user-guide.md 35.6 KB
Newer Older
1
2
3
4
5
6
ARM Trusted Firmware User Guide
===============================

Contents :

1.  Introduction
7
8
9
10
11
2.  Host machine requirements
3.  Tools
4.  Building the Trusted Firmware
5.  Obtaining the normal world software
6.  Running the software
12
13
14
15


1.  Introduction
----------------
16
17
18
19
20
This document describes how to build ARM Trusted Firmware and run it with a
tested set of other software components using defined configurations on ARM
Fixed Virtual Platform (FVP) models. It is possible to use other software
components, configurations and platforms but that is outside the scope of this
document.
21

22
This document should be used in conjunction with the [Firmware Design].
23
24


25
26
2.  Host machine requirements
-----------------------------
27

28
The minimum recommended machine specification for building the software and
29
30
31
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
32

33
The software has been tested on Ubuntu 12.04.04 (64-bit).  Packages used
34
35
for building the software were installed from that distribution unless
otherwise specified.
36
37


38
39
3.  Tools
---------
40
41
42

The following tools are required to use the ARM Trusted Firmware:

43
*   `git` package to obtain source code.
44

45
*   `ia32-libs` package.
46

47
48
*   `build-essential`, `uuid-dev` and `iasl` packages for building UEFI and the
    Firmware Image Package(FIP) tool.
49

50
51
52
53
*   `bc` and `ncurses-dev` packages for building Linux.

*   `device-tree-compiler` package for building the Flattened Device Tree (FDT)
    source files (`.dts` files) provided with this software.
54
55
56

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
57
    `gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz` tools are used.
58

59
60
        wget http://releases.linaro.org/14.07/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
61

62
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.19.
63
64


65
66
4.  Building the Trusted Firmware
---------------------------------
67

68
To build the software for the FVPs, follow these steps:
69

70
1.  Clone the ARM Trusted Firmware repository from GitHub:
71
72
73
74
75
76
77

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

78
79
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
    build:
80

81
82
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
83
        make PLAT=fvp all fip
84

85
86
87
    See the "Summary of build options" for information on available build
    options.

88
    By default this produces a release version of the build. To produce a debug
89
90
    version instead, refer to the "Debugging options" section below. UEFI can be
    used as the BL3-3 image, refer to the "Obtaining the normal world software"
91
92
    section below. By default this won't compile the TSP in, refer to the
    "Building the Test Secure Payload" section below.
93

94
95
96
97
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
98

99
100
101
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
102

103
    ... where `<platform>` currently defaults to `fvp` and `<build-type>` is
104
105
    either `debug` or `release`. A Firmare Image Package(FIP) will be created as
    part of the build. It contains all boot loader images except for `bl1.bin`.
106

107
    *   `build/<platform>/<build-type>/fip.bin`
108

109
110
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
111
112
113
114

4.  Copy the `bl1.bin` and `fip.bin` binary files to the directory from which
    the FVP will be launched. Symbolic links of the same names may be created
    instead.
115

116
117
5.  (Optional) Build products for a specific build variant can be removed using:

118
        make DEBUG=<D> PLAT=fvp clean
119
120
121
122
123
124

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
125

126
127
128
129
130
131
132
133
134
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

135
136
#### Common build options

137
138
139
140
*   `BL30`: Path to BL3-0 image in the host file system. This image is optional.
    If a BL3-0 image is present then this option must be passed for the `fip`
    target

141
142
143
144
145
146
147
148
149
*   `BL33`: Path to BL33 image in the host file system. This is mandatory for
    `fip` target

*   `CROSS_COMPILE`: Prefix to tool chain binaries. Please refer to examples in
    this document for usage

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
    (release) or 1 (debug) as values. 0 is the default

150
151
152
153
154
155
156
157
158
159
160
161
162
*   `LOG_LEVEL`: Chooses the log level, which controls the amount of console log
    output compiled into the build. This should be one of the following:

        0  (LOG_LEVEL_NONE)
        10 (LOG_LEVEL_NOTICE)
        20 (LOG_LEVEL_ERROR)
        30 (LOG_LEVEL_WARNING)
        40 (LOG_LEVEL_INFO)
        50 (LOG_LEVEL_VERBOSE)

    All log output up to and including the log level is compiled into the build.
    The default value is 40 in debug builds and 20 in release builds.

163
164
165
166
167
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
    1 (do save and restore). 0 is the default. An SPD could set this to 1 if it
    wants the timer registers to be saved and restored

168
169
170
171
172
173
174
175
176
177
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
    platform name must be the name of one of the directories under the `plat/`
    directory other than `common`

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
    SPD source; the directory is expected to contain `spd.mk` makefile

*   `V`: Verbose build. If assigned anything other than 0, the build commands
    are printed. Default is 0
178

179
180
181
*   `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM GIC
    driver for implementing the platform GIC API. This API is used
    by the interrupt management framework. Default is 2 i.e. version 2.0.
182

183
184
185
186
187
*   `IMF_READ_INTERRUPT_ID`: Boolean flag used by the interrupt management
    framework to enable passing of the interrupt id to its handler. The id is
    read using a platform GIC API. `INTR_ID_UNAVAILABLE` is passed instead if
    this option set to 0. Default is 0.

188
189
190
191
192
*   `RESET_TO_BL31`: Enable BL3-1 entrypoint as the CPU reset vector in place
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
    entrypoint) or 1 (CPU reset to BL3-1 entrypoint).
    The default value is 0.

193
194
195
196
*   `CRASH_REPORTING`: A non-zero value enables a console dump of processor
    register state when an unexpected exception occurs during execution of
    BL3-1. This option defaults to the value of `DEBUG` - i.e. by default
    this is only enabled for a debug build of the firmware.
197

198
199
200
201
202
*   `ASM_ASSERTION`: This flag determines whether the assertion checks within
    assembly source files are enabled or not. This option defaults to the
    value of `DEBUG` - i.e. by default this is only enabled for a debug
    build of the firmware.

203
204
205
206
207
208
*   `TSP_INIT_ASYNC`: Choose BL3-2 initialization method as asynchronous or
    synchronous, e.g. "(see "Initializing a BL3-2 Image" section in [Firmware
    Design])". It can take the value 0 (BL3-2 is initialized using
    synchronous method) or 1 (BL3-2 is initialized using asynchronous method).
    Default is 0.

209
210
211
212
213
214
215
216
217
218
219
220
221
#### FVP specific build options

*   `FVP_SHARED_DATA_LOCATION`: location of the shared memory page. Available
    options:
      - 'tsram' (default) : top of Trusted SRAM
      - 'tdram' : base of Trusted DRAM

*   `FVP_TSP_RAM_LOCATION`: location of the TSP binary. Options:
      - 'tsram' (default) : base of Trusted SRAM
      - 'tdram' : Trusted DRAM (above shared data)

For a better understanding of FVP options, the FVP memory map is detailed in
[Firmware Design].
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

Create a Firmware package that contains existing FVP BL2 and BL3-1 images:

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
       --bl2 build/fvp/debug/bl2.bin --bl31 build/fvp/debug/bl31.bin

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
      file: 'build/fvp/debug/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
      file: 'build/fvp/debug/bl31.bin'
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
      --bl2 build/fvp/release/bl2.bin

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
      file: 'build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
279
280
281

To compile a debug version and make the build more verbose use

282
283
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
284
    make PLAT=fvp DEBUG=1 V=1 all fip
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
might need to be recalculated (see the later memory layout section).

Extra debug options can be passed to the build system by setting `CFLAGS`:

300
301
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
302
    BL33=<path-to>/<bl33_image>                               \
303
    make PLAT=fvp DEBUG=1 V=1 all fip
304
305
306


NOTE: The Foundation FVP does not provide a debugger interface.
307
308


309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
### Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL3-1 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
BL3-1 binary. Then to build the TSP image and include it into the FIP use:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
    make PLAT=fvp SPD=tspd all fip

An additional boot loader binary file is created in the `build` directory:

    *   `build/<platform>/<build-type>/bl32.bin`

The Firmware Package contains this new image:

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
      file: './build/fvp/release/bl31.bin'
    - Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
      file: './build/fvp/release/bl32.bin'
    - Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"

On FVP, the TSP binary runs from Trusted SRAM by default. It is also possible
to run it from Trusted DRAM. This is controlled by the build configuration
344
`FVP_TSP_RAM_LOCATION`:
345
346
347

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
348
    make PLAT=fvp SPD=tspd FVP_TSP_RAM_LOCATION=tdram all fip
349
350


351
### Checking source code style
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
the project Makefile contains two targets, which both utilise the checkpatch.pl
script that ships with the Linux source tree.

To check the entire source tree, you must first download a copy of checkpatch.pl
(or the full Linux source), set the CHECKPATCH environment variable to point to
the script and build the target checkcodebase:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkcodebase

To just check the style on the files that differ between your local branch and
the remote master, use:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkpatch

If you wish to check your patch against something other than the remote master,
set the BASE_COMMIT variable to your desired branch.  By default, BASE_COMMIT
is set to 'origin/master'.


374
375
5.  Obtaining the normal world software
---------------------------------------
376

377
### Obtaining EDK2
378

379
380
381
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
382

383
384
To build the software to be compatible with Foundation and Base FVPs, follow
these steps:
385

386
1.  Clone the [EDK2 source code][EDK2] from GitHub:
387

388
        git clone -n https://github.com/tianocore/edk2.git
389

390
391
392
393
394
395
    Not all required features are available in the EDK2 mainline yet. These can
    be obtained from the ARM-software EDK2 repository instead:

        cd edk2
        git remote add -f --tags arm-software https://github.com/ARM-software/edk2.git
        git checkout --detach v1.2
396

397
2.  Copy build config templates to local workspace
398

399
        # in edk2/
400
        . edksetup.sh
401

402
3.  Build the EDK2 host tools
403

404
405
        make -C BaseTools clean
        make -C BaseTools
406

407
4.  Build the EDK2 software
408

409
        CROSS_COMPILE=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
410
411
412
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"
413
414
415
416
417
418

    The EDK2 binary for use with the ARM Trusted Firmware can then be found
    here:

        Build/ArmVExpress-FVP-AArch64/DEBUG_ARMGCC/FV/FVP_AARCH64_EFI.fd

419
420
421
422
    This will build EDK2 for the default settings as used by the FVPs. The EDK2
    binary `FVP_AARCH64_EFI.fd` should be specified as `BL33` in in the `make`
    command line when building the Trusted Firmware. See the "Building the
    Trusted Firmware" section above.
423

424
5.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
425
426
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
427

428
6.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
429
430
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
431

432
433
434
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
435

436
    Then rebuild EDK2 as described in step 3, using the following flag:
437

438
439
440
441
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
442

443

444
### Obtaining a Linux kernel
445

446
447
Preparing a Linux kernel for use on the FVPs can be done as follows
(GICv2 support only):
448
449
450
451
452

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

453
454
    Not all required features are available in the kernel mainline yet. These
    can be obtained from the ARM-software EDK2 repository instead:
455
456

        cd linux
457
458
        git remote add -f --tags arm-software https://github.com/ARM-software/linux.git
        git checkout --detach 1.1-Juno
459
460
461
462
463
464
465

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

466
467
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
468
469

3.  Copy the Linux image `arch/arm64/boot/Image` to the working directory from
470
    where the FVP is launched. Alternatively a symbolic link may be used.
471

472
### Obtaining the Flattened Device Trees
473
474

Depending on the FVP configuration and Linux configuration used, different
475
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
476
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
477
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
478
and MMC support, and has only one CPU cluster.
479
480
481
482

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
483
    Base memory map configuration.
484
485
486

*   `fvp-base-gicv2legacy-psci.dtb`

487
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
488
489
490

*   `fvp-base-gicv3-psci.dtb`

491
492
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


508
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
509
is launched. Alternatively a symbolic link may be used.
510

511
### Obtaining a root file-system
512
513
514
515
516

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

517
#### Prepare VirtioBlock
518
519
520
521
522

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

523
    NOTE: The unpacked disk image grows to 3 GiB in size.
524

525
526
        wget http://releases.linaro.org/14.07/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.9_20140727-682.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.9_20140727-682.img.gz
527
528
529
530
531
532
533
534
535

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
536
537
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
538
539
540
541
542

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

543
    1.  In EDK2, edit the following file:
544
545
546
547
548
549
550
551
552
553
554
555
556
557

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
558
    passing it the correct command line option. In the FVPs the following
559
560
561
562
563
564
    option should be provided in addition to the ones described in the
    "Running the software" section below.

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

565
    On the Base FVPs:
566

567
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
568

569
    On the Foundation FVP:
570

571
        --block-device="<path-to>/<file-system-image>"
572
573


574
575
576
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

577
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
578
579
580
581
582

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

583
#### Prepare RAM-disk
584

585
To prepare a RAM-disk root file-system, do the following:
586
587
588

1.  Download the file-system image:

589
        wget http://releases.linaro.org/14.07/openembedded/aarch64/linaro-image-lamp-genericarmv8-20140727-701.rootfs.tar.gz
590
591
592
593
594
595

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
596
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20140727-701.rootfs.tar.gz | cpio -id"
597
598
599
600
601
602
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
603
    launched from. Alternatively a symbolic link may be used.
604
605


606
607
6.  Running the software
------------------------
608

609
This version of the ARM Trusted Firmware has been tested on the following ARM
610
611
FVPs (64-bit versions only).

612
613
614
615
616
617
618
619
*   `Foundation_v8` (Version 2.1, Build 9.0.24)
*   `FVP_Base_AEMv8A-AEMv8A` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x2-A53x4` (Version 5.8, Build 0.8.5802)

NOTE: The build numbers quoted above are those reported by launching the FVP
with the `--version` parameter.
620
621
622

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
623
624
625
626
627

Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

628
629
630
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

631
632

### Running on the Foundation FVP with reset to BL1 entrypoint
633
634
635
636
637
638
639

The following `Foundation_v8` parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

640
641
642
643
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

644
    <path-to>/Foundation_v8                   \
645
646
647
648
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --gicv3                                   \
649
650
651
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
652

653
654
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
655
656
657
658
659
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

660
### Notes regarding Base FVP configuration options
661

662
663
Please refer to these notes in the subsequent "Running on the Base FVP"
sections.
664

665
666
667
1.  The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
    Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
    section above).
668

669
670
671
2.  Using `cache_state_modelled=1` makes booting very slow. The software will
    still work (and run much faster) without this option but this will hide any
    cache maintenance defects in the software.
672

673
674
675
3.  Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
    if a Linux RAM-disk file-system is used (see the "Obtaining a root
    file-system" section above).
676

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
4.  Setting the `-C bp.secure_memory` parameter to `1` is only supported on
    Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
    supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
    instructs the FVP to provide some helpful information if a secure memory
    violation occurs.

5.  This and the following notes only apply when the firmware is built with
    the `RESET_TO_BL31` option.

    The `--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>`
    parameter is used to load bootloader images into Base FVP memory (see the
    "Building the Trusted Firmware" section above). The base addresses used
    should match the image base addresses in `platform_def.h` used while linking
    the images. The BL3-2 image is only needed if BL3-1 has been built to expect
    a Secure-EL1 Payload.

6.  The `-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>` parameter, where
    X and Y are the cluster and CPU numbers respectively, is used to set the
    reset vector for each core.

7.  Changing the default value of `FVP_SHARED_DATA_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl31-binary>"@<base-address-of-bl31>` and
    `-C cluster<X>.cpu<X>.RVBAR=@<base-address-of-bl31>`, to the new value of
    `BL31_BASE` in `platform_def.h`.

8.  Changing the default value of `FVP_TSP_RAM_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl32-binary>"@<base-address-of-bl32>` to the new value of
    `BL32_BASE` in `platform_def.h`.
707

708
709
710
711
712
713
714
715

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
716

717
718
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
719
720
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
721
722
723
724
725
726
727
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
728

729
730
731
732
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
733
734
735
736

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

737
738
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
739
740
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
741
742
743
744
745
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
746

747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
### Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
763
764
765
766
767
768
769
770
771
    -C cluster0.cpu0.RVBAR=0x04022000                            \
    -C cluster0.cpu1.RVBAR=0x04022000                            \
    -C cluster0.cpu2.RVBAR=0x04022000                            \
    -C cluster0.cpu3.RVBAR=0x04022000                            \
    -C cluster1.cpu0.RVBAR=0x04022000                            \
    -C cluster1.cpu1.RVBAR=0x04022000                            \
    -C cluster1.cpu2.RVBAR=0x04022000                            \
    -C cluster1.cpu3.RVBAR=0x04022000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04022000    \
772
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04000000    \
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

### Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
790
791
792
793
794
795
796
797
798
    -C cluster0.cpu0.RVBARADDR=0x04022000                        \
    -C cluster0.cpu1.RVBARADDR=0x04022000                        \
    -C cluster0.cpu2.RVBARADDR=0x04022000                        \
    -C cluster0.cpu3.RVBARADDR=0x04022000                        \
    -C cluster1.cpu0.RVBARADDR=0x04022000                        \
    -C cluster1.cpu1.RVBARADDR=0x04022000                        \
    -C cluster1.cpu2.RVBARADDR=0x04022000                        \
    -C cluster1.cpu3.RVBARADDR=0x04022000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04022000    \
799
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04000000    \
800
801
802
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

803
804
805
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
806
807
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
808
809
810
811
812
813

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

814
The AEMv8 Base FVP can be configured to support GICv2 at addresses
815
816
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
817
818
819
820
821
822

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

823
824
825
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
826
827
828

*   `SYS_ID.Build[15:12]`

829
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
830
    default value on the Base FVPs.
831
832
833

*   `SYS_ID.Build[15:12]`

834
835
836
837
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
838

839
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
840
BL3-3 images should be used.
841

842
843
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

844
845
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
846

847
848
849
850
851
852
853
854
    <path-to>/Foundation_v8                   \
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
855
856
857

Explicit configuration of the `SYS_ID` register is not required.

858
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
859

860
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
861
862
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
863
864
865
866
867
868
869
870
871
872
873
874
875
876

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
877
    -C bp.variant=0x0
878

879
880
881
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
882
883
884
885


- - - - - - - - - - - - - - - - - - - - - - - - - -

886
_Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved._
887
888


889
[Firmware Design]:  ./firmware-design.md
890

891
[ARM FVP website]:  http://www.arm.com/fvp
892
[Linaro Toolchain]: http://releases.linaro.org/14.07/components/toolchain/binaries/
893
[EDK2]:             http://github.com/tianocore/edk2
894
[DS-5]:             http://www.arm.com/products/tools/software-tools/ds-5/index.php