psci_afflvl_on.c 14.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>

typedef int (*afflvl_on_handler)(unsigned long,
				 aff_map_node *,
				 unsigned long,
				 unsigned long);

/*******************************************************************************
 * This function checks whether a cpu which has been requested to be turned on
 * is OFF to begin with.
 ******************************************************************************/
49
static int cpu_on_validate_state(aff_map_node *node)
50
51
52
53
{
	unsigned int psci_state;

	/* Get the raw psci state */
54
	psci_state = psci_get_state(node);
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

	if (psci_state == PSCI_STATE_ON || psci_state == PSCI_STATE_SUSPEND)
		return PSCI_E_ALREADY_ON;

	if (psci_state == PSCI_STATE_ON_PENDING)
		return PSCI_E_ON_PENDING;

	assert(psci_state == PSCI_STATE_OFF);
	return PSCI_E_SUCCESS;
}

/*******************************************************************************
 * Handler routine to turn a cpu on. It takes care of any generic, architectural
 * or platform specific setup required.
 * TODO: Split this code across separate handlers for each type of setup?
 ******************************************************************************/
static int psci_afflvl0_on(unsigned long target_cpu,
			   aff_map_node *cpu_node,
			   unsigned long ns_entrypoint,
			   unsigned long context_id)
{
	unsigned int index, plat_state;
	unsigned long psci_entrypoint;
	int rc;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

	/*
	 * Generic management: Ensure that the cpu is off to be
	 * turned on
	 */
87
	rc = cpu_on_validate_state(cpu_node);
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
	 * Arch. management: Derive the re-entry information for
	 * the non-secure world from the non-secure state from
	 * where this call originated.
	 */
	index = cpu_node->data;
	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;

104
105
106
	/* State management: Set this cpu's state as ON PENDING */
	psci_set_state(cpu_node, PSCI_STATE_ON_PENDING);

107
108
109
110
111
112
113
114
	/*
	 * Plat. management: Give the platform the current state
	 * of the target cpu to allow it to perform the necessary
	 * steps to power on.
	 */
	if (psci_plat_pm_ops->affinst_on) {

		/* Get the current physical state of this cpu */
115
		plat_state = psci_get_phys_state(cpu_node);
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
		rc = psci_plat_pm_ops->affinst_on(target_cpu,
						  psci_entrypoint,
						  ns_entrypoint,
						  cpu_node->level,
						  plat_state);
	}

	return rc;
}

/*******************************************************************************
 * Handler routine to turn a cluster on. It takes care or any generic, arch.
 * or platform specific setup required.
 * TODO: Split this code across separate handlers for each type of setup?
 ******************************************************************************/
static int psci_afflvl1_on(unsigned long target_cpu,
			   aff_map_node *cluster_node,
			   unsigned long ns_entrypoint,
			   unsigned long context_id)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * There is no generic and arch. specific cluster
	 * management required
	 */

147
148
	/* State management: Is not required while turning a cluster on */

149
150
151
152
153
154
	/*
	 * Plat. management: Give the platform the current state
	 * of the target cpu to allow it to perform the necessary
	 * steps to power on.
	 */
	if (psci_plat_pm_ops->affinst_on) {
155
		plat_state = psci_get_phys_state(cluster_node);
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
		psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
		rc = psci_plat_pm_ops->affinst_on(target_cpu,
						  psci_entrypoint,
						  ns_entrypoint,
						  cluster_node->level,
						  plat_state);
	}

	return rc;
}

/*******************************************************************************
 * Handler routine to turn a cluster of clusters on. It takes care or any
 * generic, arch. or platform specific setup required.
 * TODO: Split this code across separate handlers for each type of setup?
 ******************************************************************************/
static int psci_afflvl2_on(unsigned long target_cpu,
			   aff_map_node *system_node,
			   unsigned long ns_entrypoint,
			   unsigned long context_id)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond affinity level 2 in this psci imp. */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * There is no generic and arch. specific system management
	 * required
	 */

189
190
	/* State management: Is not required while turning a system on */

191
192
193
194
195
196
	/*
	 * Plat. management: Give the platform the current state
	 * of the target cpu to allow it to perform the necessary
	 * steps to power on.
	 */
	if (psci_plat_pm_ops->affinst_on) {
197
		plat_state = psci_get_phys_state(system_node);
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
		psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
		rc = psci_plat_pm_ops->affinst_on(target_cpu,
						  psci_entrypoint,
						  ns_entrypoint,
						  system_node->level,
						  plat_state);
	}

	return rc;
}

/* Private data structure to make this handlers accessible through indexing */
static const afflvl_on_handler psci_afflvl_on_handlers[] = {
	psci_afflvl0_on,
	psci_afflvl1_on,
	psci_afflvl2_on,
};

/*******************************************************************************
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the on handler for the corresponding affinity
 * levels
 ******************************************************************************/
static int psci_call_on_handlers(mpidr_aff_map_nodes target_cpu_nodes,
				 int start_afflvl,
				 int end_afflvl,
				 unsigned long target_cpu,
				 unsigned long entrypoint,
				 unsigned long context_id)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
	aff_map_node *node;

	for (level = end_afflvl; level >= start_afflvl; level--) {
		node = target_cpu_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of undoing what we might have setup at higher
		 * affinity levels.
		 */
		rc = psci_afflvl_on_handlers[level](target_cpu,
						    node,
						    entrypoint,
						    context_id);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Generic handler which is called to physically power on a cpu identified by
 * its mpidr. It traverses through all the affinity levels performing generic,
 * architectural, platform setup and state management e.g. for a cpu that is
 * to be powered on, it will ensure that enough information is stashed for it
 * to resume execution in the non-secure security state.
 *
 * The state of all the relevant affinity levels is changed after calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is currently in.
 *
 * The affinity level specific handlers are called in descending order i.e. from
 * the highest to the lowest affinity level implemented by the platform because
 * to turn on affinity level X it is neccesary to turn on affinity level X + 1
 * first.
267
268
269
270
 ******************************************************************************/
int psci_afflvl_on(unsigned long target_cpu,
		   unsigned long entrypoint,
		   unsigned long context_id,
271
272
		   int start_afflvl,
		   int end_afflvl)
273
{
274
275
	int rc = PSCI_E_SUCCESS;
	mpidr_aff_map_nodes target_cpu_nodes;
276
277
278
	unsigned long mpidr = read_mpidr() & MPIDR_AFFINITY_MASK;

	/*
279
280
281
282
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
283
	 */
284
285
286
287
288
289
290
	rc = psci_get_aff_map_nodes(target_cpu,
				    start_afflvl,
				    end_afflvl,
				    target_cpu_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;

291
292

	/*
293
294
295
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
296
	 */
297
298
299
300
301
302
303
304
305
306
307
308
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  target_cpu_nodes);

	/* Perform generic, architecture and platform specific handling. */
	rc = psci_call_on_handlers(target_cpu_nodes,
				   start_afflvl,
				   end_afflvl,
				   target_cpu,
				   entrypoint,
				   context_id);
309
310
311

	/*
	 * This loop releases the lock corresponding to each affinity level
312
	 * in the reverse order to which they were acquired.
313
	 */
314
315
316
317
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  target_cpu_nodes);
318
319
320
321
322
323
324
325
326

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity power on request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
static unsigned int psci_afflvl0_on_finish(unsigned long mpidr,
327
					   aff_map_node *cpu_node)
328
{
329
	unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
330
331
332

	assert(cpu_node->level == MPIDR_AFFLVL0);

333
	/* Ensure we have been explicitly woken up by another cpu */
334
	state = psci_get_state(cpu_node);
335
336
	assert(state == PSCI_STATE_ON_PENDING);

337
338
339
340
341
342
343
344
	/*
	 * Plat. management: Perform the platform specific actions
	 * for this cpu e.g. enabling the gic or zeroing the mailbox
	 * register. The actual state of this cpu has already been
	 * changed.
	 */
	if (psci_plat_pm_ops->affinst_on_finish) {

345
		/* Get the physical state of this cpu */
346
		plat_state = get_phys_state(state);
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
		rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
							 cpu_node->level,
							 plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/*
	 * Arch. management: Turn on mmu & restore architectural state
	 */
	enable_mmu();

	/*
	 * All the platform specific actions for turning this cpu
	 * on have completed. Perform enough arch.initialization
	 * to run in the non-secure address space.
	 */
	bl31_arch_setup();

	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the cpu_on
368
	 * call to set this cpu on its way. First get the index
369
370
371
	 * for restoring the re-entry info
	 */
	index = cpu_node->data;
372
	psci_get_ns_entry_info(index);
373

374
375
376
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

377
378
379
380
381
382
383
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

	return rc;
}

static unsigned int psci_afflvl1_on_finish(unsigned long mpidr,
384
					   aff_map_node *cluster_node)
385
{
386
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
387
388
389
390
391
392
393
394
395
396
397
398

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_on_finish) {
399
400

		/* Get the physical state of this cluster */
401
		plat_state = psci_get_phys_state(cluster_node);
402
403
404
405
406
407
		rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
							 cluster_node->level,
							 plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

408
409
410
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

411
412
413
414
415
	return rc;
}


static unsigned int psci_afflvl2_on_finish(unsigned long mpidr,
416
					   aff_map_node *system_node)
417
{
418
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_on_finish) {
437
438

		/* Get the physical state of the system */
439
		plat_state = psci_get_phys_state(system_node);
440
441
442
443
444
445
		rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
							 system_node->level,
							 plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

446
447
448
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

449
450
451
452
453
454
455
456
457
	return rc;
}

const afflvl_power_on_finisher psci_afflvl_on_finishers[] = {
	psci_afflvl0_on_finish,
	psci_afflvl1_on_finish,
	psci_afflvl2_on_finish,
};