arm_common.c 7.55 KB
Newer Older
1
/*
Roberto Vargas's avatar
Roberto Vargas committed
2
 * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
 */
#include <arch.h>
#include <arch_helpers.h>
8
#include <arm_xlat_tables.h>
9
#include <assert.h>
10
#include <debug.h>
11
12
#include <mmio.h>
#include <plat_arm.h>
13
#include <platform_def.h>
Roberto Vargas's avatar
Roberto Vargas committed
14
#include <platform.h>
15
#include <secure_partition.h>
16

17
extern const mmap_region_t plat_arm_mmap[];
18
19
20

/* Weak definitions may be overridden in specific ARM standard platform */
#pragma weak plat_get_ns_image_entrypoint
21
#pragma weak plat_arm_get_mmap
22
23
24
25
26
27

/* Conditionally provide a weak definition of plat_get_syscnt_freq2 to avoid
 * conflicts with the definition in plat/common. */
#if ERROR_DEPRECATED
#pragma weak plat_get_syscnt_freq2
#endif
28

29
30
31
32
33
/*
 * Set up the page tables for the generic and platform-specific memory regions.
 * The extents of the generic memory regions are specified by the function
 * arguments and consist of:
 * - Trusted SRAM seen by the BL image;
34
35
 * - Code section;
 * - Read-only data section;
36
37
 * - Coherent memory region, if applicable.
 */
38
39
40
41
42
43
void arm_setup_page_tables(uintptr_t total_base,
			   size_t total_size,
			   uintptr_t code_start,
			   uintptr_t code_limit,
			   uintptr_t rodata_start,
			   uintptr_t rodata_limit
44
#if USE_COHERENT_MEM
45
			   ,
46
47
			   uintptr_t coh_start,
			   uintptr_t coh_limit
48
#endif
49
50
51
52
53
54
			   )
{
	/*
	 * Map the Trusted SRAM with appropriate memory attributes.
	 * Subsequent mappings will adjust the attributes for specific regions.
	 */
55
56
	VERBOSE("Trusted SRAM seen by this BL image: %p - %p\n",
		(void *) total_base, (void *) (total_base + total_size));
57
58
59
	mmap_add_region(total_base, total_base,
			total_size,
			MT_MEMORY | MT_RW | MT_SECURE);
60
61

	/* Re-map the code section */
62
63
	VERBOSE("Code region: %p - %p\n",
		(void *) code_start, (void *) code_limit);
64
65
66
67
68
	mmap_add_region(code_start, code_start,
			code_limit - code_start,
			MT_CODE | MT_SECURE);

	/* Re-map the read-only data section */
69
70
	VERBOSE("Read-only data region: %p - %p\n",
		(void *) rodata_start, (void *) rodata_limit);
71
72
73
74
	mmap_add_region(rodata_start, rodata_start,
			rodata_limit - rodata_start,
			MT_RO_DATA | MT_SECURE);

75
76
#if USE_COHERENT_MEM
	/* Re-map the coherent memory region */
77
78
	VERBOSE("Coherent region: %p - %p\n",
		(void *) coh_start, (void *) coh_limit);
79
80
81
82
	mmap_add_region(coh_start, coh_start,
			coh_limit - coh_start,
			MT_DEVICE | MT_RW | MT_SECURE);
#endif
83

84
85
	/* Now (re-)map the platform-specific memory regions */
	mmap_add(plat_arm_get_mmap());
86

87
88
89
	/* Create the page tables to reflect the above mappings */
	init_xlat_tables();
}
90

91
uintptr_t plat_get_ns_image_entrypoint(void)
92
{
93
94
95
#ifdef PRELOADED_BL33_BASE
	return PRELOADED_BL33_BASE;
#else
96
	return PLAT_ARM_NS_IMAGE_OFFSET;
97
#endif
98
99
100
101
102
103
104
105
106
}

/*******************************************************************************
 * Gets SPSR for BL32 entry
 ******************************************************************************/
uint32_t arm_get_spsr_for_bl32_entry(void)
{
	/*
	 * The Secure Payload Dispatcher service is responsible for
107
	 * setting the SPSR prior to entry into the BL32 image.
108
109
110
111
112
113
114
	 */
	return 0;
}

/*******************************************************************************
 * Gets SPSR for BL33 entry
 ******************************************************************************/
115
#ifndef AARCH32
116
117
118
119
120
121
uint32_t arm_get_spsr_for_bl33_entry(void)
{
	unsigned int mode;
	uint32_t spsr;

	/* Figure out what mode we enter the non-secure world in */
122
	mode = EL_IMPLEMENTED(2) ? MODE_EL2 : MODE_EL1;
123
124
125
126
127
128
129
130
131

	/*
	 * TODO: Consider the possibility of specifying the SPSR in
	 * the FIP ToC and allowing the platform to have a say as
	 * well.
	 */
	spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	return spsr;
}
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#else
/*******************************************************************************
 * Gets SPSR for BL33 entry
 ******************************************************************************/
uint32_t arm_get_spsr_for_bl33_entry(void)
{
	unsigned int hyp_status, mode, spsr;

	hyp_status = GET_VIRT_EXT(read_id_pfr1());

	mode = (hyp_status) ? MODE32_hyp : MODE32_svc;

	/*
	 * TODO: Consider the possibility of specifying the SPSR in
	 * the FIP ToC and allowing the platform to have a say as
	 * well.
	 */
	spsr = SPSR_MODE32(mode, plat_get_ns_image_entrypoint() & 0x1,
			SPSR_E_LITTLE, DISABLE_ALL_EXCEPTIONS);
	return spsr;
}
#endif /* AARCH32 */
154

155
156
157
/*******************************************************************************
 * Configures access to the system counter timer module.
 ******************************************************************************/
158
#ifdef ARM_SYS_TIMCTL_BASE
159
160
161
162
void arm_configure_sys_timer(void)
{
	unsigned int reg_val;

163
164
165
	/* Read the frequency of the system counter */
	unsigned int freq_val = plat_get_syscnt_freq2();

166
#if ARM_CONFIG_CNTACR
167
168
169
170
	reg_val = (1 << CNTACR_RPCT_SHIFT) | (1 << CNTACR_RVCT_SHIFT);
	reg_val |= (1 << CNTACR_RFRQ_SHIFT) | (1 << CNTACR_RVOFF_SHIFT);
	reg_val |= (1 << CNTACR_RWVT_SHIFT) | (1 << CNTACR_RWPT_SHIFT);
	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTACR_BASE(PLAT_ARM_NSTIMER_FRAME_ID), reg_val);
171
#endif /* ARM_CONFIG_CNTACR */
172
173
174

	reg_val = (1 << CNTNSAR_NS_SHIFT(PLAT_ARM_NSTIMER_FRAME_ID));
	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTNSAR, reg_val);
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

	/*
	 * Initialize CNTFRQ register in CNTCTLBase frame. The CNTFRQ
	 * system register initialized during psci_arch_setup() is different
	 * from this and has to be updated independently.
	 */
	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTCTLBASE_CNTFRQ, freq_val);

#ifdef PLAT_juno
	/*
	 * Initialize CNTFRQ register in Non-secure CNTBase frame.
	 * This is only required for Juno, because it doesn't follow ARM ARM
	 * in that the value updated in CNTFRQ is not reflected in CNTBASE_CNTFRQ.
	 * Hence update the value manually.
	 */
	mmio_write_32(ARM_SYS_CNT_BASE_NS + CNTBASE_CNTFRQ, freq_val);
#endif
192
}
193
#endif /* ARM_SYS_TIMCTL_BASE */
194
195
196
197
198
199
200
201

/*******************************************************************************
 * Returns ARM platform specific memory map regions.
 ******************************************************************************/
const mmap_region_t *plat_arm_get_mmap(void)
{
	return plat_arm_mmap;
}
202

203
#ifdef ARM_SYS_CNTCTL_BASE
204
205
206

unsigned int plat_get_syscnt_freq2(void)
{
Sandrine Bailleux's avatar
Sandrine Bailleux committed
207
	unsigned int counter_base_frequency;
208
209
210
211
212
213
214
215
216
217

	/* Read the frequency from Frequency modes table */
	counter_base_frequency = mmio_read_32(ARM_SYS_CNTCTL_BASE + CNTFID_OFF);

	/* The first entry of the frequency modes table must not be 0 */
	if (counter_base_frequency == 0)
		panic();

	return counter_base_frequency;
}
218

219
#endif /* ARM_SYS_CNTCTL_BASE */
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

#if SDEI_SUPPORT
/*
 * Translate SDEI entry point to PA, and perform standard ARM entry point
 * validation on it.
 */
int plat_sdei_validate_entry_point(uintptr_t ep, unsigned int client_mode)
{
	uint64_t par, pa;
	uint32_t scr_el3;

	/* Doing Non-secure address translation requires SCR_EL3.NS set */
	scr_el3 = read_scr_el3();
	write_scr_el3(scr_el3 | SCR_NS_BIT);
	isb();

	assert((client_mode == MODE_EL2) || (client_mode == MODE_EL1));
	if (client_mode == MODE_EL2) {
		/*
		 * Translate entry point to Physical Address using the EL2
		 * translation regime.
		 */
		ats1e2r(ep);
	} else {
		/*
		 * Translate entry point to Physical Address using the EL1&0
		 * translation regime, including stage 2.
		 */
		ats12e1r(ep);
	}
	isb();
	par = read_par_el1();

	/* Restore original SCRL_EL3 */
	write_scr_el3(scr_el3);
	isb();

	/* If the translation resulted in fault, return failure */
	if ((par & PAR_F_MASK) != 0)
		return -1;

	/* Extract Physical Address from PAR */
	pa = (par & (PAR_ADDR_MASK << PAR_ADDR_SHIFT));

	/* Perform NS entry point validation on the physical address */
	return arm_validate_ns_entrypoint(pa);
}
#endif