secure.c 4.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*
 * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>

#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>

#include <plat_private.h>
#include <secure.h>
#include <soc.h>

static void sgrf_ddr_rgn_global_bypass(uint32_t bypass)
{
	if (bypass)
		/* set bypass (non-secure regions) for whole ddr regions */
		mmio_write_32(SGRF_BASE + SGRF_SOC_CON(21),
			      SGRF_DDR_RGN_BYPS);
	else
		/* cancel bypass for whole ddr regions */
		mmio_write_32(SGRF_BASE + SGRF_SOC_CON(21),
			      SGRF_DDR_RGN_NO_BYPS);
}

/**
 * There are 8 + 1 regions for DDR secure control:
 * DDR_RGN_0 ~ DDR_RGN_7: Per DDR_RGNs grain size is 1MB
 * DDR_RGN_X - the memories of exclude DDR_RGN_0 ~ DDR_RGN_7
 *
 * SGRF_SOC_CON6 - start address of RGN_0 + control
 * SGRF_SOC_CON7 - end address of RGN_0
 * ...
 * SGRF_SOC_CON20 - start address of the RGN_7 + control
 * SGRF_SOC_CON21 - end address of the RGN_7 + RGN_X control
 *
 * @rgn - the DDR regions 0 ~ 7 which are can be configured.
 * The @st and @ed indicate the start and end addresses for which to set
 * the security, and the unit is byte. When the st_mb == 0, ed_mb == 0, the
 * address range 0x0 ~ 0xfffff is secure.
 *
 * For example, if we would like to set the range [0, 32MB) is security via
 * DDR_RGN0, then rgn == 0, st_mb == 0, ed_mb == 31.
 */
static void sgrf_ddr_rgn_config(uint32_t rgn, uintptr_t st, uintptr_t ed)
{
	uintptr_t st_mb, ed_mb;

	assert(rgn <= 7);
	assert(st < ed);

	/* check aligned 1MB */
	assert(st % SIZE_M(1) == 0);
	assert(ed % SIZE_M(1) == 0);

	st_mb = st / SIZE_M(1);
	ed_mb = ed / SIZE_M(1);

	/* set ddr region addr start */
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(6 + (rgn * 2)),
		      BITS_WITH_WMASK(st_mb, SGRF_DDR_RGN_ADDR_WMSK, 0));

	/* set ddr region addr end */
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(6 + (rgn * 2) + 1),
		      BITS_WITH_WMASK((ed_mb - 1), SGRF_DDR_RGN_ADDR_WMSK, 0));

	/* select region security */
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(6 + (rgn * 2)),
		      SGRF_DDR_RGN_SECURE_SEL);

	/* enable region security */
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(6 + (rgn * 2)),
		      SGRF_DDR_RGN_SECURE_EN);
}

void secure_watchdog_gate(void)
{
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(0), SGRF_PCLK_WDT_GATE);
}

void secure_watchdog_ungate(void)
{
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(0), SGRF_PCLK_WDT_UNGATE);
}

__pmusramfunc void sram_secure_timer_init(void)
{
	mmio_write_32(STIMER1_BASE + TIMER_CONTROL_REG, 0);

	mmio_write_32(STIMER1_BASE + TIMER_LOAD_COUNT0, 0xffffffff);
	mmio_write_32(STIMER1_BASE + TIMER_LOAD_COUNT1, 0xffffffff);

	/* auto reload & enable the timer */
	mmio_write_32(STIMER1_BASE + TIMER_CONTROL_REG, TIMER_EN);
}

void secure_gic_init(void)
{
	/* (re-)enable non-secure access to the gic*/
	mmio_write_32(CORE_AXI_BUS_BASE + CORE_AXI_SECURITY0,
		      AXI_SECURITY0_GIC);
}

void secure_timer_init(void)
{
	mmio_write_32(STIMER1_BASE + TIMER_CONTROL_REG, 0);

	mmio_write_32(STIMER1_BASE + TIMER_LOAD_COUNT0, 0xffffffff);
	mmio_write_32(STIMER1_BASE + TIMER_LOAD_COUNT1, 0xffffffff);

	/* auto reload & enable the timer */
	mmio_write_32(STIMER1_BASE + TIMER_CONTROL_REG, TIMER_EN);
}

void secure_sgrf_init(void)
{
	/*
	 * We use the first sram part to talk to the bootrom,
	 * so make it secure.
	 */
	mmio_write_32(TZPC_BASE + TZPC_R0SIZE, TZPC_SRAM_SECURE_4K(1));

	secure_gic_init();

	/* set all master ip to non-secure */
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(2), SGRF_SOC_CON2_MST_NS);
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(3), SGRF_SOC_CON3_MST_NS);

	/* setting all configurable ip into non-secure */
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(4),
		      SGRF_SOC_CON4_SECURE_WMSK /*TODO:|SGRF_STIMER_SECURE*/);
	mmio_write_32(SGRF_BASE + SGRF_SOC_CON(5), SGRF_SOC_CON5_SECURE_WMSK);

	/* secure dma to non-secure */
	mmio_write_32(TZPC_BASE + TZPC_DECPROT1SET, 0xff);
	mmio_write_32(TZPC_BASE + TZPC_DECPROT2SET, 0xff);
	mmio_write_32(SGRF_BASE + SGRF_BUSDMAC_CON(1), 0x3800);
	dsb();

	/* rst dma1 */
	mmio_write_32(CRU_BASE + CRU_SOFTRSTS_CON(1),
		      RST_DMA1_MSK | (RST_DMA1_MSK << 16));
	/* rst dma2 */
	mmio_write_32(CRU_BASE + CRU_SOFTRSTS_CON(4),
		      RST_DMA2_MSK | (RST_DMA2_MSK << 16));

	dsb();

	/* release dma1 rst*/
	mmio_write_32(CRU_BASE + CRU_SOFTRSTS_CON(1), (RST_DMA1_MSK << 16));
	/* release dma2 rst*/
	mmio_write_32(CRU_BASE + CRU_SOFTRSTS_CON(4), (RST_DMA2_MSK << 16));
}

void secure_sgrf_ddr_rgn_init(void)
{
	sgrf_ddr_rgn_config(0, TZRAM_BASE, TZRAM_SIZE);
	sgrf_ddr_rgn_global_bypass(0);
}