psci_afflvl_on.c 14.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
32
#include <arch.h>
#include <arch_helpers.h>
33
#include <assert.h>
34
#include <bl_common.h>
35
#include <bl31.h>
36
#include <context_mgmt.h>
37
#include <platform.h>
38
#include <runtime_svc.h>
39
#include <stddef.h>
40
#include "psci_private.h"
41

42
43
typedef int (*afflvl_on_handler_t)(unsigned long,
				 aff_map_node_t *,
44
45
46
47
48
49
50
				 unsigned long,
				 unsigned long);

/*******************************************************************************
 * This function checks whether a cpu which has been requested to be turned on
 * is OFF to begin with.
 ******************************************************************************/
51
static int cpu_on_validate_state(aff_map_node_t *node)
52
53
54
55
{
	unsigned int psci_state;

	/* Get the raw psci state */
56
	psci_state = psci_get_state(node);
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

	if (psci_state == PSCI_STATE_ON || psci_state == PSCI_STATE_SUSPEND)
		return PSCI_E_ALREADY_ON;

	if (psci_state == PSCI_STATE_ON_PENDING)
		return PSCI_E_ON_PENDING;

	assert(psci_state == PSCI_STATE_OFF);
	return PSCI_E_SUCCESS;
}

/*******************************************************************************
 * Handler routine to turn a cpu on. It takes care of any generic, architectural
 * or platform specific setup required.
 * TODO: Split this code across separate handlers for each type of setup?
 ******************************************************************************/
static int psci_afflvl0_on(unsigned long target_cpu,
74
			   aff_map_node_t *cpu_node,
75
76
77
			   unsigned long ns_entrypoint,
			   unsigned long context_id)
{
78
	unsigned int plat_state;
79
	unsigned long psci_entrypoint;
80
81
	uint32_t ns_scr_el3 = read_scr_el3();
	uint32_t ns_sctlr_el1 = read_sctlr_el1();
82
83
84
85
86
87
88
89
90
	int rc;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

	/*
	 * Generic management: Ensure that the cpu is off to be
	 * turned on
	 */
91
	rc = cpu_on_validate_state(cpu_node);
92
93
94
	if (rc != PSCI_E_SUCCESS)
		return rc;

95
96
97
98
99
	/*
	 * Call the cpu on handler registered by the Secure Payload Dispatcher
	 * to let it do any bookeeping. If the handler encounters an error, it's
	 * expected to assert within
	 */
100
101
	if (psci_spd_pm && psci_spd_pm->svc_on)
		psci_spd_pm->svc_on(target_cpu);
102

103
104
105
106
107
	/*
	 * Arch. management: Derive the re-entry information for
	 * the non-secure world from the non-secure state from
	 * where this call originated.
	 */
108
109
	rc = psci_save_ns_entry(target_cpu, ns_entrypoint, context_id,
				ns_scr_el3, ns_sctlr_el1);
110
111
112
113
114
115
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;

116
117
118
	/* State management: Set this cpu's state as ON PENDING */
	psci_set_state(cpu_node, PSCI_STATE_ON_PENDING);

119
120
121
122
123
124
125
126
	/*
	 * Plat. management: Give the platform the current state
	 * of the target cpu to allow it to perform the necessary
	 * steps to power on.
	 */
	if (psci_plat_pm_ops->affinst_on) {

		/* Get the current physical state of this cpu */
127
		plat_state = psci_get_phys_state(cpu_node);
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
		rc = psci_plat_pm_ops->affinst_on(target_cpu,
						  psci_entrypoint,
						  ns_entrypoint,
						  cpu_node->level,
						  plat_state);
	}

	return rc;
}

/*******************************************************************************
 * Handler routine to turn a cluster on. It takes care or any generic, arch.
 * or platform specific setup required.
 * TODO: Split this code across separate handlers for each type of setup?
 ******************************************************************************/
static int psci_afflvl1_on(unsigned long target_cpu,
144
			   aff_map_node_t *cluster_node,
145
146
147
148
149
150
151
152
153
154
155
156
157
158
			   unsigned long ns_entrypoint,
			   unsigned long context_id)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * There is no generic and arch. specific cluster
	 * management required
	 */

159
160
	/* State management: Is not required while turning a cluster on */

161
162
163
164
165
166
	/*
	 * Plat. management: Give the platform the current state
	 * of the target cpu to allow it to perform the necessary
	 * steps to power on.
	 */
	if (psci_plat_pm_ops->affinst_on) {
167
		plat_state = psci_get_phys_state(cluster_node);
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
		psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
		rc = psci_plat_pm_ops->affinst_on(target_cpu,
						  psci_entrypoint,
						  ns_entrypoint,
						  cluster_node->level,
						  plat_state);
	}

	return rc;
}

/*******************************************************************************
 * Handler routine to turn a cluster of clusters on. It takes care or any
 * generic, arch. or platform specific setup required.
 * TODO: Split this code across separate handlers for each type of setup?
 ******************************************************************************/
static int psci_afflvl2_on(unsigned long target_cpu,
185
			   aff_map_node_t *system_node,
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
			   unsigned long ns_entrypoint,
			   unsigned long context_id)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond affinity level 2 in this psci imp. */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * There is no generic and arch. specific system management
	 * required
	 */

201
202
	/* State management: Is not required while turning a system on */

203
204
205
206
207
208
	/*
	 * Plat. management: Give the platform the current state
	 * of the target cpu to allow it to perform the necessary
	 * steps to power on.
	 */
	if (psci_plat_pm_ops->affinst_on) {
209
		plat_state = psci_get_phys_state(system_node);
210
211
212
213
214
215
216
217
218
219
220
221
		psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
		rc = psci_plat_pm_ops->affinst_on(target_cpu,
						  psci_entrypoint,
						  ns_entrypoint,
						  system_node->level,
						  plat_state);
	}

	return rc;
}

/* Private data structure to make this handlers accessible through indexing */
222
static const afflvl_on_handler_t psci_afflvl_on_handlers[] = {
223
224
225
226
227
228
	psci_afflvl0_on,
	psci_afflvl1_on,
	psci_afflvl2_on,
};

/*******************************************************************************
229
230
231
232
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the on handler for the corresponding affinity
 * levels
 ******************************************************************************/
233
static int psci_call_on_handlers(mpidr_aff_map_nodes_t target_cpu_nodes,
234
235
236
237
238
239
240
				 int start_afflvl,
				 int end_afflvl,
				 unsigned long target_cpu,
				 unsigned long entrypoint,
				 unsigned long context_id)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
241
	aff_map_node_t *node;
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

	for (level = end_afflvl; level >= start_afflvl; level--) {
		node = target_cpu_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of undoing what we might have setup at higher
		 * affinity levels.
		 */
		rc = psci_afflvl_on_handlers[level](target_cpu,
						    node,
						    entrypoint,
						    context_id);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Generic handler which is called to physically power on a cpu identified by
 * its mpidr. It traverses through all the affinity levels performing generic,
 * architectural, platform setup and state management e.g. for a cpu that is
 * to be powered on, it will ensure that enough information is stashed for it
 * to resume execution in the non-secure security state.
 *
 * The state of all the relevant affinity levels is changed after calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is currently in.
 *
 * The affinity level specific handlers are called in descending order i.e. from
 * the highest to the lowest affinity level implemented by the platform because
 * to turn on affinity level X it is neccesary to turn on affinity level X + 1
 * first.
279
280
281
282
 ******************************************************************************/
int psci_afflvl_on(unsigned long target_cpu,
		   unsigned long entrypoint,
		   unsigned long context_id,
283
284
		   int start_afflvl,
		   int end_afflvl)
285
{
286
	int rc = PSCI_E_SUCCESS;
287
	mpidr_aff_map_nodes_t target_cpu_nodes;
288
289

	/*
290
291
292
293
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
294
	 */
295
296
297
298
299
300
301
	rc = psci_get_aff_map_nodes(target_cpu,
				    start_afflvl,
				    end_afflvl,
				    target_cpu_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;

302
303

	/*
304
305
306
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
307
	 */
308
	psci_acquire_afflvl_locks(start_afflvl,
309
310
311
312
313
314
315
316
317
318
				  end_afflvl,
				  target_cpu_nodes);

	/* Perform generic, architecture and platform specific handling. */
	rc = psci_call_on_handlers(target_cpu_nodes,
				   start_afflvl,
				   end_afflvl,
				   target_cpu,
				   entrypoint,
				   context_id);
319
320
321

	/*
	 * This loop releases the lock corresponding to each affinity level
322
	 * in the reverse order to which they were acquired.
323
	 */
324
	psci_release_afflvl_locks(start_afflvl,
325
326
				  end_afflvl,
				  target_cpu_nodes);
327
328
329
330
331
332
333
334

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity power on request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
335
static unsigned int psci_afflvl0_on_finish(aff_map_node_t *cpu_node)
336
{
337
	unsigned int plat_state, state, rc;
338
339
340

	assert(cpu_node->level == MPIDR_AFFLVL0);

341
	/* Ensure we have been explicitly woken up by another cpu */
342
	state = psci_get_state(cpu_node);
343
344
	assert(state == PSCI_STATE_ON_PENDING);

345
346
347
348
349
350
351
352
	/*
	 * Plat. management: Perform the platform specific actions
	 * for this cpu e.g. enabling the gic or zeroing the mailbox
	 * register. The actual state of this cpu has already been
	 * changed.
	 */
	if (psci_plat_pm_ops->affinst_on_finish) {

353
		/* Get the physical state of this cpu */
354
		plat_state = get_phys_state(state);
355
		rc = psci_plat_pm_ops->affinst_on_finish(read_mpidr_el1(),
356
357
358
359
360
361
362
363
							 cpu_node->level,
							 plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/*
	 * Arch. management: Turn on mmu & restore architectural state
	 */
364
	bl31_plat_enable_mmu();
365
366
367
368
369
370
371
372

	/*
	 * All the platform specific actions for turning this cpu
	 * on have completed. Perform enough arch.initialization
	 * to run in the non-secure address space.
	 */
	bl31_arch_setup();

373
374
375
376
377
	/*
	 * Call the cpu on finish handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
378
379
	if (psci_spd_pm && psci_spd_pm->svc_on_finish)
		psci_spd_pm->svc_on_finish(0);
380

381
382
383
	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the cpu_on
384
	 * call to set this cpu on its way.
385
	 */
386
	cm_prepare_el3_exit(NON_SECURE);
387

388
389
390
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

391
392
393
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

394
	rc = PSCI_E_SUCCESS;
395
396
397
	return rc;
}

398
static unsigned int psci_afflvl1_on_finish(aff_map_node_t *cluster_node)
399
{
400
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
401
402
403
404
405
406
407
408
409
410
411
412

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_on_finish) {
413
414

		/* Get the physical state of this cluster */
415
		plat_state = psci_get_phys_state(cluster_node);
416
		rc = psci_plat_pm_ops->affinst_on_finish(read_mpidr_el1(),
417
418
419
420
421
							 cluster_node->level,
							 plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

422
423
424
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

425
426
427
428
	return rc;
}


429
static unsigned int psci_afflvl2_on_finish(aff_map_node_t *system_node)
430
{
431
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_on_finish) {
450
451

		/* Get the physical state of the system */
452
		plat_state = psci_get_phys_state(system_node);
453
		rc = psci_plat_pm_ops->affinst_on_finish(read_mpidr_el1(),
454
455
456
457
458
							 system_node->level,
							 plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

459
460
461
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

462
463
464
	return rc;
}

465
const afflvl_power_on_finisher_t psci_afflvl_on_finishers[] = {
466
467
468
469
470
	psci_afflvl0_on_finish,
	psci_afflvl1_on_finish,
	psci_afflvl2_on_finish,
};