tspd_main.c 18.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */


/*******************************************************************************
 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
 * plug-in component to the Secure Monitor, registered as a runtime service. The
 * SPD is expected to be a functional extension of the Secure Payload (SP) that
 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
 * the Trusted OS/Applications range to the dispatcher. The SPD will either
 * handle the request locally or delegate it to the Secure Payload. It is also
 * responsible for initialising and maintaining communication with the SP.
 ******************************************************************************/
#include <arch_helpers.h>
42
43
44
#include <assert.h>
#include <bl_common.h>
#include <bl31.h>
45
#include <context_mgmt.h>
46
47
48
#include <debug.h>
#include <errno.h>
#include <platform.h>
49
#include <runtime_svc.h>
50
#include <stddef.h>
51
#include <tsp.h>
52
#include <uuid.h>
53
#include "tspd_private.h"
54
55

/*******************************************************************************
56
57
 * Address of the entrypoint vector table in the Secure Payload. It is
 * initialised once on the primary core after a cold boot.
58
 ******************************************************************************/
59
tsp_vectors_t *tsp_vectors;
60
61
62
63

/*******************************************************************************
 * Array to keep track of per-cpu Secure Payload state
 ******************************************************************************/
64
tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
65

66

67
68
69
70
71
/* TSP UID */
DEFINE_SVC_UUID(tsp_uuid,
		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);

72
int32_t tspd_init(void);
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*******************************************************************************
 * This function is the handler registered for S-EL1 interrupts by the TSPD. It
 * validates the interrupt and upon success arranges entry into the TSP at
 * 'tsp_fiq_entry()' for handling the interrupt.
 ******************************************************************************/
static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
					    uint32_t flags,
					    void *handle,
					    void *cookie)
{
	uint32_t linear_id;
	uint64_t mpidr;
	tsp_context_t *tsp_ctx;

	/* Check the security state when the exception was generated */
	assert(get_interrupt_src_ss(flags) == NON_SECURE);

#if IMF_READ_INTERRUPT_ID
	/* Check the security status of the interrupt */
93
	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
94
95
96
97
#endif

	/* Sanity check the pointer to this cpu's context */
	mpidr = read_mpidr();
98
	assert(handle == cm_get_context(NON_SECURE));
99
100
101
102
103
104
105

	/* Save the non-secure context before entering the TSP */
	cm_el1_sysregs_context_save(NON_SECURE);

	/* Get a reference to this cpu's TSP context */
	linear_id = platform_get_core_pos(mpidr);
	tsp_ctx = &tspd_sp_context[linear_id];
106
	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

	/*
	 * Determine if the TSP was previously preempted. Its last known
	 * context has to be preserved in this case.
	 * The TSP should return control to the TSPD after handling this
	 * FIQ. Preserve essential EL3 context to allow entry into the
	 * TSP at the FIQ entry point using the 'cpu_context' structure.
	 * There is no need to save the secure system register context
	 * since the TSP is supposed to preserve it during S-EL1 interrupt
	 * handling.
	 */
	if (get_std_smc_active_flag(tsp_ctx->state)) {
		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						      CTX_SPSR_EL3);
		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						     CTX_ELR_EL3);
	}

	cm_el1_sysregs_context_restore(SECURE);
126
127
	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
128
129
130
131
132
133
134
135
136
137
138
	cm_set_next_eret_context(SECURE);

	/*
	 * Tell the TSP that it has to handle an FIQ synchronously. Also the
	 * instruction in normal world where the interrupt was generated is
	 * passed for debugging purposes. It is safe to retrieve this address
	 * from ELR_EL3 as the secure context will not take effect until
	 * el3_exit().
	 */
	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
}
139

140
141
142
143
144
145
146
/*******************************************************************************
 * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
 * (aarch32/aarch64) if not already known and initialises the context for entry
 * into the SP for its initialisation.
 ******************************************************************************/
int32_t tspd_setup(void)
{
Vikram Kanigiri's avatar
Vikram Kanigiri committed
147
	entry_point_info_t *tsp_ep_info;
148
149
150
151
152
153
154
155
156
157
	uint64_t mpidr = read_mpidr();
	uint32_t linear_id;

	linear_id = platform_get_core_pos(mpidr);

	/*
	 * Get information about the Secure Payload (BL32) image. Its
	 * absence is a critical failure.  TODO: Add support to
	 * conditionally include the SPD service
	 */
Vikram Kanigiri's avatar
Vikram Kanigiri committed
158
159
160
161
162
163
164
	tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
	if (!tsp_ep_info) {
		WARN("No TSP provided by BL2 boot loader, Booting device"
			" without TSP initialization. SMC`s destined for TSP"
			" will return SMC_UNK\n");
		return 1;
	}
165

166
167
168
169
170
	/*
	 * If there's no valid entry point for SP, we return a non-zero value
	 * signalling failure initializing the service. We bail out without
	 * registering any handlers
	 */
Vikram Kanigiri's avatar
Vikram Kanigiri committed
171
	if (!tsp_ep_info->pc)
172
173
		return 1;

174
175
176
177
178
	/*
	 * We could inspect the SP image and determine it's execution
	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
	 * for the time being.
	 */
Vikram Kanigiri's avatar
Vikram Kanigiri committed
179
180
181
182
	tspd_init_tsp_ep_state(tsp_ep_info,
				TSP_AARCH64,
				tsp_ep_info->pc,
				&tspd_sp_context[linear_id]);
183

184
185
186
187
188
189
	/*
	 * All TSPD initialization done. Now register our init function with
	 * BL31 for deferred invocation
	 */
	bl31_register_bl32_init(&tspd_init);

Vikram Kanigiri's avatar
Vikram Kanigiri committed
190
	return 0;
191
192
193
194
195
196
197
198
199
}

/*******************************************************************************
 * This function passes control to the Secure Payload image (BL32) for the first
 * time on the primary cpu after a cold boot. It assumes that a valid secure
 * context has already been created by tspd_setup() which can be directly used.
 * It also assumes that a valid non-secure context has been initialised by PSCI
 * so it does not need to save and restore any non-secure state. This function
 * performs a synchronous entry into the Secure payload. The SP passes control
200
 * back to this routine through a SMC.
201
 ******************************************************************************/
202
int32_t tspd_init(void)
203
204
{
	uint64_t mpidr = read_mpidr();
205
	uint32_t linear_id = platform_get_core_pos(mpidr), flags;
206
	uint64_t rc;
207
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
Vikram Kanigiri's avatar
Vikram Kanigiri committed
208
209
210
211
212
213
214
215
216
217
	entry_point_info_t *tsp_entry_point;

	/*
	 * Get information about the Secure Payload (BL32) image. Its
	 * absence is a critical failure.
	 */
	tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
	assert(tsp_entry_point);

	cm_init_context(mpidr, tsp_entry_point);
218

219
220
221
222
	/*
	 * Arrange for an entry into the test secure payload. We expect an array
	 * of vectors in return
	 */
223
224
	rc = tspd_synchronous_sp_entry(tsp_ctx);
	assert(rc != 0);
225
	if (rc) {
226
		set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
227

228
229
230
231
232
233
234
		/*
		 * TSP has been successfully initialized. Register power
		 * managemnt hooks with PSCI
		 */
		psci_register_spd_pm_hook(&tspd_pm);
	}

235
236
237
238
239
240
241
242
243
244
245
246
	/*
	 * Register an interrupt handler for S-EL1 interrupts when generated
	 * during code executing in the non-secure state.
	 */
	flags = 0;
	set_interrupt_rm_flag(flags, NON_SECURE);
	rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
					     tspd_sel1_interrupt_handler,
					     flags);
	if (rc)
		panic();

247
248
249
	return rc;
}

250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*******************************************************************************
 * This function is responsible for handling all SMCs in the Trusted OS/App
 * range from the non-secure state as defined in the SMC Calling Convention
 * Document. It is also responsible for communicating with the Secure payload
 * to delegate work and return results back to the non-secure state. Lastly it
 * will also return any information that the secure payload needs to do the
 * work assigned to it.
 ******************************************************************************/
uint64_t tspd_smc_handler(uint32_t smc_fid,
			 uint64_t x1,
			 uint64_t x2,
			 uint64_t x3,
			 uint64_t x4,
			 void *cookie,
			 void *handle,
			 uint64_t flags)
{
268
	cpu_context_t *ns_cpu_context;
269
270
	unsigned long mpidr = read_mpidr();
	uint32_t linear_id = platform_get_core_pos(mpidr), ns;
271
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
272
273
274
275
276
277

	/* Determine which security state this SMC originated from */
	ns = is_caller_non_secure(flags);

	switch (smc_fid) {

278
279
280
281
282
283
284
285
286
	/*
	 * This function ID is used by TSP to indicate that it was
	 * preempted by a normal world IRQ.
	 *
	 */
	case TSP_PREEMPTED:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

287
		assert(handle == cm_get_context(SECURE));
288
289
		cm_el1_sysregs_context_save(SECURE);
		/* Get a reference to the non-secure context */
290
		ns_cpu_context = cm_get_context(NON_SECURE);
291
292
293
294
295
296
297
298
299
300
301
302
		assert(ns_cpu_context);

		/*
		 * Restore non-secure state. There is no need to save the
		 * secure system register context since the TSP was supposed
		 * to preserve it during S-EL1 interrupt handling.
		 */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET1(ns_cpu_context, SMC_PREEMPTED);

303
304
305
306
307
308
309
310
311
	/*
	 * This function ID is used only by the TSP to indicate that it has
	 * finished handling a S-EL1 FIQ interrupt. Execution should resume
	 * in the normal world.
	 */
	case TSP_HANDLED_S_EL1_FIQ:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

312
		assert(handle == cm_get_context(SECURE));
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

		/*
		 * Restore the relevant EL3 state which saved to service
		 * this SMC.
		 */
		if (get_std_smc_active_flag(tsp_ctx->state)) {
			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
				    CTX_SPSR_EL3,
				    tsp_ctx->saved_spsr_el3);
			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
				    CTX_ELR_EL3,
				    tsp_ctx->saved_elr_el3);
		}

		/* Get a reference to the non-secure context */
328
		ns_cpu_context = cm_get_context(NON_SECURE);
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
		assert(ns_cpu_context);

		/*
		 * Restore non-secure state. There is no need to save the
		 * secure system register context since the TSP was supposed
		 * to preserve it during S-EL1 interrupt handling.
		 */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET0((uint64_t) ns_cpu_context);


	/*
	 * This function ID is used only by the TSP to indicate that it was
	 * interrupted due to a EL3 FIQ interrupt. Execution should resume
	 * in the normal world.
	 */
	case TSP_EL3_FIQ:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

351
		assert(handle == cm_get_context(SECURE));
352
353
354
355
356
357
358
359

		/* Assert that standard SMC execution has been preempted */
		assert(get_std_smc_active_flag(tsp_ctx->state));

		/* Save the secure system register state */
		cm_el1_sysregs_context_save(SECURE);

		/* Get a reference to the non-secure context */
360
		ns_cpu_context = cm_get_context(NON_SECURE);
361
362
363
364
365
366
367
368
369
		assert(ns_cpu_context);

		/* Restore non-secure state */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET1(ns_cpu_context, TSP_EL3_FIQ);


370
371
372
373
374
375
376
377
378
379
380
381
	/*
	 * This function ID is used only by the SP to indicate it has
	 * finished initialising itself after a cold boot
	 */
	case TSP_ENTRY_DONE:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * Stash the SP entry points information. This is done
		 * only once on the primary cpu
		 */
382
383
		assert(tsp_vectors == NULL);
		tsp_vectors = (tsp_vectors_t *) x1;
384
385
386
387
388
389
390

		/*
		 * SP reports completion. The SPD must have initiated
		 * the original request through a synchronous entry
		 * into the SP. Jump back to the original C runtime
		 * context.
		 */
391
		tspd_synchronous_sp_exit(tsp_ctx, x1);
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
	/*
	 * These function IDs is used only by the SP to indicate it has
	 * finished:
	 * 1. turning itself on in response to an earlier psci
	 *    cpu_on request
	 * 2. resuming itself after an earlier psci cpu_suspend
	 *    request.
	 */
	case TSP_ON_DONE:
	case TSP_RESUME_DONE:

	/*
	 * These function IDs is used only by the SP to indicate it has
	 * finished:
	 * 1. suspending itself after an earlier psci cpu_suspend
	 *    request.
	 * 2. turning itself off in response to an earlier psci
	 *    cpu_off request.
	 */
	case TSP_OFF_DONE:
	case TSP_SUSPEND_DONE:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * SP reports completion. The SPD must have initiated the
		 * original request through a synchronous entry into the SP.
		 * Jump back to the original C runtime context, and pass x1 as
		 * return value to the caller
		 */
423
		tspd_synchronous_sp_exit(tsp_ctx, x1);
424

425
426
427
428
429
		/*
		 * Request from non-secure client to perform an
		 * arithmetic operation or response from secure
		 * payload to an earlier request.
		 */
430
431
432
433
434
435
436
437
438
	case TSP_FAST_FID(TSP_ADD):
	case TSP_FAST_FID(TSP_SUB):
	case TSP_FAST_FID(TSP_MUL):
	case TSP_FAST_FID(TSP_DIV):

	case TSP_STD_FID(TSP_ADD):
	case TSP_STD_FID(TSP_SUB):
	case TSP_STD_FID(TSP_MUL):
	case TSP_STD_FID(TSP_DIV):
439
440
441
442
443
444
445
		if (ns) {
			/*
			 * This is a fresh request from the non-secure client.
			 * The parameters are in x1 and x2. Figure out which
			 * registers need to be preserved, save the non-secure
			 * state and send the request to the secure payload.
			 */
446
			assert(handle == cm_get_context(NON_SECURE));
447
448
449
450
451

			/* Check if we are already preempted */
			if (get_std_smc_active_flag(tsp_ctx->state))
				SMC_RET1(handle, SMC_UNK);

452
453
454
			cm_el1_sysregs_context_save(NON_SECURE);

			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
455
			store_tsp_args(tsp_ctx, x1, x2);
456
457
458
459
460
461
462
463
464
465
466
467
468

			/*
			 * We are done stashing the non-secure context. Ask the
			 * secure payload to do the work now.
			 */

			/*
			 * Verify if there is a valid context to use, copy the
			 * operation type and parameters to the secure context
			 * and jump to the fast smc entry point in the secure
			 * payload. Entry into S-EL1 will take place upon exit
			 * from this function.
			 */
469
			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
470
471
472
473
474
475
476

			/* Set appropriate entry for SMC.
			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
			 * flags as appropriate.
			 */
			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
				cm_set_elr_el3(SECURE, (uint64_t)
477
						&tsp_vectors->fast_smc_entry);
478
479
480
			} else {
				set_std_smc_active_flag(tsp_ctx->state);
				cm_set_elr_el3(SECURE, (uint64_t)
481
						&tsp_vectors->std_smc_entry);
482
483
			}

484
485
			cm_el1_sysregs_context_restore(SECURE);
			cm_set_next_eret_context(SECURE);
486
			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
487
488
489
		} else {
			/*
			 * This is the result from the secure client of an
490
			 * earlier request. The results are in x1-x3. Copy it
491
492
493
			 * into the non-secure context, save the secure state
			 * and return to the non-secure state.
			 */
494
			assert(handle == cm_get_context(SECURE));
495
496
497
			cm_el1_sysregs_context_save(SECURE);

			/* Get a reference to the non-secure context */
498
			ns_cpu_context = cm_get_context(NON_SECURE);
499
500
501
502
503
			assert(ns_cpu_context);

			/* Restore non-secure state */
			cm_el1_sysregs_context_restore(NON_SECURE);
			cm_set_next_eret_context(NON_SECURE);
504
505
506
			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD)
				clr_std_smc_active_flag(tsp_ctx->state);
			SMC_RET3(ns_cpu_context, x1, x2, x3);
507
508
509
510
		}

		break;

511
512
513
514
515
		/*
		 * Request from non secure world to resume the preempted
		 * Standard SMC call.
		 */
	case TSP_FID_RESUME:
516
517
518
519
520
		/* RESUME should be invoked only by normal world */
		if (!ns) {
			assert(0);
			break;
		}
521

522
523
524
525
526
		/*
		 * This is a resume request from the non-secure client.
		 * save the non-secure state and send the request to
		 * the secure payload.
		 */
527
		assert(handle == cm_get_context(NON_SECURE));
528

529
530
531
		/* Check if we are already preempted before resume */
		if (!get_std_smc_active_flag(tsp_ctx->state))
			SMC_RET1(handle, SMC_UNK);
532

533
		cm_el1_sysregs_context_save(NON_SECURE);
534

535
536
537
538
		/*
		 * We are done stashing the non-secure context. Ask the
		 * secure payload to do the work now.
		 */
539

540
541
542
543
544
545
		/* We just need to return to the preempted point in
		 * TSP and the execution will resume as normal.
		 */
		cm_el1_sysregs_context_restore(SECURE);
		cm_set_next_eret_context(SECURE);
		SMC_RET0(&tsp_ctx->cpu_ctx);
546

547
548
549
550
551
552
553
554
555
556
		/*
		 * This is a request from the secure payload for more arguments
		 * for an ongoing arithmetic operation requested by the
		 * non-secure world. Simply return the arguments from the non-
		 * secure client in the original call.
		 */
	case TSP_GET_ARGS:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

557
558
		get_tsp_args(tsp_ctx, x1, x2);
		SMC_RET2(handle, x1, x2);
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
	case TOS_CALL_COUNT:
		/*
		 * Return the number of service function IDs implemented to
		 * provide service to non-secure
		 */
		SMC_RET1(handle, TSP_NUM_FID);

	case TOS_UID:
		/* Return TSP UID to the caller */
		SMC_UUID_RET(handle, tsp_uuid);

	case TOS_CALL_VERSION:
		/* Return the version of current implementation */
		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);

575
	default:
576
		break;
577
578
	}

579
	SMC_RET1(handle, SMC_UNK);
580
581
}

582
/* Define a SPD runtime service descriptor for fast SMC calls */
583
DECLARE_RT_SVC(
584
	tspd_fast,
585
586
587
588
589
590
591

	OEN_TOS_START,
	OEN_TOS_END,
	SMC_TYPE_FAST,
	tspd_setup,
	tspd_smc_handler
);
592
593
594
595
596
597
598
599
600
601
602

/* Define a SPD runtime service descriptor for standard SMC calls */
DECLARE_RT_SVC(
	tspd_std,

	OEN_TOS_START,
	OEN_TOS_END,
	SMC_TYPE_STD,
	NULL,
	tspd_smc_handler
);