\n", __func__);

	return 0;
}

/*
 * Attributes are encoded using a different format in the SMC interface than in
 * the Trusted Firmware, where the mmap_attr_t enum type is used. This function
 * converts an attributes value from the SMC format to the mmap_attr_t format by
 * setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and MT_EXECUTE/MT_EXECUTE_NEVER.
 * The other fields are left as 0 because they are ignored by the function
 * change_mem_attributes().
 */
234
static unsigned int smc_attr_to_mmap_attr(unsigned int attributes)
235
{
236
	unsigned int tf_attr = 0U;
237

238
239
	unsigned int access = (attributes & SP_MEMORY_ATTRIBUTES_ACCESS_MASK)
			      >> SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT;
240

241
	if (access == SP_MEMORY_ATTRIBUTES_ACCESS_RW) {
242
		tf_attr |= MT_RW | MT_USER;
243
	} else if (access ==  SP_MEMORY_ATTRIBUTES_ACCESS_RO) {
244
245
246
		tf_attr |= MT_RO | MT_USER;
	} else {
		/* Other values are reserved. */
247
		assert(access ==  SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS);
248
249
250
251
		/* The only requirement is that there's no access from EL0 */
		tf_attr |= MT_RO | MT_PRIVILEGED;
	}

252
	if ((attributes & SP_MEMORY_ATTRIBUTES_NON_EXEC) == 0) {
253
254
255
256
257
258
259
260
261
262
263
264
		tf_attr |= MT_EXECUTE;
	} else {
		tf_attr |= MT_EXECUTE_NEVER;
	}

	return tf_attr;
}

/*
 * This function converts attributes from the Trusted Firmware format into the
 * SMC interface format.
 */
265
static unsigned int smc_mmap_to_smc_attr(unsigned int attr)
266
{
267
	unsigned int smc_attr = 0U;
268

269
	unsigned int data_access;
270
271
272

	if ((attr & MT_USER) == 0) {
		/* No access from EL0. */
273
		data_access = SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS;
274
275
276
	} else {
		if ((attr & MT_RW) != 0) {
			assert(MT_TYPE(attr) != MT_DEVICE);
277
			data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RW;
278
		} else {
279
			data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RO;
280
281
282
		}
	}

283
284
	smc_attr |= (data_access & SP_MEMORY_ATTRIBUTES_ACCESS_MASK)
		    << SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT;
285

286
	if ((attr & MT_EXECUTE_NEVER) != 0U) {
287
		smc_attr |= SP_MEMORY_ATTRIBUTES_NON_EXEC;
288
289
290
291
292
	}

	return smc_attr;
}

293
static int32_t spm_memory_attributes_get_smc_handler(uintptr_t base_va)
294
{
295
296
	uint32_t attributes;

297
298
299
300
301
302
303
304
	spin_lock(&mem_attr_smc_lock);

	int rc = get_mem_attributes(secure_partition_xlat_ctx_handle,
				     base_va, &attributes);

	spin_unlock(&mem_attr_smc_lock);

	/* Convert error codes of get_mem_attributes() into SPM ones. */
305
	assert((rc == 0) || (rc == -EINVAL));
306
307

	if (rc == 0) {
308
		return (int32_t) smc_mmap_to_smc_attr(attributes);
309
310
311
312
313
314
315
316
317
318
319
	} else {
		return SPM_INVALID_PARAMETER;
	}
}

static int spm_memory_attributes_set_smc_handler(u_register_t page_address,
					u_register_t pages_count,
					u_register_t smc_attributes)
{
	uintptr_t base_va = (uintptr_t) page_address;
	size_t size = (size_t) (pages_count * PAGE_SIZE);
320
	uint32_t attributes = (uint32_t) smc_attributes;
321
322
323
324
325
326
327
328
329
330
331
332
333

	INFO("  Start address  : 0x%lx\n", base_va);
	INFO("  Number of pages: %i (%zi bytes)\n", (int) pages_count, size);
	INFO("  Attributes     : 0x%x\n", attributes);

	spin_lock(&mem_attr_smc_lock);

	int ret = change_mem_attributes(secure_partition_xlat_ctx_handle,
			base_va, size, smc_attr_to_mmap_attr(attributes));

	spin_unlock(&mem_attr_smc_lock);

	/* Convert error codes of change_mem_attributes() into SPM ones. */
334
	assert((ret == 0) || (ret == -EINVAL));
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

	return (ret == 0) ? SPM_SUCCESS : SPM_INVALID_PARAMETER;
}


uint64_t spm_smc_handler(uint32_t smc_fid,
			 uint64_t x1,
			 uint64_t x2,
			 uint64_t x3,
			 uint64_t x4,
			 void *cookie,
			 void *handle,
			 uint64_t flags)
{
	cpu_context_t *ns_cpu_context;
	unsigned int ns;

	/* Determine which security state this SMC originated from */
	ns = is_caller_non_secure(flags);

	if (ns == SMC_FROM_SECURE) {

		/* Handle SMCs from Secure world. */

		switch (smc_fid) {

361
		case SPM_VERSION_AARCH32:
362
363
364
365
366
367
368
			SMC_RET1(handle, SPM_VERSION_COMPILED);

		case SP_EVENT_COMPLETE_AARCH64:
			assert(handle == cm_get_context(SECURE));
			cm_el1_sysregs_context_save(SECURE);
			spm_setup_next_eret_into_sel0(handle);

369
			if (sp_ctx.sp_init_in_progress) {
370
371
372
373
374
375
376
377
378
379
380
				/*
				 * SPM reports completion. The SPM must have
				 * initiated the original request through a
				 * synchronous entry into the secure
				 * partition. Jump back to the original C
				 * runtime context.
				 */
				spm_synchronous_sp_exit(&sp_ctx, x1);
				assert(0);
			}

381
382
383
			/* Release the Secure Partition context */
			spin_unlock(&sp_ctx.lock);

384
385
386
387
388
389
390
391
392
			/*
			 * This is the result from the Secure partition of an
			 * earlier request. Copy the result into the non-secure
			 * context, save the secure state and return to the
			 * non-secure state.
			 */

			/* Get a reference to the non-secure context */
			ns_cpu_context = cm_get_context(NON_SECURE);
393
			assert(ns_cpu_context != NULL);
394
395
396
397
398
399
400
401

			/* Restore non-secure state */
			cm_el1_sysregs_context_restore(NON_SECURE);
			cm_set_next_eret_context(NON_SECURE);

			/* Return to normal world */
			SMC_RET1(ns_cpu_context, x1);

402
403
		case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
			INFO("Received SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n");
404

405
			if (!sp_ctx.sp_init_in_progress) {
406
				WARN("SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
407
408
409
410
				SMC_RET1(handle, SPM_NOT_SUPPORTED);
			}
			SMC_RET1(handle, spm_memory_attributes_get_smc_handler(x1));

411
412
		case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
			INFO("Received SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n");
413

414
			if (!sp_ctx.sp_init_in_progress) {
415
				WARN("SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
416
417
418
419
420
421
422
423
424
425
426
427
				SMC_RET1(handle, SPM_NOT_SUPPORTED);
			}
			SMC_RET1(handle, spm_memory_attributes_set_smc_handler(x1, x2, x3));
		default:
			break;
		}
	} else {

		/* Handle SMCs from Non-secure world. */

		switch (smc_fid) {

428
429
		case MM_VERSION_AARCH32:
			SMC_RET1(handle, MM_VERSION_COMPILED);
430

431
432
		case MM_COMMUNICATE_AARCH32:
		case MM_COMMUNICATE_AARCH64:
433
434
435
436
437
438
		{
			uint64_t mm_cookie = x1;
			uint64_t comm_buffer_address = x2;
			uint64_t comm_size_address = x3;

			/* Cookie. Reserved for future use. It must be zero. */
439
			if (mm_cookie != 0U) {
440
441
442
443
				ERROR("MM_COMMUNICATE: cookie is not zero\n");
				SMC_RET1(handle, SPM_INVALID_PARAMETER);
			}

444
			if (comm_buffer_address == 0U) {
445
446
447
448
				ERROR("MM_COMMUNICATE: comm_buffer_address is zero\n");
				SMC_RET1(handle, SPM_INVALID_PARAMETER);
			}

449
			if (comm_size_address != 0U) {
450
451
				VERBOSE("MM_COMMUNICATE: comm_size_address is not 0 as recommended.\n");
			}
452
453
454
455

			/* Save the Normal world context */
			cm_el1_sysregs_context_save(NON_SECURE);

456
457
458
			/* Lock the Secure Partition context. */
			spin_lock(&sp_ctx.lock);

459
460
461
462
463
464
465
466
			/*
			 * Restore the secure world context and prepare for
			 * entry in S-EL0
			 */
			assert(&sp_ctx.cpu_ctx == cm_get_context(SECURE));
			cm_el1_sysregs_context_restore(SECURE);
			cm_set_next_eret_context(SECURE);

467
468
469
			SMC_RET4(&sp_ctx.cpu_ctx, smc_fid, comm_buffer_address,
				 comm_size_address, plat_my_core_pos());
		}
470

471
472
		case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
		case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
473
474
475
476
477
478
479
480
481
482
			/* SMC interfaces reserved for secure callers. */
			SMC_RET1(handle, SPM_NOT_SUPPORTED);

		default:
			break;
		}
	}

	SMC_RET1(handle, SMC_UNK);
}