spm.c 10.4 KB
Newer Older
1
2
3
/*
 * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
 */
6
7
8
9
10

#include <common/debug.h>
#include <lib/bakery_lock.h>
#include <lib/mmio.h>

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <mt8173_def.h>
#include <spm.h>
#include <spm_suspend.h>

/*
 * System Power Manager (SPM) is a hardware module, which controls cpu or
 * system power for different power scenarios using different firmware, i.e.,
 * - spm_hotplug.c for cpu power control in cpu hotplug flow.
 * - spm_mcdi.c for cpu power control in cpu idle power saving state.
 * - spm_suspend.c for system power control in system suspend scenario.
 *
 * This file provide utility functions common to hotplug, mcdi(idle), suspend
 * power scenarios. A bakery lock (software lock) is incoporated to protect
 * certain critical sections to avoid kicking different SPM firmware
 * concurrently.
 */

#define SPM_SYSCLK_SETTLE       128	/* 3.9ms */

30
31
DEFINE_BAKERY_LOCK(spm_lock);

32
33
34
static int spm_hotplug_ready __section("tzfw_coherent_mem");
static int spm_mcdi_ready __section("tzfw_coherent_mem");
static int spm_suspend_ready __section("tzfw_coherent_mem");
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

void spm_lock_init(void)
{
	bakery_lock_init(&spm_lock);
}

void spm_lock_get(void)
{
	bakery_lock_get(&spm_lock);
}

void spm_lock_release(void)
{
	bakery_lock_release(&spm_lock);
}

int is_mcdi_ready(void)
{
	return spm_mcdi_ready;
}

int is_hotplug_ready(void)
{
	return spm_hotplug_ready;
}

int is_suspend_ready(void)
{
	return spm_suspend_ready;
}

void set_mcdi_ready(void)
{
	spm_mcdi_ready = 1;
	spm_hotplug_ready = 0;
	spm_suspend_ready = 0;
}

void set_hotplug_ready(void)
{
	spm_mcdi_ready = 0;
	spm_hotplug_ready = 1;
	spm_suspend_ready = 0;
}

void set_suspend_ready(void)
{
	spm_mcdi_ready = 0;
	spm_hotplug_ready = 0;
	spm_suspend_ready = 1;
}

void clear_all_ready(void)
{
	spm_mcdi_ready = 0;
	spm_hotplug_ready = 0;
	spm_suspend_ready = 0;
}

void spm_register_init(void)
{
	mmio_write_32(SPM_POWERON_CONFIG_SET, SPM_REGWR_CFG_KEY | SPM_REGWR_EN);

	mmio_write_32(SPM_POWER_ON_VAL0, 0);
	mmio_write_32(SPM_POWER_ON_VAL1, POWER_ON_VAL1_DEF);
	mmio_write_32(SPM_PCM_PWR_IO_EN, 0);

	mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET);
	mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY);
	if (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF)
		WARN("PCM reset failed\n");

	mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS);
	mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_EVENT_LOCK_EN |
		CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B | CON1_MIF_APBEN);
	mmio_write_32(SPM_PCM_IM_PTR, 0);
	mmio_write_32(SPM_PCM_IM_LEN, 0);

	mmio_write_32(SPM_CLK_CON, CC_SYSCLK0_EN_1 | CC_SYSCLK0_EN_0 |
		CC_SYSCLK1_EN_0 | CC_SRCLKENA_MASK_0 | CC_CLKSQ1_SEL |
		CC_CXO32K_RM_EN_MD2 | CC_CXO32K_RM_EN_MD1 | CC_MD32_DCM_EN);

	mmio_write_32(SPM_SLEEP_ISR_MASK, 0xff0c);
	mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xc);
	mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xff);
	mmio_write_32(SPM_MD32_SRAM_CON, 0xff0);
}

void spm_reset_and_init_pcm(void)
{
	unsigned int con1;
	int i = 0;

	mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET);
	mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY);
	while (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF) {
		i++;
		if (i > 1000) {
			i = 0;
			WARN("PCM reset failed\n");
			break;
		}
	}

	mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS);

	con1 = mmio_read_32(SPM_PCM_CON1) &
		(CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN);
	mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_EVENT_LOCK_EN |
		CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B |
		CON1_IM_NONRP_EN | CON1_MIF_APBEN);
}

void spm_init_pcm_register(void)
{
	mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL0));
	mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R0);
	mmio_write_32(SPM_PCM_PWR_IO_EN, 0);

	mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL1));
	mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R7);
	mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
}

void spm_set_power_control(const struct pwr_ctrl *pwrctrl)
{
	mmio_write_32(SPM_AP_STANBY_CON, (!pwrctrl->md32_req_mask << 21) |
					 (!pwrctrl->mfg_req_mask << 17) |
					 (!pwrctrl->disp_req_mask << 16) |
					 (!!pwrctrl->mcusys_idle_mask << 7) |
					 (!!pwrctrl->ca15top_idle_mask << 6) |
					 (!!pwrctrl->ca7top_idle_mask << 5) |
					 (!!pwrctrl->wfi_op << 4));
	mmio_write_32(SPM_PCM_SRC_REQ, (!!pwrctrl->pcm_apsrc_req << 0));
	mmio_write_32(SPM_PCM_PASR_DPD_2, 0);

	mmio_clrsetbits_32(SPM_CLK_CON, CC_SRCLKENA_MASK_0,
		(pwrctrl->srclkenai_mask ? CC_SRCLKENA_MASK_0 : 0));

	mmio_write_32(SPM_SLEEP_CA15_WFI0_EN, !!pwrctrl->ca15_wfi0_en);
	mmio_write_32(SPM_SLEEP_CA15_WFI1_EN, !!pwrctrl->ca15_wfi1_en);
	mmio_write_32(SPM_SLEEP_CA15_WFI2_EN, !!pwrctrl->ca15_wfi2_en);
	mmio_write_32(SPM_SLEEP_CA15_WFI3_EN, !!pwrctrl->ca15_wfi3_en);
	mmio_write_32(SPM_SLEEP_CA7_WFI0_EN, !!pwrctrl->ca7_wfi0_en);
	mmio_write_32(SPM_SLEEP_CA7_WFI1_EN, !!pwrctrl->ca7_wfi1_en);
	mmio_write_32(SPM_SLEEP_CA7_WFI2_EN, !!pwrctrl->ca7_wfi2_en);
	mmio_write_32(SPM_SLEEP_CA7_WFI3_EN, !!pwrctrl->ca7_wfi3_en);
}

void spm_set_wakeup_event(const struct pwr_ctrl *pwrctrl)
{
	unsigned int val, mask;

	if (pwrctrl->timer_val_cust == 0)
		val = pwrctrl->timer_val ? pwrctrl->timer_val : PCM_TIMER_MAX;
	else
		val = pwrctrl->timer_val_cust;

	mmio_write_32(SPM_PCM_TIMER_VAL, val);
	mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY);

	if (pwrctrl->wake_src_cust == 0)
		mask = pwrctrl->wake_src;
	else
		mask = pwrctrl->wake_src_cust;

	if (pwrctrl->syspwreq_mask)
		mask &= ~WAKE_SRC_SYSPWREQ;

	mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~mask);
	mmio_write_32(SPM_SLEEP_ISR_MASK, 0xfe04);
}

void spm_get_wakeup_status(struct wake_status *wakesta)
{
	wakesta->assert_pc = mmio_read_32(SPM_PCM_REG_DATA_INI);
	wakesta->r12 = mmio_read_32(SPM_PCM_REG12_DATA);
	wakesta->raw_sta = mmio_read_32(SPM_SLEEP_ISR_RAW_STA);
	wakesta->wake_misc = mmio_read_32(SPM_SLEEP_WAKEUP_MISC);
	wakesta->timer_out = mmio_read_32(SPM_PCM_TIMER_OUT);
	wakesta->r13 = mmio_read_32(SPM_PCM_REG13_DATA);
	wakesta->idle_sta = mmio_read_32(SPM_SLEEP_SUBSYS_IDLE_STA);
	wakesta->debug_flag = mmio_read_32(SPM_PCM_PASR_DPD_3);
	wakesta->event_reg = mmio_read_32(SPM_PCM_EVENT_REG_STA);
	wakesta->isr = mmio_read_32(SPM_SLEEP_ISR_STATUS);
}

void spm_init_event_vector(const struct pcm_desc *pcmdesc)
{
	/* init event vector register */
	mmio_write_32(SPM_PCM_EVENT_VECTOR0, pcmdesc->vec0);
	mmio_write_32(SPM_PCM_EVENT_VECTOR1, pcmdesc->vec1);
	mmio_write_32(SPM_PCM_EVENT_VECTOR2, pcmdesc->vec2);
	mmio_write_32(SPM_PCM_EVENT_VECTOR3, pcmdesc->vec3);
	mmio_write_32(SPM_PCM_EVENT_VECTOR4, pcmdesc->vec4);
	mmio_write_32(SPM_PCM_EVENT_VECTOR5, pcmdesc->vec5);
	mmio_write_32(SPM_PCM_EVENT_VECTOR6, pcmdesc->vec6);
	mmio_write_32(SPM_PCM_EVENT_VECTOR7, pcmdesc->vec7);

	/* event vector will be enabled by PCM itself */
}

void spm_kick_im_to_fetch(const struct pcm_desc *pcmdesc)
{
	unsigned int ptr = 0, len, con0;

	ptr = (unsigned int)(unsigned long)(pcmdesc->base);
	len = pcmdesc->size - 1;
	if (mmio_read_32(SPM_PCM_IM_PTR) != ptr ||
	    mmio_read_32(SPM_PCM_IM_LEN) != len ||
	    pcmdesc->sess > 2) {
		mmio_write_32(SPM_PCM_IM_PTR, ptr);
		mmio_write_32(SPM_PCM_IM_LEN, len);
	} else {
		mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_IM_SLAVE);
	}

	/* kick IM to fetch (only toggle IM_KICK) */
	con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK);
	mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_IM_KICK);
	mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY);

	/* kick IM to fetch (only toggle PCM_KICK) */
	con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK);
	mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_PCM_KICK);
	mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY);
}

void spm_set_sysclk_settle(void)
{
	mmio_write_32(SPM_CLK_SETTLE, SPM_SYSCLK_SETTLE);

	INFO("settle = %u\n", mmio_read_32(SPM_CLK_SETTLE));
}

void spm_kick_pcm_to_run(struct pwr_ctrl *pwrctrl)
{
	unsigned int con1;

	con1 = mmio_read_32(SPM_PCM_CON1) &
		~(CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN);

	mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | con1);

	if (mmio_read_32(SPM_PCM_TIMER_VAL) > PCM_TIMER_MAX)
		mmio_write_32(SPM_PCM_TIMER_VAL, PCM_TIMER_MAX);

	mmio_write_32(SPM_PCM_WDT_TIMER_VAL,
		mmio_read_32(SPM_PCM_TIMER_VAL) + PCM_WDT_TIMEOUT);

	mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_PCM_WDT_EN);
	mmio_write_32(SPM_PCM_PASR_DPD_0, 0);

	mmio_write_32(SPM_PCM_MAS_PAUSE_MASK, 0xffffffff);
	mmio_write_32(SPM_PCM_REG_DATA_INI, 0);
	mmio_clrbits_32(SPM_CLK_CON, CC_DISABLE_DORM_PWR);

	mmio_write_32(SPM_PCM_FLAGS, pwrctrl->pcm_flags);

	mmio_clrsetbits_32(SPM_CLK_CON, CC_LOCK_INFRA_DCM,
		(pwrctrl->infra_dcm_lock ? CC_LOCK_INFRA_DCM : 0));

	mmio_write_32(SPM_PCM_PWR_IO_EN,
		(pwrctrl->r0_ctrl_en ? PCM_PWRIO_EN_R0 : 0) |
		(pwrctrl->r7_ctrl_en ? PCM_PWRIO_EN_R7 : 0));
}

void spm_clean_after_wakeup(void)
{
	mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_WDT_EN, CON1_CFG_KEY);

	mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
	mmio_write_32(SPM_SLEEP_CPU_WAKEUP_EVENT, 0);
	mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_TIMER_EN, CON1_CFG_KEY);

	mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~0);
	mmio_write_32(SPM_SLEEP_ISR_MASK, 0xFF0C);
	mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xC);
	mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xFF);
}

enum wake_reason_t spm_output_wake_reason(struct wake_status *wakesta)
{
	enum wake_reason_t wr;
	int i;

	wr = WR_UNKNOWN;

	if (wakesta->assert_pc != 0) {
		ERROR("PCM ASSERT AT %u, r12=0x%x, r13=0x%x, debug_flag=0x%x\n",
		      wakesta->assert_pc, wakesta->r12, wakesta->r13,
		      wakesta->debug_flag);
		return WR_PCM_ASSERT;
	}

	if (wakesta->r12 & WAKE_SRC_SPM_MERGE) {
		if (wakesta->wake_misc & WAKE_MISC_PCM_TIMER)
			wr = WR_PCM_TIMER;
		if (wakesta->wake_misc & WAKE_MISC_CPU_WAKE)
			wr = WR_WAKE_SRC;
	}

	for (i = 1; i < 32; i++) {
		if (wakesta->r12 & (1U << i))
			wr = WR_WAKE_SRC;
	}

	if ((wakesta->event_reg & 0x100000) == 0) {
		INFO("pcm sleep abort!\n");
		wr = WR_PCM_ABORT;
	}

	INFO("timer_out = %u, r12 = 0x%x, r13 = 0x%x, debug_flag = 0x%x\n",
	     wakesta->timer_out, wakesta->r12, wakesta->r13,
	     wakesta->debug_flag);

	INFO("raw_sta = 0x%x, idle_sta = 0x%x, event_reg = 0x%x, isr = 0x%x\n",
	     wakesta->raw_sta, wakesta->idle_sta, wakesta->event_reg,
	     wakesta->isr);

	return wr;
}

void spm_boot_init(void)
{
360
361
362
363
	/* set spm transaction to secure mode */
	mmio_write_32(DEVAPC0_APC_CON, 0x0);
	mmio_write_32(DEVAPC0_MAS_SEC_0, 0x200);

364
365
	/* Only CPU0 is online during boot, initialize cpu online reserve bit */
	mmio_write_32(SPM_PCM_RESERVE, 0xFE);
366
367
	mmio_clrbits_32(AP_PLL_CON3, 0xFFFFF);
	mmio_clrbits_32(AP_PLL_CON4, 0xF);
368
369
370
	spm_lock_init();
	spm_register_init();
}