psci_entry.S 4.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
 * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <asm_macros.S>
#include <el3_common_macros.S>
#include <psci.h>
#include <xlat_tables.h>

	.globl	psci_aff_on_finish_entry
	.globl	psci_aff_suspend_finish_entry
	.globl	psci_power_down_wfi

	/* -----------------------------------------------------
	 * This cpu has been physically powered up. Depending
	 * upon whether it was resumed from suspend or simply
	 * turned on, call the common power on finisher with
	 * the handlers (chosen depending upon original state).
	 * -----------------------------------------------------
	 */
func psci_aff_on_finish_entry
	adr	x23, psci_afflvl_on_finishers
	b	psci_aff_common_finish_entry

psci_aff_suspend_finish_entry:
	adr	x23, psci_afflvl_suspend_finishers

psci_aff_common_finish_entry:
	/*
	 * On the warm boot path, most of the EL3 initialisations performed by
	 * 'el3_entrypoint_common' must be skipped:
	 *
	 *  - Only when the platform bypasses the BL1/BL3-1 entrypoint by
	 *    programming the reset address do we need to set the CPU endianness.
	 *    In other cases, we assume this has been taken care by the
	 *    entrypoint code.
	 *
	 *  - No need to determine the type of boot, we know it is a warm boot.
	 *
	 *  - Do not try to distinguish between primary and secondary CPUs, this
	 *    notion only exists for a cold boot.
	 *
	 *  - No need to initialise the memory or the C runtime environment,
	 *    it has been done once and for all on the cold boot path.
	 */
	el3_entrypoint_common					\
		_set_endian=PROGRAMMABLE_RESET_ADDRESS		\
		_warm_boot_mailbox=0				\
		_secondary_cold_boot=0				\
		_init_memory=0					\
		_init_c_runtime=0				\
		_exception_vectors=runtime_exceptions

	/* --------------------------------------------
	 * Enable the MMU with the DCache disabled. It
	 * is safe to use stacks allocated in normal
	 * memory as a result. All memory accesses are
	 * marked nGnRnE when the MMU is disabled. So
	 * all the stack writes will make it to memory.
	 * All memory accesses are marked Non-cacheable
	 * when the MMU is enabled but D$ is disabled.
	 * So used stack memory is guaranteed to be
	 * visible immediately after the MMU is enabled
	 * Enabling the DCache at the same time as the
	 * MMU can lead to speculatively fetched and
	 * possibly stale stack memory being read from
	 * other caches. This can lead to coherency
	 * issues.
	 * --------------------------------------------
	 */
	mov	x0, #DISABLE_DCACHE
	bl	bl31_plat_enable_mmu

	/* ---------------------------------------------
	 * Call the finishers starting from affinity
	 * level 0.
	 * ---------------------------------------------
	 */
	bl	get_power_on_target_afflvl
	mov	x2, x23
	mov	x1, x0
	mov	x0, #MPIDR_AFFLVL0
	bl	psci_afflvl_power_on_finish

	b	el3_exit
endfunc psci_aff_on_finish_entry

	/* --------------------------------------------
	 * This function is called to indicate to the
	 * power controller that it is safe to power
	 * down this cpu. It should not exit the wfi
	 * and will be released from reset upon power
	 * up. 'wfi_spill' is used to catch erroneous
	 * exits from wfi.
	 * --------------------------------------------
	 */
func psci_power_down_wfi
	dsb	sy		// ensure write buffer empty
	wfi
wfi_spill:
	b	wfi_spill
endfunc psci_power_down_wfi