bl31_entrypoint.S 8.07 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
#include <arch.h>
32
#include <bl_common.h>
33
#include <el3_common_macros.S>
dp-arm's avatar
dp-arm committed
34
35
#include <pmf_asm_macros.S>
#include <runtime_instr.h>
36
#include <xlat_tables_defs.h>
37
38

	.globl	bl31_entrypoint
Soby Mathew's avatar
Soby Mathew committed
39
	.globl	bl31_warm_entrypoint
40
41
42
43
44
45
46

	/* -----------------------------------------------------
	 * bl31_entrypoint() is the cold boot entrypoint,
	 * executed only by the primary cpu.
	 * -----------------------------------------------------
	 */

47
func bl31_entrypoint
48
#if !RESET_TO_BL31
49
50
51
52
53
	/* ---------------------------------------------------------------
	 * Preceding bootloader has populated x0 with a pointer to a
	 * 'bl31_params' structure & x1 with a pointer to platform
	 * specific structure
	 * ---------------------------------------------------------------
54
	 */
55
56
	mov	x20, x0
	mov	x21, x1
57

58
	/* ---------------------------------------------------------------------
59
60
61
	 * For !RESET_TO_BL31 systems, only the primary CPU ever reaches
	 * bl31_entrypoint() during the cold boot flow, so the cold/warm boot
	 * and primary/secondary CPU logic should not be executed in this case.
62
	 *
63
64
	 * Also, assume that the previous bootloader has already set up the CPU
	 * endianness and has initialised the memory.
65
66
	 * ---------------------------------------------------------------------
	 */
67
68
69
70
71
72
73
	el3_entrypoint_common					\
		_set_endian=0					\
		_warm_boot_mailbox=0				\
		_secondary_cold_boot=0				\
		_init_memory=0					\
		_init_c_runtime=1				\
		_exception_vectors=runtime_exceptions
74

75
76
77
	/* ---------------------------------------------------------------------
	 * Relay the previous bootloader's arguments to the platform layer
	 * ---------------------------------------------------------------------
78
	 */
79
80
81
	mov	x0, x20
	mov	x1, x21
#else
82
83
84
85
86
87
	/* ---------------------------------------------------------------------
	 * For RESET_TO_BL31 systems which have a programmable reset address,
	 * bl31_entrypoint() is executed only on the cold boot path so we can
	 * skip the warm boot mailbox mechanism.
	 * ---------------------------------------------------------------------
	 */
88
89
	el3_entrypoint_common					\
		_set_endian=1					\
90
		_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS	\
91
		_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU	\
92
93
94
		_init_memory=1					\
		_init_c_runtime=1				\
		_exception_vectors=runtime_exceptions
95

96
	/* ---------------------------------------------------------------------
97
	 * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
98
99
100
	 * there's no argument to relay from a previous bootloader. Zero the
	 * arguments passed to the platform layer to reflect that.
	 * ---------------------------------------------------------------------
101
	 */
102
103
104
	mov	x0, 0
	mov	x1, 0
#endif /* RESET_TO_BL31 */
105
106
107
108
109
110
111
112

	/* ---------------------------------------------
	 * Perform platform specific early arch. setup
	 * ---------------------------------------------
	 */
	bl	bl31_early_platform_setup
	bl	bl31_plat_arch_setup

Achin Gupta's avatar
Achin Gupta committed
113
	/* ---------------------------------------------
114
	 * Jump to main function.
Achin Gupta's avatar
Achin Gupta committed
115
116
	 * ---------------------------------------------
	 */
117
	bl	bl31_main
Achin Gupta's avatar
Achin Gupta committed
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
	/* -------------------------------------------------------------
	 * Clean the .data & .bss sections to main memory. This ensures
	 * that any global data which was initialised by the primary CPU
	 * is visible to secondary CPUs before they enable their data
	 * caches and participate in coherency.
	 * -------------------------------------------------------------
	 */
	adr	x0, __DATA_START__
	adr	x1, __DATA_END__
	sub	x1, x1, x0
	bl	clean_dcache_range

	adr	x0, __BSS_START__
	adr	x1, __BSS_END__
	sub	x1, x1, x0
	bl	clean_dcache_range

136
	b	el3_exit
137
endfunc bl31_entrypoint
Soby Mathew's avatar
Soby Mathew committed
138
139
140
141
142
143
144
145

	/* --------------------------------------------------------------------
	 * This CPU has been physically powered up. It is either resuming from
	 * suspend or has simply been turned on. In both cases, call the BL31
	 * warmboot entrypoint
	 * --------------------------------------------------------------------
	 */
func bl31_warm_entrypoint
dp-arm's avatar
dp-arm committed
146
147
148
149
150
151
152
153
154
155
156
157
#if ENABLE_RUNTIME_INSTRUMENTATION

	/*
	 * This timestamp update happens with cache off.  The next
	 * timestamp collection will need to do cache maintenance prior
	 * to timestamp update.
	 */
	pmf_calc_timestamp_addr rt_instr_svc RT_INSTR_EXIT_HW_LOW_PWR
	mrs	x1, cntpct_el0
	str	x1, [x0]
#endif

Soby Mathew's avatar
Soby Mathew committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
	/*
	 * On the warm boot path, most of the EL3 initialisations performed by
	 * 'el3_entrypoint_common' must be skipped:
	 *
	 *  - Only when the platform bypasses the BL1/BL31 entrypoint by
	 *    programming the reset address do we need to set the CPU endianness.
	 *    In other cases, we assume this has been taken care by the
	 *    entrypoint code.
	 *
	 *  - No need to determine the type of boot, we know it is a warm boot.
	 *
	 *  - Do not try to distinguish between primary and secondary CPUs, this
	 *    notion only exists for a cold boot.
	 *
	 *  - No need to initialise the memory or the C runtime environment,
	 *    it has been done once and for all on the cold boot path.
	 */
	el3_entrypoint_common					\
		_set_endian=PROGRAMMABLE_RESET_ADDRESS		\
		_warm_boot_mailbox=0				\
		_secondary_cold_boot=0				\
		_init_memory=0					\
		_init_c_runtime=0				\
		_exception_vectors=runtime_exceptions

183
184
185
186
187
	/*
	 * We're about to enable MMU and participate in PSCI state coordination.
	 *
	 * The PSCI implementation invokes platform routines that enable CPUs to
	 * participate in coherency. On a system where CPUs are not
188
189
190
191
192
	 * cache-coherent without appropriate platform specific programming,
	 * having caches enabled until such time might lead to coherency issues
	 * (resulting from stale data getting speculatively fetched, among
	 * others). Therefore we keep data caches disabled even after enabling
	 * the MMU for such platforms.
193
	 *
194
195
196
197
	 * On systems with hardware-assisted coherency, or on single cluster
	 * platforms, such platform specific programming is not required to
	 * enter coherency (as CPUs already are); and there's no reason to have
	 * caches disabled either.
Soby Mathew's avatar
Soby Mathew committed
198
199
200
201
	 */
	mov	x0, #DISABLE_DCACHE
	bl	bl31_plat_enable_mmu

202
203
204
205
206
207
208
#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
	mrs	x0, sctlr_el3
	orr	x0, x0, #SCTLR_C_BIT
	msr	sctlr_el3, x0
	isb
#endif

Soby Mathew's avatar
Soby Mathew committed
209
210
	bl	psci_warmboot_entrypoint

dp-arm's avatar
dp-arm committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#if ENABLE_RUNTIME_INSTRUMENTATION
	pmf_calc_timestamp_addr rt_instr_svc RT_INSTR_EXIT_PSCI
	mov	x19, x0

	/*
	 * Invalidate before updating timestamp to ensure previous timestamp
	 * updates on the same cache line with caches disabled are properly
	 * seen by the same core. Without the cache invalidate, the core might
	 * write into a stale cache line.
	 */
	mov	x1, #PMF_TS_SIZE
	mov	x20, x30
	bl	inv_dcache_range
	mov	x30, x20

	mrs	x0, cntpct_el0
	str	x0, [x19]
#endif
Soby Mathew's avatar
Soby Mathew committed
229
230
	b	el3_exit
endfunc bl31_warm_entrypoint