ari.c 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
 * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <arch_helpers.h>
#include <debug.h>
#include <denver.h>
#include <mmio.h>
#include <mce.h>
#include <sys/errno.h>
#include <t18x_ari.h>

/*******************************************************************************
 * Register offsets for ARI request/results
 ******************************************************************************/
#define ARI_REQUEST			0x0
#define ARI_REQUEST_EVENT_MASK		0x4
#define ARI_STATUS			0x8
#define ARI_REQUEST_DATA_LO		0xC
#define ARI_REQUEST_DATA_HI		0x10
#define ARI_RESPONSE_DATA_LO		0x14
#define ARI_RESPONSE_DATA_HI		0x18

/* Status values for the current request */
#define ARI_REQ_PENDING			1
#define ARI_REQ_ONGOING			3
#define ARI_REQUEST_VALID_BIT		(1 << 8)
#define ARI_EVT_MASK_STANDBYWFI_BIT	(1 << 7)

/*******************************************************************************
 * ARI helper functions
 ******************************************************************************/
static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
{
	return mmio_read_32(ari_base + reg);
}

static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
{
	mmio_write_32(ari_base + reg, val);
}

static inline uint32_t ari_get_request_low(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
}

static inline uint32_t ari_get_request_high(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
}

static inline uint32_t ari_get_response_low(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
}

static inline uint32_t ari_get_response_high(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
}

static inline void ari_clobber_response(uint32_t ari_base)
{
	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
}

static int ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
		uint32_t lo, uint32_t hi)
{
	int status;

	/* program the request, event_mask, hi and lo registers */
	ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
	ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
	ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
	ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);

	/*
	 * For commands that have an event trigger, we should bypass
	 * ARI_STATUS polling, since MCE is waiting for SW to trigger
	 * the event.
	 */
	if (evt_mask)
		return 0;

	/* NOTE: add timeout check if needed */
	status = ari_read_32(ari_base, ARI_STATUS);
	while (status & (ARI_REQ_ONGOING | ARI_REQ_PENDING))
		status = ari_read_32(ari_base, ARI_STATUS);

	return 0;
}

int ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
	/* check for allowed power state */
	if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 &&
	    state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) {
		ERROR("%s: unknown cstate (%d)\n", __func__, state);
		return EINVAL;
	}

132
133
134
	/* clean the previous response state */
	ari_clobber_response(ari_base);

135
136
137
138
139
140
141
142
143
144
145
	/* Enter the cstate, to be woken up after wake_time (TSC ticks) */
	return ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
		TEGRA_ARI_ENTER_CSTATE, state, wake_time);
}

int ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
	uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
	uint8_t update_wake_mask)
{
	uint32_t val = 0;

146
147
148
	/* clean the previous response state */
	ari_clobber_response(ari_base);

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
	/* update CLUSTER_CSTATE? */
	if (cluster)
		val |= (cluster & CLUSTER_CSTATE_MASK) |
			CLUSTER_CSTATE_UPDATE_BIT;

	/* update CCPLEX_CSTATE? */
	if (ccplex)
		val |= (ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT |
			CCPLEX_CSTATE_UPDATE_BIT;

	/* update SYSTEM_CSTATE? */
	if (system)
		val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) |
		       ((sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
			SYSTEM_CSTATE_UPDATE_BIT);

	/* update wake mask value? */
	if (update_wake_mask)
		val |= CSTATE_WAKE_MASK_UPDATE_BIT;

	/* set the updated cstate info */
	return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CSTATE_INFO, val,
			wake_mask);
}

int ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
{
	/* sanity check crossover type */
	if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
	    (type > TEGRA_ARI_CROSSOVER_CCP3_SC1))
		return EINVAL;

181
182
183
	/* clean the previous response state */
	ari_clobber_response(ari_base);

184
185
186
187
188
189
190
191
192
193
194
195
196
	/* update crossover threshold time */
	return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CROSSOVER,
			type, time);
}

uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
{
	int ret;

	/* sanity check crossover type */
	if (state == 0)
		return EINVAL;

197
198
199
	/* clean the previous response state */
	ari_clobber_response(ari_base);

200
201
202
203
204
205
206
207
208
	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_CSTATE_STATS, state, 0);
	if (ret != 0)
		return EINVAL;

	return (uint64_t)ari_get_response_low(ari_base);
}

int ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
{
209
210
211
	/* clean the previous response state */
	ari_clobber_response(ari_base);

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
	/* write the cstate stats */
	return ari_request_wait(ari_base, 0, TEGRA_ARI_WRITE_CSTATE_STATS, state,
			stats);
}

uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
{
	uint64_t resp;
	int ret;

	/* clean the previous response state */
	ari_clobber_response(ari_base);

	/* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
	if (cmd != TEGRA_ARI_MISC_ECHO)
		data = 0;

	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MISC, cmd, data);
	if (ret)
		return (uint64_t)ret;

	/* get the command response */
	resp = ari_get_response_low(ari_base);
	resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);

	return resp;
}

int ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
	int ret;

244
245
246
	/* clean the previous response state */
	ari_clobber_response(ari_base);

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7,
			wake_time);
	if (ret) {
		ERROR("%s: failed (%d)\n", __func__, ret);
		return 0;
	}

	/* 1 = CCx allowed, 0 = CCx not allowed */
	return (ari_get_response_low(ari_base) & 0x1);
}

int ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
	int ret;

	/* check for allowed power state */
	if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 &&
	    state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) {
		ERROR("%s: unknown cstate (%d)\n", __func__, state);
		return EINVAL;
	}

269
270
271
	/* clean the previous response state */
	ari_clobber_response(ari_base);

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_SC7_ALLOWED, state,
			wake_time);
	if (ret) {
		ERROR("%s: failed (%d)\n", __func__, ret);
		return 0;
	}

	/* 1 = SC7 allowed, 0 = SC7 not allowed */
	return !!ari_get_response_low(ari_base);
}

int ari_online_core(uint32_t ari_base, uint32_t core)
{
	int cpu = read_mpidr() & MPIDR_CPU_MASK;
	int cluster = (read_mpidr() & MPIDR_CLUSTER_MASK) >>
			MPIDR_AFFINITY_BITS;
	int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;

	/* construct the current CPU # */
	cpu |= (cluster << 2);

	/* sanity check target core id */
	if ((core >= MCE_CORE_ID_MAX) || (cpu == core)) {
		ERROR("%s: unsupported core id (%d)\n", __func__, core);
		return EINVAL;
	}

	/*
	 * The Denver cluster has 2 CPUs only - 0, 1.
	 */
	if (impl == DENVER_IMPL && ((core == 2) || (core == 3))) {
		ERROR("%s: unknown core id (%d)\n", __func__, core);
		return EINVAL;
	}

307
308
309
	/* clean the previous response state */
	ari_clobber_response(ari_base);

310
311
312
313
314
315
316
	return ari_request_wait(ari_base, 0, TEGRA_ARI_ONLINE_CORE, core, 0);
}

int ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
{
	int val;

317
318
319
	/* clean the previous response state */
	ari_clobber_response(ari_base);

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
	/*
	 * If the enable bit is cleared, Auto-CC3 will be disabled by setting
	 * the SW visible voltage/frequency request registers for all non
	 * floorswept cores valid independent of StandbyWFI and disabling
	 * the IDLE voltage/frequency request register. If set, Auto-CC3
	 * will be enabled by setting the ARM SW visible voltage/frequency
	 * request registers for all non floorswept cores to be enabled by
	 * StandbyWFI or the equivalent signal, and always keeping the IDLE
	 * voltage/frequency request register enabled.
	 */
	val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
		((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
		(enable ? MCE_AUTO_CC3_ENABLE_BIT : 0));

	return ari_request_wait(ari_base, 0, TEGRA_ARI_CC3_CTRL, val, 0);
}

337
int ari_reset_vector_update(uint32_t ari_base)
338
{
339
340
341
	/* clean the previous response state */
	ari_clobber_response(ari_base);

342
343
344
345
	/*
	 * Need to program the CPU reset vector one time during cold boot
	 * and SC7 exit
	 */
346
	ari_request_wait(ari_base, 0, TEGRA_ARI_COPY_MISCREG_AA64_RST, 0, 0);
347
348
349
350
351
352

	return 0;
}

int ari_roc_flush_cache_trbits(uint32_t ari_base)
{
353
354
355
	/* clean the previous response state */
	ari_clobber_response(ari_base);

356
357
358
359
360
361
	return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS,
			0, 0);
}

int ari_roc_flush_cache(uint32_t ari_base)
{
362
363
364
	/* clean the previous response state */
	ari_clobber_response(ari_base);

365
366
367
368
369
370
	return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY,
			0, 0);
}

int ari_roc_clean_cache(uint32_t ari_base)
{
371
372
373
	/* clean the previous response state */
	ari_clobber_response(ari_base);

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
	return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY,
			0, 0);
}

uint64_t ari_read_write_mca(uint32_t ari_base, mca_cmd_t cmd, uint64_t *data)
{
	mca_arg_t mca_arg;
	int ret;

	/* Set data (write) */
	mca_arg.data = data ? *data : 0ull;

	/* Set command */
	ari_write_32(ari_base, cmd.input.low, ARI_RESPONSE_DATA_LO);
	ari_write_32(ari_base, cmd.input.high, ARI_RESPONSE_DATA_HI);

	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MCA, mca_arg.arg.low,
			mca_arg.arg.high);
	if (!ret) {
		mca_arg.arg.low = ari_get_response_low(ari_base);
		mca_arg.arg.high = ari_get_response_high(ari_base);
		if (!mca_arg.err.finish)
			return (uint64_t)mca_arg.err.error;

		if (data) {
			mca_arg.arg.low = ari_get_request_low(ari_base);
			mca_arg.arg.high = ari_get_request_high(ari_base);
			*data = mca_arg.data;
		}
	}

	return 0;
}

int ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
{
	/* sanity check GSC ID */
	if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX)
		return EINVAL;

414
415
416
	/* clean the previous response state */
	ari_clobber_response(ari_base);

417
418
419
420
421
422
423
424
425
426
427
428
	/*
	 * The MCE code will read the GSC carveout value, corrseponding to
	 * the ID, from the MC registers and update the internal GSC registers
	 * of the CCPLEX.
	 */
	ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0);

	return 0;
}

void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
{
429
430
431
	/* clean the previous response state */
	ari_clobber_response(ari_base);

432
433
434
435
436
	/*
	 * The MCE will shutdown or restart the entire system
	 */
	(void)ari_request_wait(ari_base, 0, TEGRA_ARI_MISC_CCPLEX, state_idx, 0);
}
437
438
439
440
441
442
443

int ari_read_write_uncore_perfmon(uint32_t ari_base,
		uncore_perfmon_req_t req, uint64_t *data)
{
	int ret;
	uint32_t val;

444
445
446
	/* clean the previous response state */
	ari_clobber_response(ari_base);

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
	/* sanity check input parameters */
	if (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_READ && !data) {
		ERROR("invalid parameters\n");
		return EINVAL;
	}

	/*
	 * For "write" commands get the value that has to be written
	 * to the uncore perfmon registers
	 */
	val = (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_WRITE) ?
		*data : 0;

	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_PERFMON, val, req.data);
	if (ret)
		return ret;

	/* read the command status value */
	req.perfmon_status.val = ari_get_response_high(ari_base) &
				 UNCORE_PERFMON_RESP_STATUS_MASK;

	/*
	 * For "read" commands get the data from the uncore
	 * perfmon registers
	 */
	if ((req.perfmon_status.val == 0) && (req.perfmon_command.cmd ==
	     UNCORE_PERFMON_CMD_READ))
		*data = ari_get_response_low(ari_base);

	return (int)req.perfmon_status.val;
}
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
{
	/*
	 * This invokes the ARI_MISC_CCPLEX commands. This can be
	 * used to enable/disable coresight clock gating.
	 */

	if ((index > TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) ||
		((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
		(value > 1))) {
		ERROR("%s: invalid parameters \n", __func__);
		return;
	}

	/* clean the previous response state */
	ari_clobber_response(ari_base);
	(void)ari_request_wait(ari_base, 0, TEGRA_ARI_MISC_CCPLEX, index, value);
}