el3_common_macros.S 12.1 KB
Newer Older
1
/*
Jiafei Pan's avatar
Jiafei Pan committed
2
 * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
11
12
13
14
15
 */

#ifndef __EL3_COMMON_MACROS_S__
#define __EL3_COMMON_MACROS_S__

#include <arch.h>
#include <asm_macros.S>

	/*
	 * Helper macro to initialise EL3 registers we care about.
	 */
16
	.macro el3_arch_init_common
17
	/* ---------------------------------------------------------------------
18
19
20
21
22
	 * SCTLR_EL3 has already been initialised - read current value before
	 * modifying.
	 *
	 * SCTLR_EL3.I: Enable the instruction cache.
	 *
23
	 * SCTLR_EL3.SA: Enable Stack Alignment check. A SP alignment fault
24
25
26
27
28
29
30
31
	 *  exception is generated if a load or store instruction executed at
	 *  EL3 uses the SP as the base address and the SP is not aligned to a
	 *  16-byte boundary.
	 *
	 * SCTLR_EL3.A: Enable Alignment fault checking. All instructions that
	 *  load or store one or more registers have an alignment check that the
	 *  address being accessed is aligned to the size of the data element(s)
	 *  being accessed.
32
33
34
35
36
37
38
39
	 * ---------------------------------------------------------------------
	 */
	mov	x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
	mrs	x0, sctlr_el3
	orr	x0, x0, x1
	msr	sctlr_el3, x0
	isb

40
#ifdef IMAGE_BL31
41
42
43
44
45
46
47
48
49
50
51
52
	/* ---------------------------------------------------------------------
	 * Initialise the per-cpu cache pointer to the CPU.
	 * This is done early to enable crash reporting to have access to crash
	 * stack. Since crash reporting depends on cpu_data to report the
	 * unhandled exception, not doing so can lead to recursive exceptions
	 * due to a NULL TPIDR_EL3.
	 * ---------------------------------------------------------------------
	 */
	bl	init_cpu_data_ptr
#endif /* IMAGE_BL31 */

	/* ---------------------------------------------------------------------
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
	 * Initialise SCR_EL3, setting all fields rather than relying on hw.
	 * All fields are architecturally UNKNOWN on reset. The following fields
	 * do not change during the TF lifetime. The remaining fields are set to
	 * zero here but are updated ahead of transitioning to a lower EL in the
	 * function cm_init_context_common().
	 *
	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
	 *  EL2, EL1 and EL0 are not trapped to EL3.
	 *
	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
	 *  EL2, EL1 and EL0 are not trapped to EL3.
	 *
	 * SCR_EL3.SIF: Set to one to disable instruction fetches from
	 *  Non-secure memory.
	 *
	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
	 *  both Security states and both Execution states.
	 *
	 * SCR_EL3.EA: Set to one to route External Aborts and SError Interrupts
	 *  to EL3 when executing at any EL.
73
74
	 * ---------------------------------------------------------------------
	 */
75
76
	mov	x0, #((SCR_RESET_VAL | SCR_EA_BIT | SCR_SIF_BIT) \
			& ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT))
77
	msr	scr_el3, x0
78
79

	/* ---------------------------------------------------------------------
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
	 * Some fields are architecturally UNKNOWN on reset.
	 *
	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
	 *  disabled from all ELs in Secure state.
	 *
	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
	 *  privileged debug from S-EL1.
	 *
	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
	 *  access to the powerdown debug registers do not trap to EL3.
	 *
	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
	 *  debug registers, other than those registers that are controlled by
	 *  MDCR_EL3.TDOSA.
	 *
	 * MDCR_EL3.TPM: Set to zero so that EL0, EL1, and EL2 System register
	 *  accesses to all Performance Monitors registers do not trap to EL3.
99
100
	 * ---------------------------------------------------------------------
	 */
101
102
	mov_imm	x0, ((MDCR_EL3_RESET_VAL | MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE)) \
			& ~(MDCR_TDOSA_BIT | MDCR_TDA_BIT | MDCR_TPM_BIT))
103
	msr	mdcr_el3, x0
104

105
106
107
	/* ---------------------------------------------------------------------
	 * Enable External Aborts and SError Interrupts now that the exception
	 * vectors have been setup.
108
109
110
111
112
	 * ---------------------------------------------------------------------
	 */
	msr	daifclr, #DAIF_ABT_BIT

	/* ---------------------------------------------------------------------
113
114
115
116
117
118
119
120
121
	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
	 * All fields are architecturally UNKNOWN on reset.
	 *
	 * CPTR_EL3.TCPAC: Set to zero so that any accesses to CPACR_EL1,
	 *  CPTR_EL2, CPACR, or HCPTR do not trap to EL3.
	 *
	 * CPTR_EL3.TTA: Set to zero so that System register accesses to the
	 *  trace registers do not trap to EL3.
	 *
David Cunado's avatar
David Cunado committed
122
123
124
	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
	 *  by Advanced SIMD, floating-point or SVE instructions (if implemented)
	 *  do not trap to EL3.
125
	 */
126
	mov_imm x0, (CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TTA_BIT | TFP_BIT))
127
128
129
130
131
	msr	cptr_el3, x0
	.endm

/* -----------------------------------------------------------------------------
 * This is the super set of actions that need to be performed during a cold boot
132
 * or a warm boot in EL3. This code is shared by BL1 and BL31.
133
134
135
136
137
138
139
 *
 * This macro will always perform reset handling, architectural initialisations
 * and stack setup. The rest of the actions are optional because they might not
 * be needed, depending on the context in which this macro is called. This is
 * why this macro is parameterised ; each parameter allows to enable/disable
 * some actions.
 *
140
141
142
 *  _init_sctlr:
 *	Whether the macro needs to initialise SCTLR_EL3, including configuring
 *      the endianness of data accesses.
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
 *
 *  _warm_boot_mailbox:
 *	Whether the macro needs to detect the type of boot (cold/warm). The
 *	detection is based on the platform entrypoint address : if it is zero
 *	then it is a cold boot, otherwise it is a warm boot. In the latter case,
 *	this macro jumps on the platform entrypoint address.
 *
 *  _secondary_cold_boot:
 *	Whether the macro needs to identify the CPU that is calling it: primary
 *	CPU or secondary CPU. The primary CPU will be allowed to carry on with
 *	the platform initialisations, while the secondaries will be put in a
 *	platform-specific state in the meantime.
 *
 *	If the caller knows this macro will only be called by the primary CPU
 *	then this parameter can be defined to 0 to skip this step.
 *
 * _init_memory:
 *	Whether the macro needs to initialise the memory.
 *
 * _init_c_runtime:
 *	Whether the macro needs to initialise the C runtime environment.
 *
 * _exception_vectors:
 *	Address of the exception vectors to program in the VBAR_EL3 register.
 * -----------------------------------------------------------------------------
 */
	.macro el3_entrypoint_common					\
170
		_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot,	\
171
172
		_init_memory, _init_c_runtime, _exception_vectors

173
	.if \_init_sctlr
174
		/* -------------------------------------------------------------
175
176
177
178
179
180
181
182
183
184
185
186
187
188
		 * This is the initialisation of SCTLR_EL3 and so must ensure
		 * that all fields are explicitly set rather than relying on hw.
		 * Some fields reset to an IMPLEMENTATION DEFINED value and
		 * others are architecturally UNKNOWN on reset.
		 *
		 * SCTLR.EE: Set the CPU endianness before doing anything that
		 *  might involve memory reads or writes. Set to zero to select
		 *  Little Endian.
		 *
		 * SCTLR_EL3.WXN: For the EL3 translation regime, this field can
		 *  force all memory regions that are writeable to be treated as
		 *  XN (Execute-never). Set to zero so that this control has no
		 *  effect on memory access permissions.
		 *
189
		 * SCTLR_EL3.SA: Set to zero to disable Stack Alignment check.
190
191
		 *
		 * SCTLR_EL3.A: Set to zero to disable Alignment fault checking.
192
193
		 * -------------------------------------------------------------
		 */
194
195
		mov_imm	x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \
				| SCTLR_SA_BIT | SCTLR_A_BIT))
196
197
		msr	sctlr_el3, x0
		isb
198
	.endif /* _init_sctlr */
199
200
201
202
203
204
205
206
207

	.if \_warm_boot_mailbox
		/* -------------------------------------------------------------
		 * This code will be executed for both warm and cold resets.
		 * Now is the time to distinguish between the two.
		 * Query the platform entrypoint address and if it is not zero
		 * then it means it is a warm boot so jump to this address.
		 * -------------------------------------------------------------
		 */
208
		bl	plat_get_my_entrypoint
209
210
211
212
213
214
		cbz	x0, do_cold_boot
		br	x0

	do_cold_boot:
	.endif /* _warm_boot_mailbox */

215
216
217
218
219
220
221
222
	/* ---------------------------------------------------------------------
	 * Set the exception vectors.
	 * ---------------------------------------------------------------------
	 */
	adr	x0, \_exception_vectors
	msr	vbar_el3, x0
	isb

223
224
225
226
227
228
229
230
	/* ---------------------------------------------------------------------
	 * It is a cold boot.
	 * Perform any processor specific actions upon reset e.g. cache, TLB
	 * invalidations etc.
	 * ---------------------------------------------------------------------
	 */
	bl	reset_handler

231
	el3_arch_init_common
232

233
234
	.if \_secondary_cold_boot
		/* -------------------------------------------------------------
235
		 * Check if this is a primary or secondary CPU cold boot.
236
237
238
239
240
241
		 * The primary CPU will set up the platform while the
		 * secondaries are placed in a platform-specific state until the
		 * primary CPU performs the necessary actions to bring them out
		 * of that state and allows entry into the OS.
		 * -------------------------------------------------------------
		 */
242
		bl	plat_is_my_cpu_primary
243
		cbnz	w0, do_primary_cold_boot
244
245
246
247

		/* This is a cold boot on a secondary CPU */
		bl	plat_secondary_cold_boot_setup
		/* plat_secondary_cold_boot_setup() is not supposed to return */
248
		bl	el3_panic
249
250
251
252
253

	do_primary_cold_boot:
	.endif /* _secondary_cold_boot */

	/* ---------------------------------------------------------------------
254
255
	 * Initialize memory now. Secondary CPU initialization won't get to this
	 * point.
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
	 * ---------------------------------------------------------------------
	 */

	.if \_init_memory
		bl	platform_mem_init
	.endif /* _init_memory */

	/* ---------------------------------------------------------------------
	 * Init C runtime environment:
	 *   - Zero-initialise the NOBITS sections. There are 2 of them:
	 *       - the .bss section;
	 *       - the coherent memory section (if any).
	 *   - Relocate the data section from ROM to RAM, if required.
	 * ---------------------------------------------------------------------
	 */
	.if \_init_c_runtime
Roberto Vargas's avatar
Roberto Vargas committed
272
#if defined(IMAGE_BL31) || (defined(IMAGE_BL2) && BL2_AT_EL3)
273
274
275
276
277
278
279
280
		/* -------------------------------------------------------------
		 * Invalidate the RW memory used by the BL31 image. This
		 * includes the data and NOBITS sections. This is done to
		 * safeguard against possible corruption of this memory by
		 * dirty cache lines in a system cache as a result of use by
		 * an earlier boot loader stage.
		 * -------------------------------------------------------------
		 */
281
282
		ldr	x0, =__RW_START__
		ldr	x1, =__RW_END__
283
284
		sub	x1, x1, x0
		bl	inv_dcache_range
Roberto Vargas's avatar
Roberto Vargas committed
285
#endif
286

287
288
		ldr	x0, =__BSS_START__
		ldr	x1, =__BSS_SIZE__
289
		bl	zeromem
290
291
292
293

#if USE_COHERENT_MEM
		ldr	x0, =__COHERENT_RAM_START__
		ldr	x1, =__COHERENT_RAM_UNALIGNED_SIZE__
294
		bl	zeromem
295
296
#endif

Jiafei Pan's avatar
Jiafei Pan committed
297
#if defined(IMAGE_BL1) || (defined(IMAGE_BL2) && BL2_IN_XIP_MEM)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
		ldr	x0, =__DATA_RAM_START__
		ldr	x1, =__DATA_ROM_START__
		ldr	x2, =__DATA_SIZE__
		bl	memcpy16
#endif
	.endif /* _init_c_runtime */

	/* ---------------------------------------------------------------------
	 * Use SP_EL0 for the C runtime stack.
	 * ---------------------------------------------------------------------
	 */
	msr	spsel, #0

	/* ---------------------------------------------------------------------
	 * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
	 * the MMU is enabled. There is no risk of reading stale stack memory
	 * after enabling the MMU as only the primary CPU is running at the
	 * moment.
	 * ---------------------------------------------------------------------
	 */
318
	bl	plat_set_my_stack
319
320
321
322
323
324

#if STACK_PROTECTOR_ENABLED
	.if \_init_c_runtime
	bl	update_stack_protector_canary
	.endif /* _init_c_runtime */
#endif
325
326
327
	.endm

#endif /* __EL3_COMMON_MACROS_S__ */