mce.c 15.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/*
 * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <denver.h>
#include <mce.h>
40
#include <mce_private.h>
41
42
43
44
45
#include <mmio.h>
#include <string.h>
#include <sys/errno.h>
#include <t18x_ari.h>
#include <tegra_def.h>
46
#include <tegra_platform.h>
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

/* NVG functions handlers */
static arch_mce_ops_t nvg_mce_ops = {
	.enter_cstate = nvg_enter_cstate,
	.update_cstate_info = nvg_update_cstate_info,
	.update_crossover_time = nvg_update_crossover_time,
	.read_cstate_stats = nvg_read_cstate_stats,
	.write_cstate_stats = nvg_write_cstate_stats,
	.call_enum_misc = ari_enumeration_misc,
	.is_ccx_allowed = nvg_is_ccx_allowed,
	.is_sc7_allowed = nvg_is_sc7_allowed,
	.online_core = nvg_online_core,
	.cc3_ctrl = nvg_cc3_ctrl,
	.update_reset_vector = ari_reset_vector_update,
	.roc_flush_cache = ari_roc_flush_cache,
	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
	.roc_clean_cache = ari_roc_clean_cache,
	.read_write_mca = ari_read_write_mca,
	.update_ccplex_gsc = ari_update_ccplex_gsc,
66
	.enter_ccplex_state = ari_enter_ccplex_state,
67
68
	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
	.misc_ccplex = ari_misc_ccplex
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
};

/* ARI functions handlers */
static arch_mce_ops_t ari_mce_ops = {
	.enter_cstate = ari_enter_cstate,
	.update_cstate_info = ari_update_cstate_info,
	.update_crossover_time = ari_update_crossover_time,
	.read_cstate_stats = ari_read_cstate_stats,
	.write_cstate_stats = ari_write_cstate_stats,
	.call_enum_misc = ari_enumeration_misc,
	.is_ccx_allowed = ari_is_ccx_allowed,
	.is_sc7_allowed = ari_is_sc7_allowed,
	.online_core = ari_online_core,
	.cc3_ctrl = ari_cc3_ctrl,
	.update_reset_vector = ari_reset_vector_update,
	.roc_flush_cache = ari_roc_flush_cache,
	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
	.roc_clean_cache = ari_roc_clean_cache,
	.read_write_mca = ari_read_write_mca,
	.update_ccplex_gsc = ari_update_ccplex_gsc,
89
	.enter_ccplex_state = ari_enter_ccplex_state,
90
91
	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
	.misc_ccplex = ari_misc_ccplex
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
};

typedef struct mce_config {
	uint32_t ari_base;
	arch_mce_ops_t *ops;
} mce_config_t;

/* Table to hold the per-CPU ARI base address and function handlers */
static mce_config_t mce_cfg_table[MCE_ARI_APERTURES_MAX] = {
	{
		/* A57 Core 0 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_0_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* A57 Core 1 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_1_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* A57 Core 2 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_2_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* A57 Core 3 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_3_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* D15 Core 0 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_4_OFFSET,
		.ops = &nvg_mce_ops,
	},
	{
		/* D15 Core 1 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_5_OFFSET,
		.ops = &nvg_mce_ops,
	}
};

static uint32_t mce_get_curr_cpu_ari_base(void)
{
	uint32_t mpidr = read_mpidr();
	int cpuid =  mpidr & MPIDR_CPU_MASK;
	int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;

	/*
	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
	 * numbers start from 0. In order to get the proper arch_mce_ops_t
	 * struct, we have to convert the Denver CPU ids to the corresponding
	 * indices in the mce_ops_table array.
	 */
	if (impl == DENVER_IMPL)
		cpuid |= 0x4;

	return mce_cfg_table[cpuid].ari_base;
}

static arch_mce_ops_t *mce_get_curr_cpu_ops(void)
{
	uint32_t mpidr = read_mpidr();
	int cpuid =  mpidr & MPIDR_CPU_MASK;
	int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;

	/*
	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
	 * numbers start from 0. In order to get the proper arch_mce_ops_t
	 * struct, we have to convert the Denver CPU ids to the corresponding
	 * indices in the mce_ops_table array.
	 */
	if (impl == DENVER_IMPL)
		cpuid |= 0x4;

	return mce_cfg_table[cpuid].ops;
}

/*******************************************************************************
 * Common handler for all MCE commands
 ******************************************************************************/
int mce_command_handler(mce_cmd_t cmd, uint64_t arg0, uint64_t arg1,
			uint64_t arg2)
{
	arch_mce_ops_t *ops;
	uint32_t cpu_ari_base;
	uint64_t ret64 = 0, arg3, arg4, arg5;
	int ret = 0;
	mca_cmd_t mca_cmd;
182
	uncore_perfmon_req_t req;
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
	cpu_context_t *ctx = cm_get_context(NON_SECURE);
	gp_regs_t *gp_regs = get_gpregs_ctx(ctx);

	assert(ctx);
	assert(gp_regs);

	/* get a pointer to the CPU's arch_mce_ops_t struct */
	ops = mce_get_curr_cpu_ops();

	/* get the CPU's ARI base address */
	cpu_ari_base = mce_get_curr_cpu_ari_base();

	switch (cmd) {
	case MCE_CMD_ENTER_CSTATE:
		ret = ops->enter_cstate(cpu_ari_base, arg0, arg1);
		if (ret < 0)
			ERROR("%s: enter_cstate failed(%d)\n", __func__, ret);

		break;

	case MCE_CMD_UPDATE_CSTATE_INFO:
		/*
		 * get the parameters required for the update cstate info
		 * command
		 */
		arg3 = read_ctx_reg(gp_regs, CTX_GPREG_X4);
		arg4 = read_ctx_reg(gp_regs, CTX_GPREG_X5);
		arg5 = read_ctx_reg(gp_regs, CTX_GPREG_X6);

		ret = ops->update_cstate_info(cpu_ari_base, (uint32_t)arg0,
				(uint32_t)arg1, (uint32_t)arg2, (uint8_t)arg3,
				(uint32_t)arg4, (uint8_t)arg5);
		if (ret < 0)
			ERROR("%s: update_cstate_info failed(%d)\n",
				__func__, ret);

		write_ctx_reg(gp_regs, CTX_GPREG_X4, 0);
		write_ctx_reg(gp_regs, CTX_GPREG_X5, 0);
		write_ctx_reg(gp_regs, CTX_GPREG_X6, 0);

		break;

	case MCE_CMD_UPDATE_CROSSOVER_TIME:
		ret = ops->update_crossover_time(cpu_ari_base, arg0, arg1);
		if (ret < 0)
			ERROR("%s: update_crossover_time failed(%d)\n",
				__func__, ret);

		break;

	case MCE_CMD_READ_CSTATE_STATS:
		ret64 = ops->read_cstate_stats(cpu_ari_base, arg0);

		/* update context to return cstate stats value */
		write_ctx_reg(gp_regs, CTX_GPREG_X1, ret64);
		write_ctx_reg(gp_regs, CTX_GPREG_X2, ret64);

		break;

	case MCE_CMD_WRITE_CSTATE_STATS:
		ret = ops->write_cstate_stats(cpu_ari_base, arg0, arg1);
		if (ret < 0)
			ERROR("%s: write_cstate_stats failed(%d)\n",
				__func__, ret);

		break;

	case MCE_CMD_IS_CCX_ALLOWED:
		ret = ops->is_ccx_allowed(cpu_ari_base, arg0, arg1);
		if (ret < 0) {
			ERROR("%s: is_ccx_allowed failed(%d)\n", __func__, ret);
			break;
		}

		/* update context to return CCx status value */
		write_ctx_reg(gp_regs, CTX_GPREG_X1, ret);

		break;

	case MCE_CMD_IS_SC7_ALLOWED:
		ret = ops->is_sc7_allowed(cpu_ari_base, arg0, arg1);
		if (ret < 0) {
			ERROR("%s: is_sc7_allowed failed(%d)\n", __func__, ret);
			break;
		}

		/* update context to return SC7 status value */
		write_ctx_reg(gp_regs, CTX_GPREG_X1, ret);
		write_ctx_reg(gp_regs, CTX_GPREG_X3, ret);

		break;

	case MCE_CMD_ONLINE_CORE:
		ret = ops->online_core(cpu_ari_base, arg0);
		if (ret < 0)
			ERROR("%s: online_core failed(%d)\n", __func__, ret);

		break;

	case MCE_CMD_CC3_CTRL:
		ret = ops->cc3_ctrl(cpu_ari_base, arg0, arg1, arg2);
		if (ret < 0)
			ERROR("%s: cc3_ctrl failed(%d)\n", __func__, ret);

		break;

	case MCE_CMD_ECHO_DATA:
		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_ECHO,
				arg0);

		/* update context to return if echo'd data matched source */
		write_ctx_reg(gp_regs, CTX_GPREG_X1, ret64 == arg0);
		write_ctx_reg(gp_regs, CTX_GPREG_X2, ret64 == arg0);

		break;

	case MCE_CMD_READ_VERSIONS:
		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION,
			arg0);

		/*
		 * version = minor(63:32) | major(31:0). Update context
		 * to return major and minor version number.
		 */
		write_ctx_reg(gp_regs, CTX_GPREG_X1, (uint32_t)ret64);
		write_ctx_reg(gp_regs, CTX_GPREG_X2, (uint32_t)(ret64 >> 32));

		break;

	case MCE_CMD_ENUM_FEATURES:
313
		ret64 = ops->call_enum_misc(cpu_ari_base,
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
				TEGRA_ARI_MISC_FEATURE_LEAF_0, arg0);

		/* update context to return features value */
		write_ctx_reg(gp_regs, CTX_GPREG_X1, ret64);

		break;

	case MCE_CMD_ROC_FLUSH_CACHE_TRBITS:
		ret = ops->roc_flush_cache_trbits(cpu_ari_base);
		if (ret < 0)
			ERROR("%s: flush cache_trbits failed(%d)\n", __func__,
				ret);

		break;

	case MCE_CMD_ROC_FLUSH_CACHE:
		ret = ops->roc_flush_cache(cpu_ari_base);
		if (ret < 0)
			ERROR("%s: flush cache failed(%d)\n", __func__, ret);

		break;

	case MCE_CMD_ROC_CLEAN_CACHE:
		ret = ops->roc_clean_cache(cpu_ari_base);
		if (ret < 0)
			ERROR("%s: clean cache failed(%d)\n", __func__, ret);

		break;

	case MCE_CMD_ENUM_READ_MCA:
		memcpy(&mca_cmd, &arg0, sizeof(arg0));
		ret64 = ops->read_write_mca(cpu_ari_base, mca_cmd, &arg1);

		/* update context to return MCA data/error */
		write_ctx_reg(gp_regs, CTX_GPREG_X1, ret64);
		write_ctx_reg(gp_regs, CTX_GPREG_X2, arg1);
		write_ctx_reg(gp_regs, CTX_GPREG_X3, ret64);

		break;

	case MCE_CMD_ENUM_WRITE_MCA:
		memcpy(&mca_cmd, &arg0, sizeof(arg0));
		ret64 = ops->read_write_mca(cpu_ari_base, mca_cmd, &arg1);

		/* update context to return MCA error */
		write_ctx_reg(gp_regs, CTX_GPREG_X1, ret64);
		write_ctx_reg(gp_regs, CTX_GPREG_X3, ret64);

		break;

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#if ENABLE_CHIP_VERIFICATION_HARNESS
	case MCE_CMD_ENABLE_LATIC:
		/*
		 * This call is not for production use. The constant value,
		 * 0xFFFF0000, is specific to allowing for enabling LATIC on
		 * pre-production parts for the chip verification harness.
		 *
		 * Enabling LATIC allows S/W to read the MINI ISPs in the
		 * CCPLEX. The ISMs are used for various measurements relevant
		 * to particular locations in the Silicon. They are small
		 * counters which can be polled to determine how fast a
		 * particular location in the Silicon is.
		 */
		ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(),
			0xFFFF0000);

		break;
#endif
382
383
384
385
386
387
388
389
390

	case MCE_CMD_UNCORE_PERFMON_REQ:
		memcpy(&req, &arg0, sizeof(arg0));
		ret = ops->read_write_uncore_perfmon(cpu_ari_base, req, &arg1);

		/* update context to return data */
		write_ctx_reg(gp_regs, CTX_GPREG_X1, arg1);
		break;

391
392
393
394
395
	case MCE_CMD_MISC_CCPLEX:
		ops->misc_ccplex(cpu_ari_base, arg0, arg1);

		break;

396
397
398
399
400
401
402
403
404
405
406
	default:
		ERROR("unknown MCE command (%d)\n", cmd);
		return EINVAL;
	}

	return ret;
}

/*******************************************************************************
 * Handler to update the reset vector for CPUs
 ******************************************************************************/
407
int mce_update_reset_vector(void)
408
409
410
{
	arch_mce_ops_t *ops = mce_get_curr_cpu_ops();

411
	ops->update_reset_vector(mce_get_curr_cpu_ari_base());
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

	return 0;
}

static int mce_update_ccplex_gsc(tegra_ari_gsc_index_t gsc_idx)
{
	arch_mce_ops_t *ops = mce_get_curr_cpu_ops();

	ops->update_ccplex_gsc(mce_get_curr_cpu_ari_base(), gsc_idx);

	return 0;
}

/*******************************************************************************
 * Handler to update carveout values for Video Memory Carveout region
 ******************************************************************************/
int mce_update_gsc_videomem(void)
{
	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_VPR_IDX);
}

/*******************************************************************************
 * Handler to update carveout values for TZDRAM aperture
 ******************************************************************************/
int mce_update_gsc_tzdram(void)
{
	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_TZ_DRAM_IDX);
}

/*******************************************************************************
 * Handler to update carveout values for TZ SysRAM aperture
 ******************************************************************************/
int mce_update_gsc_tzram(void)
{
	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_TZRAM);
}

/*******************************************************************************
 * Handler to shutdown/reset the entire system
 ******************************************************************************/
__dead2 void mce_enter_ccplex_state(uint32_t state_idx)
{
	arch_mce_ops_t *ops = mce_get_curr_cpu_ops();

	/* sanity check state value */
	if (state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF &&
	    state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT)
		panic();

	ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(), state_idx);

	/* wait till the CCPLEX powers down */
	for (;;)
		;

	panic();
}
469

470
471
472
473
474
475
476
477
478
479
480
481
482
/*******************************************************************************
 * Handler to issue the UPDATE_CSTATE_INFO request
 ******************************************************************************/
void mce_update_cstate_info(mce_cstate_info_t *cstate)
{
	arch_mce_ops_t *ops = mce_get_curr_cpu_ops();

	/* issue the UPDATE_CSTATE_INFO request */
	ops->update_cstate_info(mce_get_curr_cpu_ari_base(), cstate->cluster,
		cstate->ccplex, cstate->system, cstate->system_state_force,
		cstate->wake_mask, cstate->update_wake_mask);
}

483
484
485
486
487
488
489
490
491
/*******************************************************************************
 * Handler to read the MCE firmware version and check if it is compatible
 * with interface header the BL3-1 was compiled against
 ******************************************************************************/
void mce_verify_firmware_version(void)
{
	arch_mce_ops_t *ops;
	uint32_t cpu_ari_base;
	uint64_t version;
492
493
494
	uint32_t major, minor;

	/*
495
	 * MCE firmware is not supported on simulation platforms.
496
497
498
	 */
	if (tegra_platform_is_emulation())
		return;
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

	/* get a pointer to the CPU's arch_mce_ops_t struct */
	ops = mce_get_curr_cpu_ops();

	/* get the CPU's ARI base address */
	cpu_ari_base = mce_get_curr_cpu_ari_base();

	/*
	 * Read the MCE firmware version and extract the major and minor
	 * version fields
	 */
	version = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION, 0);
	major = (uint32_t)version;
	minor = (uint32_t)(version >> 32);

	INFO("MCE Version - HW=%d:%d, SW=%d:%d\n", major, minor,
		TEGRA_ARI_VERSION_MAJOR, TEGRA_ARI_VERSION_MINOR);

	/*
	 * Verify that the MCE firmware version and the interface header
	 * match
	 */
	if (major != TEGRA_ARI_VERSION_MAJOR) {
		ERROR("ARI major version mismatch\n");
		panic();
	}

	if (minor < TEGRA_ARI_VERSION_MINOR) {
		ERROR("ARI minor version mismatch\n");
		panic();
	}
}