a8k_i2c.c 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * Copyright (C) 2018 Marvell International Ltd.
 *
 * SPDX-License-Identifier:     BSD-3-Clause
 * https://spdx.org/licenses
 */

/* This driver provides I2C support for Marvell A8K and compatible SoCs */

#include <a8k_i2c.h>
#include <debug.h>
#include <delay_timer.h>
#include <errno.h>
#include <mmio.h>
#include <mvebu_def.h>

#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
#define DEBUG_I2C
#endif

#define CONFIG_SYS_TCLK			250000000
#define CONFIG_SYS_I2C_SPEED		100000
#define CONFIG_SYS_I2C_SLAVE		0x0
#define I2C_TIMEOUT_VALUE		0x500
#define I2C_MAX_RETRY_CNT		1000
#define I2C_CMD_WRITE			0x0
#define I2C_CMD_READ			0x1

#define I2C_DATA_ADDR_7BIT_OFFS		0x1
#define I2C_DATA_ADDR_7BIT_MASK		(0xFF << I2C_DATA_ADDR_7BIT_OFFS)

#define I2C_CONTROL_ACK			0x00000004
#define I2C_CONTROL_IFLG		0x00000008
#define I2C_CONTROL_STOP		0x00000010
#define I2C_CONTROL_START		0x00000020
#define I2C_CONTROL_TWSIEN		0x00000040
#define I2C_CONTROL_INTEN		0x00000080

#define I2C_STATUS_START			0x08
#define I2C_STATUS_REPEATED_START		0x10
#define I2C_STATUS_ADDR_W_ACK			0x18
#define I2C_STATUS_DATA_W_ACK			0x28
#define I2C_STATUS_LOST_ARB_DATA_ADDR_TRANSFER	0x38
#define I2C_STATUS_ADDR_R_ACK			0x40
#define I2C_STATUS_DATA_R_ACK			0x50
#define I2C_STATUS_DATA_R_NAK			0x58
#define I2C_STATUS_LOST_ARB_GENERAL_CALL	0x78
#define I2C_STATUS_IDLE				0xF8

#define I2C_UNSTUCK_TRIGGER			0x1
#define I2C_UNSTUCK_ONGOING			0x2
#define I2C_UNSTUCK_ERROR			0x4
struct  marvell_i2c_regs {
	uint32_t slave_address;
	uint32_t data;
	uint32_t control;
	union {
		uint32_t status;	/* when reading */
		uint32_t baudrate;	/* when writing */
	} u;
	uint32_t xtnd_slave_addr;
	uint32_t reserved[2];
	uint32_t soft_reset;
	uint8_t  reserved2[0xa0 - 0x20];
	uint32_t unstuck;
};

static struct marvell_i2c_regs *base;

static int marvell_i2c_lost_arbitration(uint32_t *status)
{
	*status = mmio_read_32((uintptr_t)&base->u.status);
	if ((*status == I2C_STATUS_LOST_ARB_DATA_ADDR_TRANSFER) ||
	    (*status == I2C_STATUS_LOST_ARB_GENERAL_CALL))
		return -EAGAIN;

	return 0;
}

static void marvell_i2c_interrupt_clear(void)
{
	uint32_t reg;

	reg = mmio_read_32((uintptr_t)&base->control);
	reg &= ~(I2C_CONTROL_IFLG);
	mmio_write_32((uintptr_t)&base->control, reg);
	/* Wait for 1 us for the clear to take effect */
	udelay(1);
}

static int marvell_i2c_interrupt_get(void)
{
	uint32_t reg;

	/* get the interrupt flag bit */
	reg = mmio_read_32((uintptr_t)&base->control);
	reg &= I2C_CONTROL_IFLG;
	return reg && I2C_CONTROL_IFLG;
}

static int marvell_i2c_wait_interrupt(void)
{
	uint32_t timeout = 0;

	while (!marvell_i2c_interrupt_get() && (timeout++ < I2C_TIMEOUT_VALUE))
		;
	if (timeout >= I2C_TIMEOUT_VALUE)
		return -ETIMEDOUT;

	return 0;
}

static int marvell_i2c_start_bit_set(void)
{
	int is_int_flag = 0;
	uint32_t status;

	if (marvell_i2c_interrupt_get())
		is_int_flag = 1;

	/* set start bit */
	mmio_write_32((uintptr_t)&base->control,
		      mmio_read_32((uintptr_t)&base->control) |
		      I2C_CONTROL_START);

	/* in case that the int flag was set before i.e. repeated start bit */
	if (is_int_flag) {
		VERBOSE("%s: repeated start Bit\n", __func__);
		marvell_i2c_interrupt_clear();
	}

	if (marvell_i2c_wait_interrupt()) {
		ERROR("Start clear bit timeout\n");
		return -ETIMEDOUT;
	}

	/* check that start bit went down */
	if ((mmio_read_32((uintptr_t)&base->control) &
	    I2C_CONTROL_START) != 0) {
		ERROR("Start bit didn't went down\n");
		return -EPERM;
	}

	/* check the status */
	if (marvell_i2c_lost_arbitration(&status)) {
		ERROR("%s - %d: Lost arbitration, got status %x\n",
		      __func__, __LINE__, status);
		return -EAGAIN;
	}
	if ((status != I2C_STATUS_START) &&
	    (status != I2C_STATUS_REPEATED_START)) {
		ERROR("Got status %x after enable start bit.\n", status);
		return -EPERM;
	}

	return 0;
}

static int marvell_i2c_stop_bit_set(void)
{
	int timeout;
	uint32_t status;

	/* Generate stop bit */
	mmio_write_32((uintptr_t)&base->control,
		      mmio_read_32((uintptr_t)&base->control) |
		      I2C_CONTROL_STOP);
	marvell_i2c_interrupt_clear();

	timeout = 0;
	/* Read control register, check the control stop bit */
	while ((mmio_read_32((uintptr_t)&base->control) & I2C_CONTROL_STOP) &&
	       (timeout++ < I2C_TIMEOUT_VALUE))
		;
	if (timeout >= I2C_TIMEOUT_VALUE) {
		ERROR("Stop bit didn't went down\n");
		return -ETIMEDOUT;
	}

	/* check that stop bit went down */
	if ((mmio_read_32((uintptr_t)&base->control) & I2C_CONTROL_STOP) != 0) {
		ERROR("Stop bit didn't went down\n");
		return -EPERM;
	}

	/* check the status */
	if (marvell_i2c_lost_arbitration(&status)) {
		ERROR("%s - %d: Lost arbitration, got status %x\n",
		      __func__, __LINE__, status);
		return -EAGAIN;
	}
	if (status != I2C_STATUS_IDLE) {
		ERROR("Got status %x after enable stop bit.\n", status);
		return -EPERM;
	}

	return 0;
}

static int marvell_i2c_address_set(uint8_t chain, int command)
{
	uint32_t reg, status;

	reg = (chain << I2C_DATA_ADDR_7BIT_OFFS) & I2C_DATA_ADDR_7BIT_MASK;
	reg |= command;
	mmio_write_32((uintptr_t)&base->data, reg);
	udelay(1);

	marvell_i2c_interrupt_clear();

	if (marvell_i2c_wait_interrupt()) {
		ERROR("Start clear bit timeout\n");
		return -ETIMEDOUT;
	}

	/* check the status */
	if (marvell_i2c_lost_arbitration(&status)) {
		ERROR("%s - %d: Lost arbitration, got status %x\n",
		      __func__, __LINE__, status);
		return -EAGAIN;
	}
	if (((status != I2C_STATUS_ADDR_R_ACK) && (command == I2C_CMD_READ)) ||
	   ((status != I2C_STATUS_ADDR_W_ACK) && (command == I2C_CMD_WRITE))) {
		/* only in debug, since in boot we try to read the SPD
		 * of both DRAM, and we don't want error messages in cas
		 * DIMM doesn't exist.
		 */
		INFO("%s: ERROR - status %x addr in %s mode.\n", __func__,
		     status, (command == I2C_CMD_WRITE) ? "Write" : "Read");
		return -EPERM;
	}

	return 0;
}

/*
 * The I2C module contains a clock divider to generate the SCL clock.
 * This function calculates and sets the <N> and <M> fields in the I2C Baud
 * Rate Register (t=01) to obtain given 'requested_speed'.
 * The requested_speed will be equal to:
 * CONFIG_SYS_TCLK / (10 * (M + 1) * (2 << N))
 * Where M is the value represented by bits[6:3] and N is the value represented
 * by bits[2:0] of "I2C Baud Rate Register".
 * Therefore max M which can be set is 16 (2^4) and max N is 8 (2^3). So the
 * lowest possible baudrate is:
 * CONFIG_SYS_TCLK/(10 * (16 +1) * (2 << 8), which equals to:
 * CONFIG_SYS_TCLK/87040. Assuming that CONFIG_SYS_TCLK=250MHz, the lowest
 * possible frequency is ~2,872KHz.
 */
static unsigned int marvell_i2c_bus_speed_set(unsigned int requested_speed)
{
	unsigned int n, m, freq, margin, min_margin = 0xffffffff;
	unsigned int actual_n = 0, actual_m = 0;
	int val;

	/* Calculate N and M for the TWSI clock baud rate */
	for (n = 0; n < 8; n++) {
		for (m = 0; m < 16; m++) {
			freq = CONFIG_SYS_TCLK / (10 * (m + 1) * (2 << n));
			val = requested_speed - freq;
			margin = (val > 0) ? val : -val;

			if ((freq <= requested_speed) &&
			    (margin < min_margin)) {
				min_margin = margin;
				actual_n = n;
				actual_m = m;
			}
		}
	}
	VERBOSE("%s: actual_n = %u, actual_m = %u\n",
		__func__, actual_n, actual_m);
	/* Set the baud rate */
	mmio_write_32((uintptr_t)&base->u.baudrate, (actual_m << 3) | actual_n);

	return 0;
}

#ifdef DEBUG_I2C
static int marvell_i2c_probe(uint8_t chip)
{
	int ret = 0;

	ret = marvell_i2c_start_bit_set();
	if (ret != 0) {
		marvell_i2c_stop_bit_set();
		ERROR("%s - %d: %s", __func__, __LINE__,
		      "marvell_i2c_start_bit_set failed\n");
		return -EPERM;
	}

	ret = marvell_i2c_address_set(chip, I2C_CMD_WRITE);
	if (ret != 0) {
		marvell_i2c_stop_bit_set();
		ERROR("%s - %d: %s", __func__, __LINE__,
		      "marvell_i2c_address_set failed\n");
		return -EPERM;
	}

	marvell_i2c_stop_bit_set();

	VERBOSE("%s: successful I2C probe\n", __func__);

	return ret;
}
#endif

/* regular i2c transaction */
static int marvell_i2c_data_receive(uint8_t *p_block, uint32_t block_size)
{
	uint32_t reg, status, block_size_read = block_size;

	/* Wait for cause interrupt */
	if (marvell_i2c_wait_interrupt()) {
		ERROR("Start clear bit timeout\n");
		return -ETIMEDOUT;
	}
	while (block_size_read) {
		if (block_size_read == 1) {
			reg = mmio_read_32((uintptr_t)&base->control);
			reg &= ~(I2C_CONTROL_ACK);
			mmio_write_32((uintptr_t)&base->control, reg);
		}
		marvell_i2c_interrupt_clear();

		if (marvell_i2c_wait_interrupt()) {
			ERROR("Start clear bit timeout\n");
			return -ETIMEDOUT;
		}
		/* check the status */
		if (marvell_i2c_lost_arbitration(&status)) {
			ERROR("%s - %d: Lost arbitration, got status %x\n",
			      __func__, __LINE__, status);
			return -EAGAIN;
		}
		if ((status != I2C_STATUS_DATA_R_ACK) &&
		    (block_size_read != 1)) {
			ERROR("Status %x in read transaction\n", status);
			return -EPERM;
		}
		if ((status != I2C_STATUS_DATA_R_NAK) &&
		    (block_size_read == 1)) {
			ERROR("Status %x in Rd Terminate\n", status);
			return -EPERM;
		}

		/* read the data */
		*p_block = (uint8_t) mmio_read_32((uintptr_t)&base->data);
		VERBOSE("%s: place %d read %x\n", __func__,
			block_size - block_size_read, *p_block);
		p_block++;
		block_size_read--;
	}

	return 0;
}

static int marvell_i2c_data_transmit(uint8_t *p_block, uint32_t block_size)
{
	uint32_t status, block_size_write = block_size;

	if (marvell_i2c_wait_interrupt()) {
		ERROR("Start clear bit timeout\n");
		return -ETIMEDOUT;
	}

	while (block_size_write) {
		/* write the data */
		mmio_write_32((uintptr_t)&base->data, (uint32_t) *p_block);
		VERBOSE("%s: index = %d, data = %x\n", __func__,
			block_size - block_size_write, *p_block);
		p_block++;
		block_size_write--;

		marvell_i2c_interrupt_clear();

		if (marvell_i2c_wait_interrupt()) {
			ERROR("Start clear bit timeout\n");
			return -ETIMEDOUT;
		}

		/* check the status */
		if (marvell_i2c_lost_arbitration(&status)) {
			ERROR("%s - %d: Lost arbitration, got status %x\n",
			      __func__, __LINE__, status);
			return -EAGAIN;
		}
		if (status != I2C_STATUS_DATA_W_ACK) {
			ERROR("Status %x in write transaction\n", status);
			return -EPERM;
		}
	}

	return 0;
}

static int marvell_i2c_target_offset_set(uint8_t chip, uint32_t addr, int alen)
{
	uint8_t off_block[2];
	uint32_t off_size;

	if (alen == 2) { /* 2-byte addresses support */
		off_block[0] = (addr >> 8) & 0xff;
		off_block[1] = addr & 0xff;
		off_size = 2;
	} else { /* 1-byte addresses support */
		off_block[0] = addr & 0xff;
		off_size = 1;
	}
	VERBOSE("%s: off_size = %x addr1 = %x addr2 = %x\n", __func__,
		off_size, off_block[0], off_block[1]);
	return marvell_i2c_data_transmit(off_block, off_size);
}

static int marvell_i2c_unstuck(int ret)
{
	uint32_t v;

	if (ret != -ETIMEDOUT)
		return ret;
	VERBOSE("Trying to \"unstuck i2c\"... ");
	i2c_init(base);
	mmio_write_32((uintptr_t)&base->unstuck, I2C_UNSTUCK_TRIGGER);
	do {
		v = mmio_read_32((uintptr_t)&base->unstuck);
	} while (v & I2C_UNSTUCK_ONGOING);

	if (v & I2C_UNSTUCK_ERROR) {
		VERBOSE("failed - soft reset i2c\n");
		ret = -EPERM;
	} else {
		VERBOSE("ok\n");
		i2c_init(base);
		ret = -EAGAIN;
	}
	return ret;
}

/*
 * API Functions
 */
void i2c_init(void *i2c_base)
{
	/* For I2C speed and slave address, now we do not set them since
445
	 * we just provide the working speed and slave address in mvebu_def.h
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
	 * for i2c_init
	 */
	base = (struct marvell_i2c_regs *)i2c_base;

	/* Reset the I2C logic */
	mmio_write_32((uintptr_t)&base->soft_reset, 0);

	udelay(200);

	marvell_i2c_bus_speed_set(CONFIG_SYS_I2C_SPEED);

	/* Enable the I2C and slave */
	mmio_write_32((uintptr_t)&base->control,
		      I2C_CONTROL_TWSIEN | I2C_CONTROL_ACK);

	/* set the I2C slave address */
	mmio_write_32((uintptr_t)&base->xtnd_slave_addr, 0);
	mmio_write_32((uintptr_t)&base->slave_address, CONFIG_SYS_I2C_SLAVE);

	/* unmask I2C interrupt */
	mmio_write_32((uintptr_t)&base->control,
		      mmio_read_32((uintptr_t)&base->control) |
		      I2C_CONTROL_INTEN);

	udelay(10);
}

/*
 * i2c_read: - Read multiple bytes from an i2c device
 *
 * The higher level routines take into account that this function is only
 * called with len < page length of the device (see configuration file)
 *
 * @chip:	address of the chip which is to be read
 * @addr:	i2c data address within the chip
 * @alen:	length of the i2c data address (1..2 bytes)
 * @buffer:	where to write the data
 * @len:	how much byte do we want to read
 * @return:	0 in case of success
 */
int i2c_read(uint8_t chip, uint32_t addr, int alen, uint8_t *buffer, int len)
{
	int ret = 0;
	uint32_t counter = 0;

#ifdef DEBUG_I2C
	marvell_i2c_probe(chip);
#endif

	do {
		if (ret != -EAGAIN && ret) {
			ERROR("i2c transaction failed, after %d retries\n",
			      counter);
			marvell_i2c_stop_bit_set();
			return ret;
		}

		/* wait for 1 us for the interrupt clear to take effect */
		if (counter > 0)
			udelay(1);
		counter++;

		ret = marvell_i2c_start_bit_set();
		if (ret) {
			ret = marvell_i2c_unstuck(ret);
			continue;
		}

		/* if EEPROM device */
		if (alen != 0) {
			ret = marvell_i2c_address_set(chip, I2C_CMD_WRITE);
			if (ret)
				continue;

			ret = marvell_i2c_target_offset_set(chip, addr, alen);
			if (ret)
				continue;
			ret = marvell_i2c_start_bit_set();
			if (ret)
				continue;
		}

		ret =  marvell_i2c_address_set(chip, I2C_CMD_READ);
		if (ret)
			continue;

		ret = marvell_i2c_data_receive(buffer, len);
		if (ret)
			continue;

		ret =  marvell_i2c_stop_bit_set();
	} while ((ret == -EAGAIN) && (counter < I2C_MAX_RETRY_CNT));

	if (counter == I2C_MAX_RETRY_CNT) {
		ERROR("I2C transactions failed, got EAGAIN %d times\n",
		      I2C_MAX_RETRY_CNT);
		ret = -EPERM;
	}
	mmio_write_32((uintptr_t)&base->control,
		      mmio_read_32((uintptr_t)&base->control) |
		      I2C_CONTROL_ACK);

	udelay(1);
	return ret;
}

/*
 * i2c_write: -  Write multiple bytes to an i2c device
 *
 * The higher level routines take into account that this function is only
 * called with len < page length of the device (see configuration file)
 *
 * @chip:	address of the chip which is to be written
 * @addr:	i2c data address within the chip
 * @alen:	length of the i2c data address (1..2 bytes)
 * @buffer:	where to find the data to be written
 * @len:	how much byte do we want to read
 * @return:	0 in case of success
 */
int i2c_write(uint8_t chip, uint32_t addr, int alen, uint8_t *buffer, int len)
{
	int ret = 0;
	uint32_t counter = 0;

	do {
		if (ret != -EAGAIN && ret) {
			ERROR("i2c transaction failed\n");
			marvell_i2c_stop_bit_set();
			return ret;
		}
		/* wait for 1 us for the interrupt clear to take effect */
		if (counter > 0)
			udelay(1);
		counter++;

		ret = marvell_i2c_start_bit_set();
		if (ret) {
			ret = marvell_i2c_unstuck(ret);
			continue;
		}

		ret = marvell_i2c_address_set(chip, I2C_CMD_WRITE);
		if (ret)
			continue;

		/* if EEPROM device */
		if (alen != 0) {
			ret = marvell_i2c_target_offset_set(chip, addr, alen);
			if (ret)
				continue;
		}

		ret = marvell_i2c_data_transmit(buffer, len);
		if (ret)
			continue;

		ret = marvell_i2c_stop_bit_set();
	} while ((ret == -EAGAIN) && (counter < I2C_MAX_RETRY_CNT));

	if (counter == I2C_MAX_RETRY_CNT) {
		ERROR("I2C transactions failed, got EAGAIN %d times\n",
		      I2C_MAX_RETRY_CNT);
		ret = -EPERM;
	}

	udelay(1);
	return ret;
}