plat_setup.c 9.55 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
 */

7
#include <assert.h>
8
9
10
11
12
13
14

#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <bl31/interrupt_mgmt.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <common/interrupt_props.h>
15
#include <context.h>
16
#include <cortex_a57.h>
17
#include <denver.h>
18
19
20
21
22
23
24
#include <drivers/arm/gic_common.h>
#include <drivers/arm/gicv2.h>
#include <drivers/console.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <plat/common/platform.h>

25
#include <mce.h>
26
#include <tegra_def.h>
27
#include <tegra_platform.h>
28
#include <tegra_private.h>
29

30
31
32
33
/*******************************************************************************
 * Tegra186 CPU numbers in cluster #0
 *******************************************************************************
 */
34
35
#define TEGRA186_CLUSTER0_CORE2		2U
#define TEGRA186_CLUSTER0_CORE3		3U
36

37
38
39
40
41
42
/*******************************************************************************
 * The Tegra power domain tree has a single system level power domain i.e. a
 * single root node. The first entry in the power domain descriptor specifies
 * the number of power domains at the highest power level.
 *******************************************************************************
 */
43
static const uint8_t tegra_power_domain_tree_desc[] = {
44
45
46
47
48
49
50
51
52
53
	/* No of root nodes */
	1,
	/* No of clusters */
	PLATFORM_CLUSTER_COUNT,
	/* No of CPU cores - cluster0 */
	PLATFORM_MAX_CPUS_PER_CLUSTER,
	/* No of CPU cores - cluster1 */
	PLATFORM_MAX_CPUS_PER_CLUSTER
};

54
55
56
/*******************************************************************************
 * This function returns the Tegra default topology tree information.
 ******************************************************************************/
57
const uint8_t *plat_get_power_domain_tree_desc(void)
58
59
60
61
{
	return tegra_power_domain_tree_desc;
}

62
63
64
65
/*
 * Table of regions to map using the MMU.
 */
static const mmap_region_t tegra_mmap[] = {
66
	MAP_REGION_FLAT(TEGRA_MISC_BASE, 0x10000U, /* 64KB */
67
			MT_DEVICE | MT_RW | MT_SECURE),
68
	MAP_REGION_FLAT(TEGRA_TSA_BASE, 0x20000U, /* 128KB */
69
			MT_DEVICE | MT_RW | MT_SECURE),
70
	MAP_REGION_FLAT(TEGRA_MC_STREAMID_BASE, 0x10000U, /* 64KB */
71
			MT_DEVICE | MT_RW | MT_SECURE),
72
	MAP_REGION_FLAT(TEGRA_MC_BASE, 0x10000U, /* 64KB */
73
			MT_DEVICE | MT_RW | MT_SECURE),
74
	MAP_REGION_FLAT(TEGRA_UARTA_BASE, 0x20000U, /* 128KB - UART A, B*/
75
			MT_DEVICE | MT_RW | MT_SECURE),
76
	MAP_REGION_FLAT(TEGRA_UARTC_BASE, 0x20000U, /* 128KB - UART C, G */
77
			MT_DEVICE | MT_RW | MT_SECURE),
78
	MAP_REGION_FLAT(TEGRA_UARTD_BASE, 0x30000U, /* 192KB - UART D, E, F */
79
			MT_DEVICE | MT_RW | MT_SECURE),
80
	MAP_REGION_FLAT(TEGRA_FUSE_BASE, 0x10000U, /* 64KB */
81
			MT_DEVICE | MT_RW | MT_SECURE),
82
	MAP_REGION_FLAT(TEGRA_GICD_BASE, 0x20000U, /* 128KB */
83
			MT_DEVICE | MT_RW | MT_SECURE),
84
	MAP_REGION_FLAT(TEGRA_SE0_BASE, 0x10000U, /* 64KB */
85
			MT_DEVICE | MT_RW | MT_SECURE),
86
	MAP_REGION_FLAT(TEGRA_PKA1_BASE, 0x10000U, /* 64KB */
87
			MT_DEVICE | MT_RW | MT_SECURE),
88
	MAP_REGION_FLAT(TEGRA_RNG1_BASE, 0x10000U, /* 64KB */
89
			MT_DEVICE | MT_RW | MT_SECURE),
90
	MAP_REGION_FLAT(TEGRA_CAR_RESET_BASE, 0x10000U, /* 64KB */
91
			MT_DEVICE | MT_RW | MT_SECURE),
92
	MAP_REGION_FLAT(TEGRA_PMC_BASE, 0x40000U, /* 256KB */
93
			MT_DEVICE | MT_RW | MT_SECURE),
94
95
	MAP_REGION_FLAT(TEGRA_TMRUS_BASE, 0x1000U, /* 4KB */
			MT_DEVICE | MT_RO | MT_SECURE),
96
	MAP_REGION_FLAT(TEGRA_SCRATCH_BASE, 0x10000U, /* 64KB */
97
			MT_DEVICE | MT_RW | MT_SECURE),
98
	MAP_REGION_FLAT(TEGRA_MMCRAB_BASE, 0x60000U, /* 384KB */
99
			MT_DEVICE | MT_RW | MT_SECURE),
100
	MAP_REGION_FLAT(TEGRA_ARM_ACTMON_CTR_BASE, 0x20000U, /* 128KB - ARM/Denver */
101
			MT_DEVICE | MT_RW | MT_SECURE),
102
	MAP_REGION_FLAT(TEGRA_SMMU0_BASE, 0x1000000U, /* 64KB */
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
			MT_DEVICE | MT_RW | MT_SECURE),
	{0}
};

/*******************************************************************************
 * Set up the pagetables as per the platform memory map & initialize the MMU
 ******************************************************************************/
const mmap_region_t *plat_get_mmio_map(void)
{
	/* MMIO space */
	return tegra_mmap;
}

/*******************************************************************************
 * Handler to get the System Counter Frequency
 ******************************************************************************/
119
uint32_t plat_get_syscnt_freq2(void)
120
{
121
	return 31250000;
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
}

/*******************************************************************************
 * Maximum supported UART controllers
 ******************************************************************************/
#define TEGRA186_MAX_UART_PORTS		7

/*******************************************************************************
 * This variable holds the UART port base addresses
 ******************************************************************************/
static uint32_t tegra186_uart_addresses[TEGRA186_MAX_UART_PORTS + 1] = {
	0,	/* undefined - treated as an error case */
	TEGRA_UARTA_BASE,
	TEGRA_UARTB_BASE,
	TEGRA_UARTC_BASE,
	TEGRA_UARTD_BASE,
	TEGRA_UARTE_BASE,
	TEGRA_UARTF_BASE,
	TEGRA_UARTG_BASE,
};

/*******************************************************************************
144
 * Enable console corresponding to the console ID
145
 ******************************************************************************/
146
void plat_enable_console(int32_t id)
147
{
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
	static console_16550_t uart_console;
	uint32_t console_clock;

	if ((id > 0) && (id < TEGRA186_MAX_UART_PORTS)) {
		/*
		 * Reference clock used by the FPGAs is a lot slower.
		 */
		if (tegra_platform_is_fpga()) {
			console_clock = TEGRA_BOOT_UART_CLK_13_MHZ;
		} else {
			console_clock = TEGRA_BOOT_UART_CLK_408_MHZ;
		}

		(void)console_16550_register(tegra186_uart_addresses[id],
					     console_clock,
					     TEGRA_CONSOLE_BAUDRATE,
					     &uart_console);
		console_set_scope(&uart_console.console, CONSOLE_FLAG_BOOT |
			CONSOLE_FLAG_RUNTIME | CONSOLE_FLAG_CRASH);
167
	}
168
}
169

170
171
172
173
174
/*******************************************************************************
 * Handler for early platform setup
 ******************************************************************************/
void plat_early_platform_setup(void)
{
175
176
	uint64_t impl, val;
	const plat_params_from_bl2_t *plat_params = bl31_get_plat_params();
177
178
179
180

	/* sanity check MCE firmware compatibility */
	mce_verify_firmware_version();

181
182
	impl = (read_midr() >> MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;

183
	/*
184
185
	 * Enable ECC and Parity Protection for Cortex-A57 CPUs (Tegra186
	 * A02p and beyond).
186
	 */
187
188
189
190
	if ((plat_params->l2_ecc_parity_prot_dis != 1) &&
	    (impl != (uint64_t)DENVER_IMPL)) {

		val = read_l2ctlr_el1();
191
		val |= CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT;
192
		write_l2ctlr_el1(val);
193
194
195
	}
}

196
/* Secure IRQs for Tegra186 */
197
198
199
200
201
static const interrupt_prop_t tegra186_interrupt_props[] = {
	INTR_PROP_DESC(TEGRA186_TOP_WDT_IRQ, GIC_HIGHEST_SEC_PRIORITY,
			GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE),
	INTR_PROP_DESC(TEGRA186_AON_WDT_IRQ, GIC_HIGHEST_SEC_PRIORITY,
			GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE)
202
203
204
205
206
207
208
};

/*******************************************************************************
 * Initialize the GIC and SGIs
 ******************************************************************************/
void plat_gic_setup(void)
{
209
	tegra_gic_setup(tegra186_interrupt_props, ARRAY_SIZE(tegra186_interrupt_props));
210
	tegra_gic_init();
211
212
213
214
215

	/*
	 * Initialize the FIQ handler only if the platform supports any
	 * FIQ interrupt sources.
	 */
216
	tegra_fiq_handler_setup();
217
}
218
219
220
221

/*******************************************************************************
 * Return pointer to the BL31 params from previous bootloader
 ******************************************************************************/
222
struct tegra_bl31_params *plat_get_bl31_params(void)
223
224
225
{
	uint32_t val;

226
	val = mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_BL31_PARAMS_ADDR);
227

228
	return (struct tegra_bl31_params *)(uintptr_t)val;
229
230
231
232
233
234
235
236
237
}

/*******************************************************************************
 * Return pointer to the BL31 platform params from previous bootloader
 ******************************************************************************/
plat_params_from_bl2_t *plat_get_bl31_plat_params(void)
{
	uint32_t val;

238
	val = mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_BL31_PLAT_PARAMS_ADDR);
239
240
241

	return (plat_params_from_bl2_t *)(uintptr_t)val;
}
242
243
244
245
246
247
248

/*******************************************************************************
 * This function implements a part of the critical interface between the psci
 * generic layer and the platform that allows the former to query the platform
 * to convert an MPIDR to a unique linear index. An error code (-1) is returned
 * in case the MPIDR is invalid.
 ******************************************************************************/
249
int32_t plat_core_pos_by_mpidr(u_register_t mpidr)
250
{
251
252
	u_register_t cluster_id, cpu_id, pos;
	int32_t ret;
253

254
255
	cluster_id = (mpidr >> (u_register_t)MPIDR_AFF1_SHIFT) & (u_register_t)MPIDR_AFFLVL_MASK;
	cpu_id = (mpidr >> (u_register_t)MPIDR_AFF0_SHIFT) & (u_register_t)MPIDR_AFFLVL_MASK;
256
257
258
259
260
261
262

	/*
	 * Validate cluster_id by checking whether it represents
	 * one of the two clusters present on the platform.
	 * Validate cpu_id by checking whether it represents a CPU in
	 * one of the two clusters present on the platform.
	 */
263
264
265
266
267
268
269
270
271
272
273
274
275
276
	if ((cluster_id >= (u_register_t)PLATFORM_CLUSTER_COUNT) ||
	    (cpu_id >= (u_register_t)PLATFORM_MAX_CPUS_PER_CLUSTER)) {
		ret = PSCI_E_NOT_PRESENT;
	} else {
		/* calculate the core position */
		pos = cpu_id + (cluster_id << 2U);

		/* check for non-existent CPUs */
		if ((pos == TEGRA186_CLUSTER0_CORE2) || (pos == TEGRA186_CLUSTER0_CORE3)) {
			ret = PSCI_E_NOT_PRESENT;
		} else {
			ret = (int32_t)pos;
		}
	}
277

278
	return ret;
279
}