change-log.rst 45 KB
Newer Older
1
2
3
4
5
6

.. section-numbering::
    :suffix: .

.. contents::

7
8
9
ARM Trusted Firmware - version 1.3
==================================

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
New features
------------

-  Added support for running Trusted Firmware in AArch32 execution state.

   The PSCI library has been refactored to allow integration with **EL3 Runtime
   Software**. This is software that is executing at the highest secure
   privilege which is EL3 in AArch64 or Secure SVC/Monitor mode in AArch32. See
   `PSCI Integration Guide`_.

   Included is a minimal AArch32 Secure Payload, **SP-MIN**, that illustrates
   the usage and integration of the PSCI library with EL3 Runtime Software
   running in AArch32 state.

   Booting to the BL1/BL2 images as well as booting straight to the Secure
   Payload is supported.

-  Improvements to the initialization framework for the PSCI service and ARM
   Standard Services in general.

   The PSCI service is now initialized as part of ARM Standard Service
   initialization. This consolidates the initializations of any ARM Standard
   Service that may be added in the future.

   A new function ``get_arm_std_svc_args()`` is introduced to get arguments
   corresponding to each standard service and must be implemented by the EL3
   Runtime Software.

   For PSCI, a new versioned structure ``psci_lib_args_t`` is introduced to
   initialize the PSCI Library. **Note** this is a compatibility break due to
   the change in the prototype of ``psci_setup()``.

-  To support AArch32 builds of BL1 and BL2, implemented a new, alternative
   firmware image loading mechanism that adds flexibility.

   The current mechanism has a hard-coded set of images and execution order
   (BL31, BL32, etc). The new mechanism is data-driven by a list of image
   descriptors provided by the platform code.

   ARM platforms have been updated to support the new loading mechanism.

   The new mechanism is enabled by a build flag (``LOAD_IMAGE_V2``) which is
   currently off by default for the AArch64 build.

   **Note** ``TRUSTED_BOARD_BOOT`` is currently not supported when
   ``LOAD_IMAGE_V2`` is enabled.

-  Updated requirements for making contributions to ARM TF.

   Commits now must have a 'Signed-off-by:' field to certify that the
   contribution has been made under the terms of the
   `Developer Certificate of Origin`_.

   A signed CLA is no longer required.

   The `Contribution Guide`_ has been updated to reflect this change.

-  Introduced Performance Measurement Framework (PMF) which provides support
   for capturing, storing, dumping and retrieving time-stamps to measure the
   execution time of critical paths in the firmware. This relies on defining
   fixed sample points at key places in the code.

-  To support the QEMU platform port, imported libfdt v1.4.1 from
   https://git.kernel.org/cgit/utils/dtc/dtc.git

-  Updated PSCI support:

   -  Added support for PSCI NODE\_HW\_STATE API for ARM platforms.

   -  New optional platform hook, ``pwr_domain_pwr_down_wfi()``, in
      ``plat_psci_ops`` to enable platforms to perform platform-specific actions
      needed to enter powerdown, including the 'wfi' invocation.

   -  PSCI STAT residency and count functions have been added on ARM platforms
      by using PMF.

-  Enhancements to the translation table library:

   -  Limited memory mapping support for region overlaps to only allow regions
      to overlap that are identity mapped or have the same virtual to physical
      address offset, and overlap completely but must not cover the same area.

      This limitation will enable future enhancements without having to
      support complex edge cases that may not be necessary.

   -  The initial translation lookup level is now inferred from the virtual
      address space size. Previously, it was hard-coded.

   -  Added support for mapping Normal, Inner Non-cacheable, Outer
      Non-cacheable memory in the translation table library.

      This can be useful to map a non-cacheable memory region, such as a DMA
      buffer.

   -  Introduced the MT\_EXECUTE/MT\_EXECUTE\_NEVER memory mapping attributes to
      specify the access permissions for instruction execution of a memory
      region.

-  Enabled support to isolate code and read-only data on separate memory pages,
   allowing independent access control to be applied to each.

-  Enabled SCR\_EL3.SIF (Secure Instruction Fetch) bit in BL1 and BL31 common
   architectural setup code, preventing fetching instructions from non-secure
   memory when in secure state.

-  Enhancements to FIP support:

   -  Replaced ``fip_create`` with ``fiptool`` which provides a more consistent
      and intuitive interface as well as additional support to remove an image
      from a FIP file.

   -  Enabled printing the SHA256 digest with info command, allowing quick
      verification of an image within a FIP without having to extract the
      image and running sha256sum on it.

   -  Added support for unpacking the contents of an existing FIP file into
      the working directory.

   -  Aligned command line options for specifying images to use same naming
      convention as specified by TBBR and already used in cert\_create tool.

-  Refactored the TZC-400 driver to also support memory controllers that
   integrate TZC functionality, for example ARM CoreLink DMC-500. Also added
   DMC-500 specific support.

-  Implemented generic delay timer based on the system generic counter and
   migrated all platforms to use it.

-  Enhanced support for ARM platforms:

   -  Updated image loading support to make SCP images (SCP\_BL2 and SCP\_BL2U)
      optional.

   -  Enhanced topology description support to allow multi-cluster topology
      definitions.

   -  Added interconnect abstraction layer to help platform ports select the
      right interconnect driver, CCI or CCN, for the platform.

   -  Added support to allow loading BL31 in the TZC-secured DRAM instead of
      the default secure SRAM.

   -  Added support to use a System Security Control (SSC) Registers Unit
      enabling ARM TF to be compiled to support multiple ARM platforms and
      then select one at runtime.

   -  Restricted mapping of Trusted ROM in BL1 to what is actually needed by
      BL1 rather than entire Trusted ROM region.

   -  Flash is now mapped as execute-never by default. This increases security
      by restricting the executable region to what is strictly needed.

-  Applied following erratum workarounds for Cortex-A57: 833471, 826977,
   829520, 828024 and 826974.

-  Added support for Mediatek MT6795 platform.

-  Added support for QEMU virtualization ARMv8-A target.

-  Added support for Rockchip RK3368 and RK3399 platforms.

-  Added support for Xilinx Zynq UltraScale+ MPSoC platform.

-  Added support for ARM Cortex-A73 MPCore Processor.

-  Added support for ARM Cortex-A72 processor.

-  Added support for ARM Cortex-A35 processor.

-  Added support for ARM Cortex-A32 MPCore Processor.

-  Enabled preloaded BL33 alternative boot flow, in which BL2 does not load
   BL33 from non-volatile storage and BL31 hands execution over to a preloaded
   BL33. The User Guide has been updated with an example of how to use this
   option with a bootwrapped kernel.

-  Added support to build ARM TF on a Windows-based host machine.

-  Updated Trusted Board Boot prototype implementation:

   -  Enabled the ability for a production ROM with TBBR enabled to boot test
      software before a real ROTPK is deployed (e.g. manufacturing mode).
      Added support to use ROTPK in certificate without verifying against the
      platform value when ``ROTPK_NOT_DEPLOYED`` bit is set.

   -  Added support for non-volatile counter authentication to the
      Authentication Module to protect against roll-back.

-  Updated GICv3 support:

   -  Enabled processor power-down and automatic power-on using GICv3.

   -  Enabled G1S or G0 interrupts to be configured independently.

   -  Changed FVP default interrupt driver to be the GICv3-only driver.
      **Note** the default build of Trusted Firmware will not be able to boot
      Linux kernel with GICv2 FDT blob.

   -  Enabled wake-up from CPU\_SUSPEND to stand-by by temporarily re-routing
      interrupts and then restoring after resume.

Issues resolved since last release
----------------------------------

Known issues
------------

-  The version of the AEMv8 Base FVP used in this release resets the model
   instead of terminating its execution in response to a shutdown request using
   the PSCI ``SYSTEM_OFF`` API. This issue will be fixed in a future version of
   the model.

-  Building TF with compiler optimisations disabled (``-O0``) fails.

-  ARM TF cannot be built with mbed TLS version v2.3.0 due to build warnings
   that the ARM TF build system interprets as errors.

-  TBBR is not currently supported when running Trusted Firmware in AArch32
   state.

ARM Trusted Firmware - version 1.2
==================================

New features
------------

-  The Trusted Board Boot implementation on ARM platforms now conforms to the
   mandatory requirements of the TBBR specification.

   In particular, the boot process is now guarded by a Trusted Watchdog, which
   will reset the system in case of an authentication or loading error. On ARM
   platforms, a secure instance of ARM SP805 is used as the Trusted Watchdog.

   Also, a firmware update process has been implemented. It enables
   authenticated firmware to update firmware images from external interfaces to
   SoC Non-Volatile memories. This feature functions even when the current
   firmware in the system is corrupt or missing; it therefore may be used as
   a recovery mode.

-  Improvements have been made to the Certificate Generation Tool
   (``cert_create``) as follows.

   -  Added support for the Firmware Update process by extending the Chain
      of Trust definition in the tool to include the Firmware Update
      certificate and the required extensions.

   -  Introduced a new API that allows one to specify command line options in
      the Chain of Trust description. This makes the declaration of the tool's
      arguments more flexible and easier to extend.

   -  The tool has been reworked to follow a data driven approach, which
      makes it easier to maintain and extend.

-  Extended the FIP tool (``fip_create``) to support the new set of images
   involved in the Firmware Update process.

-  Various memory footprint improvements. In particular:

   -  The bakery lock structure for coherent memory has been optimised.

   -  The mbed TLS SHA1 functions are not needed, as SHA256 is used to
      generate the certificate signature. Therefore, they have been compiled
      out, reducing the memory footprint of BL1 and BL2 by approximately
      6 KB.

   -  On ARM development platforms, each BL stage now individually defines
      the number of regions that it needs to map in the MMU.

-  Added the following new design documents:

   -  `Authentication framework`_
   -  `Firmware Update`_
   -  `TF Reset Design`_
   -  `Power Domain Topology Design`_

-  Applied the new image terminology to the code base and documentation, as
   described on the `TF wiki on GitHub`_.

-  The build system has been reworked to improve readability and facilitate
   adding future extensions.

-  On ARM standard platforms, BL31 uses the boot console during cold boot
   but switches to the runtime console for any later logs at runtime. The TSP
   uses the runtime console for all output.

-  Implemented a basic NOR flash driver for ARM platforms. It programs the
   device using CFI (Common Flash Interface) standard commands.

-  Implemented support for booting EL3 payloads on ARM platforms, which
   reduces the complexity of developing EL3 baremetal code by doing essential
   baremetal initialization.

-  Provided separate drivers for GICv3 and GICv2. These expect the entire
   software stack to use either GICv2 or GICv3; hybrid GIC software systems
   are no longer supported and the legacy ARM GIC driver has been deprecated.

-  Added support for Juno r1 and r2. A single set of Juno TF binaries can run
   on Juno r0, r1 and r2 boards. Note that this TF version depends on a Linaro
   release that does *not* contain Juno r2 support.

-  Added support for MediaTek mt8173 platform.

-  Implemented a generic driver for ARM CCN IP.

-  Major rework of the PSCI implementation.

   -  Added framework to handle composite power states.

   -  Decoupled the notions of affinity instances (which describes the
      hierarchical arrangement of cores) and of power domain topology, instead
      of assuming a one-to-one mapping.

   -  Better alignment with version 1.0 of the PSCI specification.

-  Added support for the SYSTEM\_SUSPEND PSCI API on ARM platforms. When invoked
   on the last running core on a supported platform, this puts the system
   into a low power mode with memory retention.

-  Unified the reset handling code as much as possible across BL stages.
   Also introduced some build options to enable optimization of the reset path
   on platforms that support it.

-  Added a simple delay timer API, as well as an SP804 timer driver, which is
   enabled on FVP.

-  Added support for NVidia Tegra T210 and T132 SoCs.

-  Reorganised ARM platforms ports to greatly improve code shareability and
   facilitate the reuse of some of this code by other platforms.

-  Added support for ARM Cortex-A72 processor in the CPU specific framework.

-  Provided better error handling. Platform ports can now define their own
   error handling, for example to perform platform specific bookkeeping or
   post-error actions.

-  Implemented a unified driver for ARM Cache Coherent Interconnects used for
   both CCI-400 & CCI-500 IPs. ARM platforms ports have been migrated to this
   common driver. The standalone CCI-400 driver has been deprecated.

Issues resolved since last release
----------------------------------

-  The Trusted Board Boot implementation has been redesigned to provide greater
   modularity and scalability. See the `Authentication Framework`_ document.
   All missing mandatory features are now implemented.

-  The FVP and Juno ports may now use the hash of the ROTPK stored in the
   Trusted Key Storage registers to verify the ROTPK. Alternatively, a
   development public key hash embedded in the BL1 and BL2 binaries might be
   used instead. The location of the ROTPK is chosen at build-time using the
   ``ARM_ROTPK_LOCATION`` build option.

-  GICv3 is now fully supported and stable.

Known issues
------------

-  The version of the AEMv8 Base FVP used in this release resets the model
   instead of terminating its execution in response to a shutdown request using
   the PSCI ``SYSTEM_OFF`` API. This issue will be fixed in a future version of
   the model.

-  While this version has low on-chip RAM requirements, there are further
   RAM usage enhancements that could be made.

-  The upstream documentation could be improved for structural consistency,
   clarity and completeness. In particular, the design documentation is
   incomplete for PSCI, the TSP(D) and the Juno platform.

-  Building TF with compiler optimisations disabled (``-O0``) fails.

ARM Trusted Firmware - version 1.1
==================================

New features
------------

-  A prototype implementation of Trusted Board Boot has been added. Boot
   loader images are verified by BL1 and BL2 during the cold boot path. BL1 and
   BL2 use the PolarSSL SSL library to verify certificates and images. The
   OpenSSL library is used to create the X.509 certificates. Support has been
   added to ``fip_create`` tool to package the certificates in a FIP.

-  Support for calling CPU and platform specific reset handlers upon entry into
   BL3-1 during the cold and warm boot paths has been added. This happens after
   another Boot ROM ``reset_handler()`` has already run. This enables a developer
   to perform additional actions or undo actions already performed during the
   first call of the reset handlers e.g. apply additional errata workarounds.

-  Support has been added to demonstrate routing of IRQs to EL3 instead of
   S-EL1 when execution is in secure world.

-  The PSCI implementation now conforms to version 1.0 of the PSCI
   specification. All the mandatory APIs and selected optional APIs are
   supported. In particular, support for the ``PSCI_FEATURES`` API has been
   added. A capability variable is constructed during initialization by
   examining the ``plat_pm_ops`` and ``spd_pm_ops`` exported by the platform and
   the Secure Payload Dispatcher. This is used by the PSCI FEATURES function
   to determine which PSCI APIs are supported by the platform.

-  Improvements have been made to the PSCI code as follows.

   -  The code has been refactored to remove redundant parameters from
      internal functions.

   -  Changes have been made to the code for PSCI ``CPU_SUSPEND``, ``CPU_ON`` and
      ``CPU_OFF`` calls to facilitate an early return to the caller in case a
      failure condition is detected. For example, a PSCI ``CPU_SUSPEND`` call
      returns ``SUCCESS`` to the caller if a pending interrupt is detected early
      in the code path.

   -  Optional platform APIs have been added to validate the ``power_state`` and
      ``entrypoint`` parameters early in PSCI ``CPU_ON`` and ``CPU_SUSPEND`` code
      paths.

   -  PSCI migrate APIs have been reworked to invoke the SPD hook to determine
      the type of Trusted OS and the CPU it is resident on (if
      applicable). Also, during a PSCI ``MIGRATE`` call, the SPD hook to migrate
      the Trusted OS is invoked.

-  It is now possible to build Trusted Firmware without marking at least an
   extra page of memory as coherent. The build flag ``USE_COHERENT_MEM`` can be
   used to choose between the two implementations. This has been made possible
   through these changes.

   -  An implementation of Bakery locks, where the locks are not allocated in
      coherent memory has been added.

   -  Memory which was previously marked as coherent is now kept coherent
      through the use of software cache maintenance operations.

   Approximately, 4K worth of memory is saved for each boot loader stage when
   ``USE_COHERENT_MEM=0``. Enabling this option increases the latencies
   associated with acquire and release of locks. It also requires changes to
   the platform ports.

-  It is now possible to specify the name of the FIP at build time by defining
   the ``FIP_NAME`` variable.

-  Issues with depedencies on the 'fiptool' makefile target have been
   rectified. The ``fip_create`` tool is now rebuilt whenever its source files
   change.

-  The BL3-1 runtime console is now also used as the crash console. The crash
   console is changed to SoC UART0 (UART2) from the previous FPGA UART0 (UART0)
   on Juno. In FVP, it is changed from UART0 to UART1.

-  CPU errata workarounds are applied only when the revision and part number
   match. This behaviour has been made consistent across the debug and release
   builds. The debug build additionally prints a warning if a mismatch is
   detected.

-  It is now possible to issue cache maintenance operations by set/way for a
   particular level of data cache. Levels 1-3 are currently supported.

-  The following improvements have been made to the FVP port.

   -  The build option ``FVP_SHARED_DATA_LOCATION`` which allowed relocation of
      shared data into the Trusted DRAM has been deprecated. Shared data is
      now always located at the base of Trusted SRAM.

   -  BL2 Translation tables have been updated to map only the region of
      DRAM which is accessible to normal world. This is the region of the 2GB
      DDR-DRAM memory at 0x80000000 excluding the top 16MB. The top 16MB is
      accessible to only the secure world.

   -  BL3-2 can now reside in the top 16MB of DRAM which is accessible only to
      the secure world. This can be done by setting the build flag
      ``FVP_TSP_RAM_LOCATION`` to the value ``dram``.

-  Separate transation tables are created for each boot loader image. The
   ``IMAGE_BLx`` build options are used to do this. This allows each stage to
   create mappings only for areas in the memory map that it needs.

-  A Secure Payload Dispatcher (OPTEED) for the OP-TEE Trusted OS has been
   added. Details of using it with ARM Trusted Firmware can be found in
   `OP-TEE Dispatcher`_

Issues resolved since last release
----------------------------------

-  The Juno port has been aligned with the FVP port as follows.

   -  Support for reclaiming all BL1 RW memory and BL2 memory by overlaying
      the BL3-1/BL3-2 NOBITS sections on top of them has been added to the
      Juno port.

   -  The top 16MB of the 2GB DDR-DRAM memory at 0x80000000 is configured
      using the TZC-400 controller to be accessible only to the secure world.

   -  The ARM GIC driver is used to configure the GIC-400 instead of using a
      GIC driver private to the Juno port.

   -  PSCI ``CPU_SUSPEND`` calls that target a standby state are now supported.

   -  The TZC-400 driver is used to configure the controller instead of direct
      accesses to the registers.

-  The Linux kernel version referred to in the user guide has DVFS and HMP
   support enabled.

-  DS-5 v5.19 did not detect Version 5.8 of the Cortex-A57-A53 Base FVPs in
   CADI server mode. This issue is not seen with DS-5 v5.20 and Version 6.2 of
   the Cortex-A57-A53 Base FVPs.

Known issues
------------

-  The Trusted Board Boot implementation is a prototype. There are issues with
   the modularity and scalability of the design. Support for a Trusted
   Watchdog, firmware update mechanism, recovery images and Trusted debug is
   absent. These issues will be addressed in future releases.

-  The FVP and Juno ports do not use the hash of the ROTPK stored in the
   Trusted Key Storage registers to verify the ROTPK in the
   ``plat_match_rotpk()`` function. This prevents the correct establishment of
   the Chain of Trust at the first step in the Trusted Board Boot process.

-  The version of the AEMv8 Base FVP used in this release resets the model
   instead of terminating its execution in response to a shutdown request using
   the PSCI ``SYSTEM_OFF`` API. This issue will be fixed in a future version of
   the model.

-  GICv3 support is experimental. There are known issues with GICv3
   initialization in the ARM Trusted Firmware.

-  While this version greatly reduces the on-chip RAM requirements, there are
   further RAM usage enhancements that could be made.

-  The firmware design documentation for the Test Secure-EL1 Payload (TSP) and
   its dispatcher (TSPD) is incomplete. Similarly for the PSCI section.

-  The Juno-specific firmware design documentation is incomplete.

ARM Trusted Firmware - version 1.0
==================================

New features
------------

-  It is now possible to map higher physical addresses using non-flat virtual
   to physical address mappings in the MMU setup.

-  Wider use is now made of the per-CPU data cache in BL3-1 to store:

   -  Pointers to the non-secure and secure security state contexts.

   -  A pointer to the CPU-specific operations.

   -  A pointer to PSCI specific information (for example the current power
      state).

   -  A crash reporting buffer.

-  The following RAM usage improvements result in a BL3-1 RAM usage reduction
   from 96KB to 56KB (for FVP with TSPD), and a total RAM usage reduction
   across all images from 208KB to 88KB, compared to the previous release.

   -  Removed the separate ``early_exception`` vectors from BL3-1 (2KB code size
      saving).

   -  Removed NSRAM from the FVP memory map, allowing the removal of one
      (4KB) translation table.

   -  Eliminated the internal ``psci_suspend_context`` array, saving 2KB.

   -  Correctly dimensioned the PSCI ``aff_map_node`` array, saving 1.5KB in the
      FVP port.

   -  Removed calling CPU mpidr from the bakery lock API, saving 160 bytes.

   -  Removed current CPU mpidr from PSCI common code, saving 160 bytes.

   -  Inlined the mmio accessor functions, saving 360 bytes.

   -  Fully reclaimed all BL1 RW memory and BL2 memory on the FVP port by
      overlaying the BL3-1/BL3-2 NOBITS sections on top of these at runtime.

   -  Made storing the FP register context optional, saving 0.5KB per context
      (8KB on the FVP port, with TSPD enabled and running on 8 CPUs).

   -  Implemented a leaner ``tf_printf()`` function, allowing the stack to be
      greatly reduced.

   -  Removed coherent stacks from the codebase. Stacks allocated in normal
      memory are now used before and after the MMU is enabled. This saves 768
      bytes per CPU in BL3-1.

   -  Reworked the crash reporting in BL3-1 to use less stack.

   -  Optimized the EL3 register state stored in the ``cpu_context`` structure
      so that registers that do not change during normal execution are
      re-initialized each time during cold/warm boot, rather than restored
      from memory. This saves about 1.2KB.

   -  As a result of some of the above, reduced the runtime stack size in all
      BL images. For BL3-1, this saves 1KB per CPU.

-  PSCI SMC handler improvements to correctly handle calls from secure states
   and from AArch32.

-  CPU contexts are now initialized from the ``entry_point_info``. BL3-1 fully
   determines the exception level to use for the non-trusted firmware (BL3-3)
   based on the SPSR value provided by the BL2 platform code (or otherwise
   provided to BL3-1). This allows platform code to directly run non-trusted
   firmware payloads at either EL2 or EL1 without requiring an EL2 stub or OS
   loader.

-  Code refactoring improvements:

   -  Refactored ``fvp_config`` into a common platform header.

   -  Refactored the fvp gic code to be a generic driver that no longer has an
      explicit dependency on platform code.

   -  Refactored the CCI-400 driver to not have dependency on platform code.

   -  Simplified the IO driver so it's no longer necessary to call ``io_init()``
      and moved all the IO storage framework code to one place.

   -  Simplified the interface the the TZC-400 driver.

   -  Clarified the platform porting interface to the TSP.

   -  Reworked the TSPD setup code to support the alternate BL3-2
      intialization flow where BL3-1 generic code hands control to BL3-2,
      rather than expecting the TSPD to hand control directly to BL3-2.

   -  Considerable rework to PSCI generic code to support CPU specific
      operations.

-  Improved console log output, by:

   -  Adding the concept of debug log levels.

   -  Rationalizing the existing debug messages and adding new ones.

   -  Printing out the version of each BL stage at runtime.

   -  Adding support for printing console output from assembler code,
      including when a crash occurs before the C runtime is initialized.

-  Moved up to the latest versions of the FVPs, toolchain, EDK2, kernel, Linaro
   file system and DS-5.

-  On the FVP port, made the use of the Trusted DRAM region optional at build
   time (off by default). Normal platforms will not have such a "ready-to-use"
   DRAM area so it is not a good example to use it.

-  Added support for PSCI ``SYSTEM_OFF`` and ``SYSTEM_RESET`` APIs.

-  Added support for CPU specific reset sequences, power down sequences and
   register dumping during crash reporting. The CPU specific reset sequences
   include support for errata workarounds.

-  Merged the Juno port into the master branch. Added support for CPU hotplug
   and CPU idle. Updated the user guide to describe how to build and run on the
   Juno platform.

Issues resolved since last release
----------------------------------

-  Removed the concept of top/bottom image loading. The image loader now
   automatically detects the position of the image inside the current memory
   layout and updates the layout to minimize fragementation. This resolves the
   image loader limitations of previously releases. There are currently no
   plans to support dynamic image loading.

-  CPU idle now works on the publicized version of the Foundation FVP.

-  All known issues relating to the compiler version used have now been
   resolved. This TF version uses Linaro toolchain 14.07 (based on GCC 4.9).

Known issues
------------

-  GICv3 support is experimental. The Linux kernel patches to support this are
   not widely available. There are known issues with GICv3 initialization in
   the ARM Trusted Firmware.

-  While this version greatly reduces the on-chip RAM requirements, there are
   further RAM usage enhancements that could be made.

-  The firmware design documentation for the Test Secure-EL1 Payload (TSP) and
   its dispatcher (TSPD) is incomplete. Similarly for the PSCI section.

-  The Juno-specific firmware design documentation is incomplete.

-  Some recent enhancements to the FVP port have not yet been translated into
   the Juno port. These will be tracked via the tf-issues project.

-  The Linux kernel version referred to in the user guide has DVFS and HMP
   support disabled due to some known instabilities at the time of this
   release. A future kernel version will re-enable these features.

-  DS-5 v5.19 does not detect Version 5.8 of the Cortex-A57-A53 Base FVPs in
   CADI server mode. This is because the ``<SimName>`` reported by the FVP in
   this version has changed. For example, for the Cortex-A57x4-A53x4 Base FVP,
   the ``<SimName>`` reported by the FVP is ``FVP_Base_Cortex_A57x4_A53x4``, while
   DS-5 expects it to be ``FVP_Base_A57x4_A53x4``.

   The temporary fix to this problem is to change the name of the FVP in
   ``sw/debugger/configdb/Boards/ARM FVP/Base_A57x4_A53x4/cadi_config.xml``.
   Change the following line:

   ::

       <SimName>System Generator:FVP_Base_A57x4_A53x4</SimName>

   to
   System Generator:FVP\_Base\_Cortex-A57x4\_A53x4

   A similar change can be made to the other Cortex-A57-A53 Base FVP variants.

ARM Trusted Firmware - version 0.4
==================================

New features
------------

-  Makefile improvements:

   -  Improved dependency checking when building.

   -  Removed ``dump`` target (build now always produces dump files).

   -  Enabled platform ports to optionally make use of parts of the Trusted
      Firmware (e.g. BL3-1 only), rather than being forced to use all parts.
      Also made the ``fip`` target optional.

   -  Specified the full path to source files and removed use of the ``vpath``
      keyword.

-  Provided translation table library code for potential re-use by platforms
   other than the FVPs.

-  Moved architectural timer setup to platform-specific code.

-  Added standby state support to PSCI cpu\_suspend implementation.

-  SRAM usage improvements:

   -  Started using the ``-ffunction-sections``, ``-fdata-sections`` and
      ``--gc-sections`` compiler/linker options to remove unused code and data
      from the images. Previously, all common functions were being built into
      all binary images, whether or not they were actually used.

   -  Placed all assembler functions in their own section to allow more unused
      functions to be removed from images.

   -  Updated BL1 and BL2 to use a single coherent stack each, rather than one
      per CPU.

   -  Changed variables that were unnecessarily declared and initialized as
      non-const (i.e. in the .data section) so they are either uninitialized
      (zero init) or const.

-  Moved the Test Secure-EL1 Payload (BL3-2) to execute in Trusted SRAM by
   default. The option for it to run in Trusted DRAM remains.

-  Implemented a TrustZone Address Space Controller (TZC-400) driver. A
   default configuration is provided for the Base FVPs. This means the model
   parameter ``-C bp.secure_memory=1`` is now supported.

-  Started saving the PSCI cpu\_suspend 'power\_state' parameter prior to
   suspending a CPU. This allows platforms that implement multiple power-down
   states at the same affinity level to identify a specific state.

-  Refactored the entire codebase to reduce the amount of nesting in header
   files and to make the use of system/user includes more consistent. Also
   split platform.h to separate out the platform porting declarations from the
   required platform porting definitions and the definitions/declarations
   specific to the platform port.

-  Optimized the data cache clean/invalidate operations.

-  Improved the BL3-1 unhandled exception handling and reporting. Unhandled
   exceptions now result in a dump of registers to the console.

-  Major rework to the handover interface between BL stages, in particular the
   interface to BL3-1. The interface now conforms to a specification and is
   more future proof.

-  Added support for optionally making the BL3-1 entrypoint a reset handler
   (instead of BL1). This allows platforms with an alternative image loading
   architecture to re-use BL3-1 with fewer modifications to generic code.

-  Reserved some DDR DRAM for secure use on FVP platforms to avoid future
   compatibility problems with non-secure software.

-  Added support for secure interrupts targeting the Secure-EL1 Payload (SP)
   (using GICv2 routing only). Demonstrated this working by adding an interrupt
   target and supporting test code to the TSP. Also demonstrated non-secure
   interrupt handling during TSP processing.

Issues resolved since last release
----------------------------------

-  Now support use of the model parameter ``-C bp.secure_memory=1`` in the Base
   FVPs (see **New features**).

-  Support for secure world interrupt handling now available (see **New
   features**).

-  Made enough SRAM savings (see **New features**) to enable the Test Secure-EL1
   Payload (BL3-2) to execute in Trusted SRAM by default.

-  The tested filesystem used for this release (Linaro AArch64 OpenEmbedded
   14.04) now correctly reports progress in the console.

-  Improved the Makefile structure to make it easier to separate out parts of
   the Trusted Firmware for re-use in platform ports. Also, improved target
   dependency checking.

Known issues
------------

-  GICv3 support is experimental. The Linux kernel patches to support this are
   not widely available. There are known issues with GICv3 initialization in
   the ARM Trusted Firmware.

-  Dynamic image loading is not available yet. The current image loader
   implementation (used to load BL2 and all subsequent images) has some
   limitations. Changing BL2 or BL3-1 load addresses in certain ways can lead
   to loading errors, even if the images should theoretically fit in memory.

-  The ARM Trusted Firmware still uses too much on-chip Trusted SRAM. A number
   of RAM usage enhancements have been identified to rectify this situation.

-  CPU idle does not work on the advertised version of the Foundation FVP.
   Some FVP fixes are required that are not available externally at the time
   of writing. This can be worked around by disabling CPU idle in the Linux
   kernel.

-  Various bugs in ARM Trusted Firmware, UEFI and the Linux kernel have been
   observed when using Linaro toolchain versions later than 13.11. Although
   most of these have been fixed, some remain at the time of writing. These
   mainly seem to relate to a subtle change in the way the compiler converts
   between 64-bit and 32-bit values (e.g. during casting operations), which
   reveals previously hidden bugs in client code.

-  The firmware design documentation for the Test Secure-EL1 Payload (TSP) and
   its dispatcher (TSPD) is incomplete. Similarly for the PSCI section.

ARM Trusted Firmware - version 0.3
==================================

New features
------------

-  Support for Foundation FVP Version 2.0 added.
   The documented UEFI configuration disables some devices that are unavailable
   in the Foundation FVP, including MMC and CLCD. The resultant UEFI binary can
   be used on the AEMv8 and Cortex-A57-A53 Base FVPs, as well as the Foundation
   FVP.

   NOTE: The software will not work on Version 1.0 of the Foundation FVP.

-  Enabled third party contributions. Added a new contributing.md containing
   instructions for how to contribute and updated copyright text in all files
   to acknowledge contributors.

-  The PSCI CPU\_SUSPEND API has been stabilised to the extent where it can be
   used for entry into power down states with the following restrictions:

   -  Entry into standby states is not supported.
   -  The API is only supported on the AEMv8 and Cortex-A57-A53 Base FVPs.

-  The PSCI AFFINITY\_INFO api has undergone limited testing on the Base FVPs to
   allow experimental use.

-  Required C library and runtime header files are now included locally in ARM
   Trusted Firmware instead of depending on the toolchain standard include
   paths. The local implementation has been cleaned up and reduced in scope.

-  Added I/O abstraction framework, primarily to allow generic code to load
   images in a platform-independent way. The existing image loading code has
   been reworked to use the new framework. Semi-hosting and NOR flash I/O
   drivers are provided.

-  Introduced Firmware Image Package (FIP) handling code and tools. A FIP
   combines multiple firmware images with a Table of Contents (ToC) into a
   single binary image. The new FIP driver is another type of I/O driver. The
   Makefile builds a FIP by default and the FVP platform code expect to load a
   FIP from NOR flash, although some support for image loading using semi-
   hosting is retained.

   NOTE: Building a FIP by default is a non-backwards-compatible change.

   NOTE: Generic BL2 code now loads a BL3-3 (non-trusted firmware) image into
   DRAM instead of expecting this to be pre-loaded at known location. This is
   also a non-backwards-compatible change.

   NOTE: Some non-trusted firmware (e.g. UEFI) will need to be rebuilt so that
   it knows the new location to execute from and no longer needs to copy
   particular code modules to DRAM itself.

-  Reworked BL2 to BL3-1 handover interface. A new composite structure
   (bl31\_args) holds the superset of information that needs to be passed from
   BL2 to BL3-1, including information on how handover execution control to
   BL3-2 (if present) and BL3-3 (non-trusted firmware).

-  Added library support for CPU context management, allowing the saving and
   restoring of

   -  Shared system registers between Secure-EL1 and EL1.
   -  VFP registers.
   -  Essential EL3 system registers.

-  Added a framework for implementing EL3 runtime services. Reworked the PSCI
   implementation to be one such runtime service.

-  Reworked the exception handling logic, making use of both SP\_EL0 and SP\_EL3
   stack pointers for determining the type of exception, managing general
   purpose and system register context on exception entry/exit, and handling
   SMCs. SMCs are directed to the correct EL3 runtime service.

-  Added support for a Test Secure-EL1 Payload (TSP) and a corresponding
   Dispatcher (TSPD), which is loaded as an EL3 runtime service. The TSPD
   implements Secure Monitor functionality such as world switching and
   EL1 context management, and is responsible for communication with the TSP.
   NOTE: The TSPD does not yet contain support for secure world interrupts.
   NOTE: The TSP/TSPD is not built by default.

Issues resolved since last release
----------------------------------

-  Support has been added for switching context between secure and normal
   worlds in EL3.

-  PSCI API calls ``AFFINITY_INFO`` & ``PSCI_VERSION`` have now been tested (to
   a limited extent).

-  The ARM Trusted Firmware build artifacts are now placed in the ``./build``
   directory and sub-directories instead of being placed in the root of the
   project.

-  The ARM Trusted Firmware is now free from build warnings. Build warnings
   are now treated as errors.

-  The ARM Trusted Firmware now provides C library support locally within the
   project to maintain compatibility between toolchains/systems.

-  The PSCI locking code has been reworked so it no longer takes locks in an
   incorrect sequence.

-  The RAM-disk method of loading a Linux file-system has been confirmed to
   work with the ARM Trusted Firmware and Linux kernel version (based on
   version 3.13) used in this release, for both Foundation and Base FVPs.

Known issues
------------

The following is a list of issues which are expected to be fixed in the future
releases of the ARM Trusted Firmware.

-  The TrustZone Address Space Controller (TZC-400) is not being programmed
   yet. Use of model parameter ``-C bp.secure_memory=1`` is not supported.

-  No support yet for secure world interrupt handling.

-  GICv3 support is experimental. The Linux kernel patches to support this are
   not widely available. There are known issues with GICv3 initialization in
   the ARM Trusted Firmware.

-  Dynamic image loading is not available yet. The current image loader
   implementation (used to load BL2 and all subsequent images) has some
   limitations. Changing BL2 or BL3-1 load addresses in certain ways can lead
   to loading errors, even if the images should theoretically fit in memory.

-  The ARM Trusted Firmware uses too much on-chip Trusted SRAM. Currently the
   Test Secure-EL1 Payload (BL3-2) executes in Trusted DRAM since there is not
   enough SRAM. A number of RAM usage enhancements have been identified to
   rectify this situation.

-  CPU idle does not work on the advertised version of the Foundation FVP.
   Some FVP fixes are required that are not available externally at the time
   of writing.

-  Various bugs in ARM Trusted Firmware, UEFI and the Linux kernel have been
   observed when using Linaro toolchain versions later than 13.11. Although
   most of these have been fixed, some remain at the time of writing. These
   mainly seem to relate to a subtle change in the way the compiler converts
   between 64-bit and 32-bit values (e.g. during casting operations), which
   reveals previously hidden bugs in client code.

-  The tested filesystem used for this release (Linaro AArch64 OpenEmbedded
   14.01) does not report progress correctly in the console. It only seems to
   produce error output, not standard output. It otherwise appears to function
   correctly. Other filesystem versions on the same software stack do not
   exhibit the problem.

-  The Makefile structure doesn't make it easy to separate out parts of the
   Trusted Firmware for re-use in platform ports, for example if only BL3-1 is
   required in a platform port. Also, dependency checking in the Makefile is
   flawed.

-  The firmware design documentation for the Test Secure-EL1 Payload (TSP) and
   its dispatcher (TSPD) is incomplete. Similarly for the PSCI section.

ARM Trusted Firmware - version 0.2
==================================

New features
------------

-  First source release.

-  Code for the PSCI suspend feature is supplied, although this is not enabled
   by default since there are known issues (see below).

Issues resolved since last release
----------------------------------

-  The "psci" nodes in the FDTs provided in this release now fully comply
   with the recommendations made in the PSCI specification.

Known issues
------------

The following is a list of issues which are expected to be fixed in the future
releases of the ARM Trusted Firmware.

-  The TrustZone Address Space Controller (TZC-400) is not being programmed
   yet. Use of model parameter ``-C bp.secure_memory=1`` is not supported.

-  No support yet for secure world interrupt handling or for switching context
   between secure and normal worlds in EL3.

-  GICv3 support is experimental. The Linux kernel patches to support this are
   not widely available. There are known issues with GICv3 initialization in
   the ARM Trusted Firmware.

-  Dynamic image loading is not available yet. The current image loader
   implementation (used to load BL2 and all subsequent images) has some
   limitations. Changing BL2 or BL3-1 load addresses in certain ways can lead
   to loading errors, even if the images should theoretically fit in memory.

-  Although support for PSCI ``CPU_SUSPEND`` is present, it is not yet stable
   and ready for use.

-  PSCI API calls ``AFFINITY_INFO`` & ``PSCI_VERSION`` are implemented but have not
   been tested.

-  The ARM Trusted Firmware make files result in all build artifacts being
   placed in the root of the project. These should be placed in appropriate
   sub-directories.

-  The compilation of ARM Trusted Firmware is not free from compilation
   warnings. Some of these warnings have not been investigated yet so they
   could mask real bugs.

-  The ARM Trusted Firmware currently uses toolchain/system include files like
   stdio.h. It should provide versions of these within the project to maintain
   compatibility between toolchains/systems.

-  The PSCI code takes some locks in an incorrect sequence. This may cause
   problems with suspend and hotplug in certain conditions.

-  The Linux kernel used in this release is based on version 3.12-rc4. Using
   this kernel with the ARM Trusted Firmware fails to start the file-system as
   a RAM-disk. It fails to execute user-space ``init`` from the RAM-disk. As an
   alternative, the VirtioBlock mechanism can be used to provide a file-system
   to the kernel.

--------------

*Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved.*

.. _PSCI Integration Guide: psci-lib-integration-guide.rst
.. _Developer Certificate of Origin: ../dco.txt
.. _Contribution Guide: ../contributing.rst
.. _Authentication framework: auth-framework.rst
.. _Firmware Update: firmware-update.rst
.. _TF Reset Design: reset-design.rst
.. _Power Domain Topology Design: psci-pd-tree.rst
.. _TF wiki on GitHub: https://github.com/ARM-software/arm-trusted-firmware/wiki/ARM-Trusted-Firmware-Image-Terminology
.. _Authentication Framework: auth-framework.rst
.. _OP-TEE Dispatcher: optee-dispatcher.rst