psci_common.c 33.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
#include <arch.h>
32
#include <arch_helpers.h>
33
34
35
#include <assert.h>
#include <bl_common.h>
#include <context.h>
36
#include <context_mgmt.h>
37
#include <debug.h>
38
#include <platform.h>
39
#include <string.h>
40
#include "psci_private.h"
41

42
/*
43
44
 * SPD power management operations, expected to be supplied by the registered
 * SPD on successful SP initialization
45
 */
46
const spd_pm_ops_t *psci_spd_pm;
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
 * PSCI requested local power state map. This array is used to store the local
 * power states requested by a CPU for power levels from level 1 to
 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
 * CPU are the same.
 *
 * During state coordination, the platform is passed an array containing the
 * local states requested for a particular non cpu power domain by each cpu
 * within the domain.
 *
 * TODO: Dense packing of the requested states will cause cache thrashing
 * when multiple power domains write to it. If we allocate the requested
 * states at each power level in a cache-line aligned per-domain memory,
 * the cache thrashing can be avoided.
 */
static plat_local_state_t
	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];


68
/*******************************************************************************
69
70
71
72
73
 * Arrays that hold the platform's power domain tree information for state
 * management of power domains.
 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
 * which is an ancestor of a CPU power domain.
 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
74
 ******************************************************************************/
75
non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
76
77
78
79
#if USE_COHERENT_MEM
__attribute__ ((section("tzfw_coherent_mem")))
#endif
;
80

81
82
cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];

83
84
85
/*******************************************************************************
 * Pointer to functions exported by the platform to complete power mgmt. ops
 ******************************************************************************/
86
const plat_psci_ops_t *psci_plat_pm_ops;
87

88
89
90
91
92
93
/******************************************************************************
 * Check that the maximum power level supported by the platform makes sense
 *****************************************************************************/
CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
		PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
		assert_platform_max_pwrlvl_check);
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
 * The plat_local_state used by the platform is one of these types: RUN,
 * RETENTION and OFF. The platform can define further sub-states for each type
 * apart from RUN. This categorization is done to verify the sanity of the
 * psci_power_state passed by the platform and to print debug information. The
 * categorization is done on the basis of the following conditions:
 *
 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
 *
 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
 *    STATE_TYPE_RETN.
 *
 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
 *    STATE_TYPE_OFF.
 */
typedef enum plat_local_state_type {
	STATE_TYPE_RUN = 0,
	STATE_TYPE_RETN,
	STATE_TYPE_OFF
} plat_local_state_type_t;

/* The macro used to categorize plat_local_state. */
#define find_local_state_type(plat_local_state)					\
		((plat_local_state) ? ((plat_local_state > PLAT_MAX_RET_STATE)	\
		? STATE_TYPE_OFF : STATE_TYPE_RETN)				\
		: STATE_TYPE_RUN)

/******************************************************************************
 * Check that the maximum retention level supported by the platform is less
 * than the maximum off level.
 *****************************************************************************/
CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \
		assert_platform_max_off_and_retn_state_check);

/******************************************************************************
 * This function ensures that the power state parameter in a CPU_SUSPEND request
 * is valid. If so, it returns the requested states for each power level.
 *****************************************************************************/
int psci_validate_power_state(unsigned int power_state,
			      psci_power_state_t *state_info)
135
{
136
137
138
	/* Check SBZ bits in power state are zero */
	if (psci_check_power_state(power_state))
		return PSCI_E_INVALID_PARAMS;
139

140
	assert(psci_plat_pm_ops->validate_power_state);
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
	/* Validate the power_state using platform pm_ops */
	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
}

/******************************************************************************
 * This function retrieves the `psci_power_state_t` for system suspend from
 * the platform.
 *****************************************************************************/
void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
{
	/*
	 * Assert that the required pm_ops hook is implemented to ensure that
	 * the capability detected during psci_setup() is valid.
	 */
	assert(psci_plat_pm_ops->get_sys_suspend_power_state);
157

158
159
160
161
	/*
	 * Query the platform for the power_state required for system suspend
	 */
	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
162
163
}

164
165
166
167
168
169
170
171
/*******************************************************************************
 * This function verifies that the all the other cores in the system have been
 * turned OFF and the current CPU is the last running CPU in the system.
 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
 * otherwise.
 ******************************************************************************/
unsigned int psci_is_last_on_cpu(void)
{
172
	unsigned int cpu_idx, my_idx = plat_my_core_pos();
173

174
175
176
	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
		if (cpu_idx == my_idx) {
			assert(psci_get_aff_info_state() == AFF_STATE_ON);
177
178
179
			continue;
		}

180
		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
181
182
183
184
185
186
			return 0;
	}

	return 1;
}

187
/*******************************************************************************
188
189
190
 * Routine to return the maximum power level to traverse to after a cpu has
 * been physically powered up. It is expected to be called immediately after
 * reset from assembler code.
191
 ******************************************************************************/
192
static unsigned int get_power_on_target_pwrlvl(void)
193
{
194
	unsigned int pwrlvl;
195
196

	/*
197
198
199
200
	 * Assume that this cpu was suspended and retrieve its target power
	 * level. If it is invalid then it could only have been turned off
	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
	 * cpu can be turned off to.
201
	 */
202
	pwrlvl = psci_get_suspend_pwrlvl();
203
	if (pwrlvl == PSCI_INVALID_PWR_LVL)
204
205
		pwrlvl = PLAT_MAX_PWR_LVL;
	return pwrlvl;
206
207
}

208
209
210
211
212
213
214
215
/******************************************************************************
 * Helper function to update the requested local power state array. This array
 * does not store the requested state for the CPU power level. Hence an
 * assertion is added to prevent us from accessing the wrong index.
 *****************************************************************************/
static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
					 unsigned int cpu_idx,
					 plat_local_state_t req_pwr_state)
216
{
217
218
	assert(pwrlvl > PSCI_CPU_PWR_LVL);
	psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state;
219
220
}

221
222
223
224
/******************************************************************************
 * This function initializes the psci_req_local_pwr_states.
 *****************************************************************************/
void psci_init_req_local_pwr_states(void)
225
{
226
227
228
229
	/* Initialize the requested state of all non CPU power domains as OFF */
	memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE,
			sizeof(psci_req_local_pwr_states));
}
230

231
232
233
234
235
236
237
238
/******************************************************************************
 * Helper function to return a reference to an array containing the local power
 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
 * array will be the number of cpu power domains of which this power domain is
 * an ancestor. These requested states will be used to determine a suitable
 * target state for this power domain during psci state coordination. An
 * assertion is added to prevent us from accessing the CPU power level.
 *****************************************************************************/
239
240
static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
							 unsigned int cpu_idx)
241
242
{
	assert(pwrlvl > PSCI_CPU_PWR_LVL);
243

244
245
	return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
}
246

247
248
249
250
251
252
/******************************************************************************
 * Helper function to return the current local power state of each power domain
 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
 * function will be called after a cpu is powered on to find the local state
 * each power domain has emerged from.
 *****************************************************************************/
253
static void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
254
255
					     psci_power_state_t *target_state)
{
256
	unsigned int parent_idx, lvl;
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
	plat_local_state_t *pd_state = target_state->pwr_domain_state;

	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;

	/* Copy the local power state from node to state_info */
	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
#if !USE_COHERENT_MEM
		/*
		 * If using normal memory for psci_non_cpu_pd_nodes, we need
		 * to flush before reading the local power state as another
		 * cpu in the same power domain could have updated it and this
		 * code runs before caches are enabled.
		 */
		flush_dcache_range(
272
				(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
273
				sizeof(psci_non_cpu_pd_nodes[parent_idx]));
274
#endif
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
		pd_state[lvl] =	psci_non_cpu_pd_nodes[parent_idx].local_state;
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}

	/* Set the the higher levels to RUN */
	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
}

/******************************************************************************
 * Helper function to set the target local power state that each power domain
 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
 * enter. This function will be called after coordination of requested power
 * states has been done for each power level.
 *****************************************************************************/
290
static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
291
292
					const psci_power_state_t *target_state)
{
293
	unsigned int parent_idx, lvl;
294
295
296
	const plat_local_state_t *pd_state = target_state->pwr_domain_state;

	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
297

298
	/*
299
300
	 * Need to flush as local_state will be accessed with Data Cache
	 * disabled during power on
301
	 */
302
303
304
305
306
307
308
309
310
	flush_cpu_data(psci_svc_cpu_data.local_state);

	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;

	/* Copy the local_state from state_info */
	for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
		psci_non_cpu_pd_nodes[parent_idx].local_state =	pd_state[lvl];
#if !USE_COHERENT_MEM
		flush_dcache_range(
311
312
				(uintptr_t)&psci_non_cpu_pd_nodes[parent_idx],
				sizeof(psci_non_cpu_pd_nodes[parent_idx]));
313
314
315
#endif
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}
316
317
}

318

319
/*******************************************************************************
320
 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
321
 ******************************************************************************/
322
void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
323
				      unsigned int end_lvl,
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
				      unsigned int node_index[])
{
	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
	int i;

	for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
		*node_index++ = parent_node;
		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
	}
}

/******************************************************************************
 * This function is invoked post CPU power up and initialization. It sets the
 * affinity info state, target power state and requested power state for the
 * current CPU and all its ancestor power domains to RUN.
 *****************************************************************************/
340
void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
341
{
342
	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
343
344
345
346
347
348
349
350
	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;

	/* Reset the local_state to RUN for the non cpu power domains. */
	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
		psci_non_cpu_pd_nodes[parent_idx].local_state =
				PSCI_LOCAL_STATE_RUN;
#if !USE_COHERENT_MEM
		flush_dcache_range(
351
				(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
				sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
		psci_set_req_local_pwr_state(lvl,
					     cpu_idx,
					     PSCI_LOCAL_STATE_RUN);
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}

	/* Set the affinity info state to ON */
	psci_set_aff_info_state(AFF_STATE_ON);

	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
	flush_cpu_data(psci_svc_cpu_data);
}

/******************************************************************************
 * This function is passed the local power states requested for each power
 * domain (state_info) between the current CPU domain and its ancestors until
 * the target power level (end_pwrlvl). It updates the array of requested power
 * states with this information.
 *
 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
 * retrieves the states requested by all the cpus of which the power domain at
 * that level is an ancestor. It passes this information to the platform to
 * coordinate and return the target power state. If the target state for a level
 * is RUN then subsequent levels are not considered. At the CPU level, state
 * coordination is not required. Hence, the requested and the target states are
 * the same.
 *
 * The 'state_info' is updated with the target state for each level between the
 * CPU and the 'end_pwrlvl' and returned to the caller.
 *
 * This function will only be invoked with data cache enabled and while
 * powering down a core.
 *****************************************************************************/
387
388
void psci_do_state_coordination(unsigned int end_pwrlvl,
				psci_power_state_t *state_info)
389
{
390
391
392
393
394
	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
	unsigned int start_idx, ncpus;
	plat_local_state_t target_state, *req_states;

	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
395

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
	/* For level 0, the requested state will be equivalent
	   to target state */
	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {

		/* First update the requested power state */
		psci_set_req_local_pwr_state(lvl, cpu_idx,
					     state_info->pwr_domain_state[lvl]);

		/* Get the requested power states for this power level */
		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
		req_states = psci_get_req_local_pwr_states(lvl, start_idx);

		/*
		 * Let the platform coordinate amongst the requested states at
		 * this power level and return the target local power state.
		 */
		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
		target_state = plat_get_target_pwr_state(lvl,
							 req_states,
							 ncpus);

		state_info->pwr_domain_state[lvl] = target_state;

		/* Break early if the negotiated target power state is RUN */
		if (is_local_state_run(state_info->pwr_domain_state[lvl]))
			break;

		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}
425
426

	/*
427
428
429
430
	 * This is for cases when we break out of the above loop early because
	 * the target power state is RUN at a power level < end_pwlvl.
	 * We update the requested power state from state_info and then
	 * set the target state as RUN.
431
	 */
432
433
434
435
	for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) {
		psci_set_req_local_pwr_state(lvl, cpu_idx,
					     state_info->pwr_domain_state[lvl]);
		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
436

437
	}
438

439
440
	/* Update the target state in the power domain nodes */
	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
441
442
}

443
444
445
446
447
448
449
450
451
452
453
454
455
/******************************************************************************
 * This function validates a suspend request by making sure that if a standby
 * state is requested then no power level is turned off and the highest power
 * level is placed in a standby/retention state.
 *
 * It also ensures that the state level X will enter is not shallower than the
 * state level X + 1 will enter.
 *
 * This validation will be enabled only for DEBUG builds as the platform is
 * expected to perform these validations as well.
 *****************************************************************************/
int psci_validate_suspend_req(const psci_power_state_t *state_info,
			      unsigned int is_power_down_state)
456
{
457
458
459
460
461
462
463
	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
	plat_local_state_t state;
	plat_local_state_type_t req_state_type, deepest_state_type;
	int i;

	/* Find the target suspend power level */
	target_lvl = psci_find_target_suspend_lvl(state_info);
464
	if (target_lvl == PSCI_INVALID_PWR_LVL)
465
466
		return PSCI_E_INVALID_PARAMS;

467
468
	/* All power domain levels are in a RUN state to begin with */
	deepest_state_type = STATE_TYPE_RUN;
469

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
	for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) {
		state = state_info->pwr_domain_state[i];
		req_state_type = find_local_state_type(state);

		/*
		 * While traversing from the highest power level to the lowest,
		 * the state requested for lower levels has to be the same or
		 * deeper i.e. equal to or greater than the state at the higher
		 * levels. If this condition is true, then the requested state
		 * becomes the deepest state encountered so far.
		 */
		if (req_state_type < deepest_state_type)
			return PSCI_E_INVALID_PARAMS;
		deepest_state_type = req_state_type;
	}

	/* Find the highest off power level */
	max_off_lvl = psci_find_max_off_lvl(state_info);

	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
490
	max_retn_lvl = PSCI_INVALID_PWR_LVL;
491
492
493
494
495
496
497
498
	if (target_lvl != max_off_lvl)
		max_retn_lvl = target_lvl;

	/*
	 * If this is not a request for a power down state then max off level
	 * has to be invalid and max retention level has to be a valid power
	 * level.
	 */
499
500
	if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_PWR_LVL ||
				    max_retn_lvl == PSCI_INVALID_PWR_LVL))
501
502
503
504
505
		return PSCI_E_INVALID_PARAMS;

	return PSCI_E_SUCCESS;
}

506
507
508
509
510
/******************************************************************************
 * This function finds the highest power level which will be powered down
 * amongst all the power levels specified in the 'state_info' structure
 *****************************************************************************/
unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
511
{
512
	int i;
513

514
515
516
517
518
	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
		if (is_local_state_off(state_info->pwr_domain_state[i]))
			return i;
	}

519
	return PSCI_INVALID_PWR_LVL;
520
521
522
523
524
525
526
527
528
529
530
531
532
}

/******************************************************************************
 * This functions finds the level of the highest power domain which will be
 * placed in a low power state during a suspend operation.
 *****************************************************************************/
unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
{
	int i;

	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
		if (!is_local_state_run(state_info->pwr_domain_state[i]))
			return i;
533
	}
534

535
	return PSCI_INVALID_PWR_LVL;
536
537
}

538
/*******************************************************************************
539
540
541
 * This function is passed a cpu_index and the highest level in the topology
 * tree that the operation should be applied to. It picks up locks in order of
 * increasing power domain level in the range specified.
542
 ******************************************************************************/
543
544
void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
				   unsigned int cpu_idx)
545
{
546
	unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
547
	unsigned int level;
548

549
550
551
552
	/* No locking required for level 0. Hence start locking from level 1 */
	for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
553
554
555
556
	}
}

/*******************************************************************************
557
558
559
 * This function is passed a cpu_index and the highest level in the topology
 * tree that the operation should be applied to. It releases the locks in order
 * of decreasing power domain level in the range specified.
560
 ******************************************************************************/
561
562
void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
				   unsigned int cpu_idx)
563
{
564
	unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
565
566
	int level;

567
568
	/* Get the parent nodes */
	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
569

570
571
572
573
	/* Unlock top down. No unlocking required for level 0. */
	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
		parent_idx = parent_nodes[level - 1];
		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
574
575
576
	}
}

577
/*******************************************************************************
578
 * Simple routine to determine whether a mpidr is valid or not.
579
 ******************************************************************************/
580
int psci_validate_mpidr(u_register_t mpidr)
581
{
582
	if (plat_core_pos_by_mpidr(mpidr) < 0)
583
		return PSCI_E_INVALID_PARAMS;
584
585

	return PSCI_E_SUCCESS;
586
587
588
}

/*******************************************************************************
589
 * This function determines the full entrypoint information for the requested
590
 * PSCI entrypoint on power on/resume and returns it.
591
 ******************************************************************************/
592
static int psci_get_ns_ep_info(entry_point_info_t *ep,
593
594
			       uintptr_t entrypoint,
			       u_register_t context_id)
595
{
596
597
598
599
	unsigned long ep_attr, sctlr;
	unsigned int daif, ee, mode;
	unsigned long ns_scr_el3 = read_scr_el3();
	unsigned long ns_sctlr_el1 = read_sctlr_el1();
600

601
602
	sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
	ee = 0;
603

604
605
606
607
608
	ep_attr = NON_SECURE | EP_ST_DISABLE;
	if (sctlr & SCTLR_EE_BIT) {
		ep_attr |= EP_EE_BIG;
		ee = 1;
	}
609
	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
610

611
612
613
	ep->pc = entrypoint;
	memset(&ep->args, 0, sizeof(ep->args));
	ep->args.arg0 = context_id;
614
615
616
617
618

	/*
	 * Figure out whether the cpu enters the non-secure address space
	 * in aarch32 or aarch64
	 */
619
	if (ns_scr_el3 & SCR_RW_BIT) {
620
621
622
623
624
625

		/*
		 * Check whether a Thumb entry point has been provided for an
		 * aarch64 EL
		 */
		if (entrypoint & 0x1)
626
			return PSCI_E_INVALID_ADDRESS;
627

628
		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
629

630
		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
631
632
	} else {

633
		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
634
635
636
637
638

		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
639
640
		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;

641
		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
642
643
	}

644
	return PSCI_E_SUCCESS;
645
646
}

647
648
649
650
651
652
/*******************************************************************************
 * This function validates the entrypoint with the platform layer if the
 * appropriate pm_ops hook is exported by the platform and returns the
 * 'entry_point_info'.
 ******************************************************************************/
int psci_validate_entry_point(entry_point_info_t *ep,
653
654
			      uintptr_t entrypoint,
			      u_register_t context_id)
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
{
	int rc;

	/* Validate the entrypoint using platform psci_ops */
	if (psci_plat_pm_ops->validate_ns_entrypoint) {
		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
		if (rc != PSCI_E_SUCCESS)
			return PSCI_E_INVALID_ADDRESS;
	}

	/*
	 * Verify and derive the re-entry information for
	 * the non-secure world from the non-secure state from
	 * where this call originated.
	 */
	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
	return rc;
}

674
675
/*******************************************************************************
 * Generic handler which is called when a cpu is physically powered on. It
676
677
678
679
680
681
 * traverses the node information and finds the highest power level powered
 * off and performs generic, architectural, platform setup and state management
 * to power on that power level and power levels below it.
 * e.g. For a cpu that's been powered on, it will call the platform specific
 * code to enable the gic cpu interface and for a cluster it will enable
 * coherency at the interconnect level in addition to gic cpu interface.
682
 ******************************************************************************/
683
void psci_power_up_finish(void)
684
{
685
	unsigned int end_pwrlvl, cpu_idx = plat_my_core_pos();
686
	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
687
688

	/*
689
690
	 * Verify that we have been explicitly turned ON or resumed from
	 * suspend.
691
	 */
692
693
	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
		ERROR("Unexpected affinity info state");
694
		panic();
695
	}
696
697

	/*
698
699
	 * Get the maximum power domain level to traverse to after this cpu
	 * has been physically powered up.
700
	 */
701
	end_pwrlvl = get_power_on_target_pwrlvl();
702
703

	/*
704
705
706
	 * This function acquires the lock corresponding to each power level so
	 * that by the time all locks are taken, the system topology is snapshot
	 * and state management can be done safely.
707
	 */
708
709
	psci_acquire_pwr_domain_locks(end_pwrlvl,
				      cpu_idx);
710

711
	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
712

713
	/*
714
715
716
717
718
719
720
721
722
723
	 * This CPU could be resuming from suspend or it could have just been
	 * turned on. To distinguish between these 2 cases, we examine the
	 * affinity state of the CPU:
	 *  - If the affinity state is ON_PENDING then it has just been
	 *    turned on.
	 *  - Else it is resuming from suspend.
	 *
	 * Depending on the type of warm reset identified, choose the right set
	 * of power management handler and perform the generic, architecture
	 * and platform specific handling.
724
	 */
725
726
727
728
	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
		psci_cpu_on_finish(cpu_idx, &state_info);
	else
		psci_cpu_suspend_finish(cpu_idx, &state_info);
729

730
	/*
731
732
	 * Set the requested and target state of this CPU and all the higher
	 * power domains which are ancestors of this CPU to run.
733
	 */
734
	psci_set_pwr_domains_to_run(end_pwrlvl);
735

736
	/*
737
	 * This loop releases the lock corresponding to each power level
738
739
	 * in the reverse order to which they were acquired.
	 */
740
741
	psci_release_pwr_domain_locks(end_pwrlvl,
				      cpu_idx);
742
}
743
744
745
746
747
748

/*******************************************************************************
 * This function initializes the set of hooks that PSCI invokes as part of power
 * management operation. The power management hooks are expected to be provided
 * by the SPD, after it finishes all its initialization
 ******************************************************************************/
749
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
750
{
Soby Mathew's avatar
Soby Mathew committed
751
	assert(pm);
752
	psci_spd_pm = pm;
Soby Mathew's avatar
Soby Mathew committed
753
754
755
756
757
758
759

	if (pm->svc_migrate)
		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);

	if (pm->svc_migrate_info)
		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
				| define_psci_cap(PSCI_MIG_INFO_TYPE);
760
}
761

Soby Mathew's avatar
Soby Mathew committed
762
763
764
765
766
767
768
/*******************************************************************************
 * This function invokes the migrate info hook in the spd_pm_ops. It performs
 * the necessary return value validation. If the Secure Payload is UP and
 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
 * is resident through the mpidr parameter. Else the value of the parameter on
 * return is undefined.
 ******************************************************************************/
769
int psci_spd_migrate_info(u_register_t *mpidr)
Soby Mathew's avatar
Soby Mathew committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
{
	int rc;

	if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
		return PSCI_E_NOT_SUPPORTED;

	rc = psci_spd_pm->svc_migrate_info(mpidr);

	assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
		|| rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);

	return rc;
}


785
/*******************************************************************************
786
 * This function prints the state of all power domains present in the
787
788
 * system
 ******************************************************************************/
789
void psci_print_power_domain_map(void)
790
791
792
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
	unsigned int idx;
793
794
795
	plat_local_state_t state;
	plat_local_state_type_t state_type;

796
	/* This array maps to the PSCI_STATE_X definitions in psci.h */
797
	static const char *psci_state_type_str[] = {
798
		"ON",
799
		"RETENTION",
800
801
802
		"OFF",
	};

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
	INFO("PSCI Power Domain Map:\n");
	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
							idx++) {
		state_type = find_local_state_type(
				psci_non_cpu_pd_nodes[idx].local_state);
		INFO("  Domain Node : Level %u, parent_node %d,"
				" State %s (0x%x)\n",
				psci_non_cpu_pd_nodes[idx].level,
				psci_non_cpu_pd_nodes[idx].parent_node,
				psci_state_type_str[state_type],
				psci_non_cpu_pd_nodes[idx].local_state);
	}

	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
		state = psci_get_cpu_local_state_by_idx(idx);
		state_type = find_local_state_type(state);
		INFO("  CPU Node : MPID 0x%lx, parent_node %d,"
				" State %s (0x%x)\n",
				psci_cpu_pd_nodes[idx].mpidr,
				psci_cpu_pd_nodes[idx].parent_node,
				psci_state_type_str[state_type],
				psci_get_cpu_local_state_by_idx(idx));
825
826
827
	}
#endif
}
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905

#if ENABLE_PLAT_COMPAT
/*******************************************************************************
 * PSCI Compatibility helper function to return the 'power_state' parameter of
 * the PSCI CPU SUSPEND request for the current CPU. Returns PSCI_INVALID_DATA
 * if not invoked within CPU_SUSPEND for the current CPU.
 ******************************************************************************/
int psci_get_suspend_powerstate(void)
{
	/* Sanity check to verify that CPU is within CPU_SUSPEND */
	if (psci_get_aff_info_state() == AFF_STATE_ON &&
		!is_local_state_run(psci_get_cpu_local_state()))
		return psci_power_state_compat[plat_my_core_pos()];

	return PSCI_INVALID_DATA;
}

/*******************************************************************************
 * PSCI Compatibility helper function to return the state id of the current
 * cpu encoded in the 'power_state' parameter. Returns PSCI_INVALID_DATA
 * if not invoked within CPU_SUSPEND for the current CPU.
 ******************************************************************************/
int psci_get_suspend_stateid(void)
{
	unsigned int power_state;
	power_state = psci_get_suspend_powerstate();
	if (power_state != PSCI_INVALID_DATA)
		return psci_get_pstate_id(power_state);

	return PSCI_INVALID_DATA;
}

/*******************************************************************************
 * PSCI Compatibility helper function to return the state id encoded in the
 * 'power_state' parameter of the CPU specified by 'mpidr'. Returns
 * PSCI_INVALID_DATA if the CPU is not in CPU_SUSPEND.
 ******************************************************************************/
int psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)
{
	int cpu_idx = plat_core_pos_by_mpidr(mpidr);

	if (cpu_idx == -1)
		return PSCI_INVALID_DATA;

	/* Sanity check to verify that the CPU is in CPU_SUSPEND */
	if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON &&
		!is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx)))
		return psci_get_pstate_id(psci_power_state_compat[cpu_idx]);

	return PSCI_INVALID_DATA;
}

/*******************************************************************************
 * This function returns highest affinity level which is in OFF
 * state. The affinity instance with which the level is associated is
 * determined by the caller.
 ******************************************************************************/
unsigned int psci_get_max_phys_off_afflvl(void)
{
	psci_power_state_t state_info;

	memset(&state_info, 0, sizeof(state_info));
	psci_get_target_local_pwr_states(PLAT_MAX_PWR_LVL, &state_info);

	return psci_find_target_suspend_lvl(&state_info);
}

/*******************************************************************************
 * PSCI Compatibility helper function to return target affinity level requested
 * for the CPU_SUSPEND. This function assumes affinity levels correspond to
 * power domain levels on the platform.
 ******************************************************************************/
int psci_get_suspend_afflvl(void)
{
	return psci_get_suspend_pwrlvl();
}

#endif